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1 Preliminaries

At every iteration of our proposed batched BO algo-
rithm we solve (X p

t in the Pareto sense):

xut = argmaxx∈X
(
µt−1 (x) +

√
2βtσt−1 (x)

)
X p
t ⊆ argmaxx∈X+

t
(µt−1 (x) , σt−1 (x))

(1)

to form Xt =
{
x1t , x

2
t , . . . , x

nt
t

}
⊂ X p

t ∪ {xut }, xut ∈
Xt, as per algorithm 2. We use the shorthand µit =
µt−1(xit), σ

i
t = σt−1(xit) etc.

It follows from the properties of Pareto optimality that
each xit is the maximum of a scalarised acquisition
function ait characterised by βit :

xit = argmaxx∈X

(
ait (x) = µt (x) +

√
βitσt (x)

)
We assume without loss of generality that:

σ1
t ≤ σ2

t ≤ . . . ≤ σ
nt
t ∀t (2)

from which we obtain the following results:

Lemma 1 For all t, j 6= k ≤ nt:(
βjt < βkt

)
⇒
(
σjt ≤ σkt

)(
σjt < σkt

)
⇒
(
βjt ≤ βkt

)

Proof: We first prove that (βjt < βkt ) ⇒ (σjt ≤ σkt ).

By definition µit +
√
βitσ

i
t is the maximum of the ac-

quisition function ait ∀i. So:

µjt +

√
βjt σ

j
t ≥ µkt +

√
βjt σ

k
t

µjt +
√
βkt σ

j
t ≤ µkt +

√
βkt σ

k
t

(3)

Hence:

−µjt −
√
βjt σ

j
t ≤ −µkt −

√
βjt σ

k
t

µjt +
√
βkt σ

j
t ≤ µkt +

√
βkt σ

k
t

so: (√
βkt −

√
βjt

)
σjt ≤

(√
βkt −

√
βjt

)
σkt

and it follows that σjt ≤ σkt .

To demonstrate that (σjt < σkt ) ⇒ (βjt ≤ βkt ) suppose
the converse - that is, (σjt < σkt ) but (βjt > βkt ). Let

r = σkt − σ
j
t > 0 and s =

√
βjt −

√
βkt > 0. Clearly (3)

must still hold, so:

µjt +

√
βjt σ

j
t ≥ µkt +

√
βjt σ

j
t +

√
βjt r

µjt +

√
βjt σ

j
t ≤ µkt +

√
βjt σ

j
t +

√
βjt r − sr

Hence:

−µjt −
√
βjt σ

j
t ≤ −µkt −

√
βjt σ

j
t −

√
βjt r

µjt +

√
βjt σ

j
t ≤ µkt +

√
βjt σ

j
t +

√
βjt r − sr

so sr ≤ 0, which contradicts the definition of s, r. It
follows by contradiction that (σjt < σkt ) ⇒ (βjt ≤ βkt ).
�

Lemma 2 Following the definitions ∀t:

2βt = β1
t ≤ β2

t ≤ . . . ≤ β
nt
t

Proof: This follows from assumption (2), theorem
1 and definition 1 (which implies that σt−1(xut ) <
σt−1(xpt )) ∀xpt ∈ X

p
t , and hence βit ≥ 2βt ∀i). �

Corollary 1 For all i the scalarisation constants βit
are generated by a relaxed GP-UCB strategy.

Proof: Define γit = βit− 2βt ∀i. We see from Lemma
2 that γit ≥ 0. As 2βt is generated by the standard
GP-UCB strategy, 2βt = 2 log(ηt2πt/δ), where 2πt =
π2t2/6 and

∑
t 1/2πt = 1. Hence:

βit = 2 log
(
ηt
δ 2πt

)
+ γit = 2 log

(
ηt
δ πt

)
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where πt = 2πt exp(γit/2). πt ≥ 2πt as γit ≥ 0, so∑
t 1/πt ≤ 1. Hence βit is generated by a relaxed GP-

UCB strategy ∀i. �

Lemma 3 Following the definitions:∑
t≤Tσ

1
t ≤

∑
t≤T

1
nt

∑
1≤i≤nt

σit

Proof: This follows from (2). �

2 Regret Bounds

As defined in the main manuscript the regret for a
single evaluation xit ∈ Xt is:

rit = f (x∗)− f
(
xit
)

where x∗ is the maximiser for f ; and the simple regret
for the complete batch Xt is:

rt = minir
i
t

and:

RnT =
∑
t≤T rt (batch cumulative regret)

RTn =
∑
t≤T

∑
i≤nt

rit (total cumulative regret)

are the batch cumulative regret and total cumulative
regret, respectively.

We have the following results:

Lemma 4 If X is finite; or if X is compact and convex
and k(x, x)) ≤ 1 ∀x ∈ X; then for all t the bound:

rt ≤ r1t ≤ 2
√

2βtσ
i
t +Dt

holds with probability ≥ 1 − δ, where Dt = 0 if |X| is
finite, Dt = 1

t2 otherwise.

Proof: The proof is similar to that of Lemma 5.2, 5.4
and 5.8 in Srinivas et al. (2012) and Lemma 1 in Contal
et al. (2013). We consider only the finite |X| case here
(the infinite case follows by analogy with the method in
Srinivas et al. (2012)). By definition rt ≤ r1t . As βpt is
generated by a relaxed GP-UCB strategy we have that
|f(x)−µt−1(x)| ≤

√
βpt σt−1(x) holds with probability

≥ 1− δ ∀x, p (Lemma 5.1, Srinivas et al. (2012)). We
also have from Lemma 2 that β1

t = 2βt. It follows
that, with probability ≥ 1− δ:

f (x∗) ≤ µt−1 (x∗) +
√

2βtσt−1 (x∗) ≤ µ1
t +
√

2βtσ
1
t

µ1
t −
√

2βtσ
1
t ≤ f

(
x1t
)
≤ µ1

t +
√

2βtσ
1
t

and hence:

rt ≤ r1t = f (x∗)− f
(
x1t
)

≤ µ1
t +
√

2βtσ
1
t − µ1

t +
√

2βtσ
1
t

= 2
√

2βtσ
1
t

holds with probability ≥ 1− δ. �

Lemma 5 For all T the bound:∑
t≤T
∑
j≤nt

(
σjt

)2
≤ C ′1γATT

holds with probability ≥ 1 − δ, where C ′1 =
2/log

(
1 + ν−2

)
; AT = 1

T

∑
t≤T nt is the arithmetic

mean of the batch sizes; and γATT is the max infor-
mation gain obtainable from a sequence of length ATT .

Proof: The proof follows that of Lemmas 5.3 and 5.4
in Srinivas et al. (2012), as per Contal et al. (2013),
except that in this case the batch size varies with t,
leading to ATT term in the result. �

Theorem 1 Let δ ∈ ]0, 1[. Assuming k(x, x) ≤ 1

∀x ∈ X and either X is either finite or X ⊂ [0, r]
d

and f satisfies Pr {supx∈X |∂f/∂xj | > L} ≤ ae−(L/b)
2

then for all T :

RnT ≤
√

T
HT

C1 2βT γATT + C2 (4)

holds with probability ≥ 1− δ, where AT = 1
T

∑
t≤T nt

and HT = T∑
t≤T

1
nt

are, respectively, the arith-

metic and harmonic means of the batch sizes; C1 =
8/ log (1 + ν−2); C2 = 0 if |X| is finite, π2/6 other-
wise; and γATT is the max information gain obtainable
from a sequence of length ATT .

Proof: Applying previous results, as per Contal
et al. (2013):

RnT =
∑
t≤T rt

≤
∑
t≤T 2

√
2βtσ

1
t + C2 (Lem 4)

≤ 2
√

2βT
∑
t≤T σ

1
t + C2 (2βt increasing)

≤ 2
√

2βT
∑
t≤T

1
nt

∑
i≤nt

σit + C2 (Lem 3)

≤ 2
√

2βT

√
T
HT

∑
t≤T

∑
i≤nt

(
σit
)2

+ C2 (C.-S.)

≤ 2
√

2βT

√
T
HT

C ′1γATT + C2 (Lem 5)

≤
√

T
HT

C1 2βT γATT + C2

where C2 =
∑
t≤T Dt. Hence C2 = 0 if |X| is finite,

C2 = ζ(2) = π2/6 otherwise. �

To this point our proof would apply if we replaced the
relevant region X+

t in our algorithm with X. To finish
our proof with respect to bounding total cumulative
regret RTn, however, requires the use of the relevant
region. We begin with an analogue to Lemma 4:

Lemma 6 If X is finite; or if X is compact and convex
and k(x, x)) ≤ 1 ∀x ∈ X; then for all t the bound:

rt ≤ rit ≤ 6
√

2βtσ
i
t +Dt

holds with probability ≥ 1 − δ, where Dt = 0 if |X| is
finite, Dt = 1

t2 otherwise.
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Proof: This proof follows analogously by the method
of Contal et al. (2013), proof of Lemma 6. �

This allows us to complete our proof:

Theorem 2 Under the conditions of theorem 1:

RTn ≤
√
ATTC3 2βT γATT +N∞C2 (5)

holds with probability ≥ 1− δ, where AT = 1
T

∑
t≤T nt

is the arithmetic mean of the batch sizes; N∞ =
maxt≤Tnt; C2 = 0 if |X| is finite, π2/6 otherwise;
C3 = 72/ log (1 + ν−2); and γATT is the max informa-
tion gain obtainable from a sequence of length ATT .

Proof: Applying previous results, as per Contal
et al. (2013):

RTn =
∑
t≤T

∑
i≤nt

rit
≤
∑
t≤T

∑
i≤nt

6
√

2βtσ
i
t + E (Lem 6)

≤ 6
√

2βT
∑
t≤T

∑
i≤nt

σit + E (2βt increasing)

≤ 6
√

2βT

√
ATT

∑
t

∑
i

(
σit
)2

+ E (C.-S.)

≤ 6
√

2βT
√
ATTC ′1γATT + E (Lem 5)

≤
√
ATTC3 2βT γATT + E

where E =
∑
t≤T

∑
i≤nt

Dt ≤ N∞C2. �

3 A Note on Relevant Region
Selection for (only) Batch
Cumulative Regret Bounding

As noted in the previous section, the proof up to and
including theorem 1 will hold if we use for our relevant
region the (unconstrained) set X - that is:

xut = argmaxx∈X
(
µt−1 (x) +

√
2βtσt−1 (x)

)
X p
t ⊆ X

pf
t ⊆ argmaxx∈X (µt−1 (x) , σt−1 (x))

Xt = X p
t ∪ {xut }

(6)

The caveat in this case is that Lemma 2 must be re-
placed by:

Lemma 7 Following the definitions ∀t:

2βt ≤ βmt
t ≤ βmt+1

t ≤ . . . ≤ βnt
t

where 1 ≤ mt ≤ nt.

In subsequent results only those n′t = mt − nt + 1
recommendations with the largest variances σit are in-
cluded. The bound (4) on batch cumulative regret:

RnT ≤
√

T
H′T

C1 2βT γA′TT + C2 (7)

will hold in this case where A′T = 1
T

∑
t≤T n

′
t and

H ′T = T∑
t≤T

1
n′t

are, respectively, the arithmetic and

harmonic means of the number of recommendation in
each batch that are at least as exploratory as the stan-
dard GP-UCB recommendation xut .

Note that an analogous result does not follow for total
cumulative regret RTn, as in this case the proof hinges
on the regret for all points in the recommendation set
being bounded, which cannot be guaranteed for rec-
ommendations not generated by a relaxed GP-UCB
strategy (i.e. Lemma 6, and subsequently Theorem 2,
does not hold in this case).

4 Additional Experimental Results

4.1 Evolution of Batch size

We provide additional detail into the batch size chosen
by our proposed algorithm (Algorithm 2 in the main
paper) as optimisation iterations progress. We can see
from Figure 1 that the batch size, on average, decreases
with increasing optimisation iterations. This property
of our algorithm is significant as it minimizes experi-
mental cost by avoiding unnecessary experiments. The
optimiser starts with using higher batch size, however
it increasingly figures out the function landscape and
starts to save on the number of experiments.

4.2 Comparison with other methods

During the review process, we were asked to compare
between our proposed method with the filtering of Eq
(7) (that is, using X+

t ) or without it (that is, using
X). We have performed this comparison using all three
benchmark functions used in our paper and present in
Figure 2. As seen from the figure, the optimisation
performance of our algorithm using X+

t is compara-
ble to that of the variant using X. For the Hartmann3
function, the algorithm using X works better compared
to the algorithm using X+

t . For the Eggholder func-
tion, however, the opposite is true. Both algorithms
perform similarly for the Branin function. Therefore it
is not easy to conclude if one is better than the other
empirically. We have chosen to mainly work with the
X+
t variant as it is possible to obtain a bound on both

total cumulative regret and batch cumulative regret,
whereas for the variant using X we can only bound
batch cumulative regret.

We were also asked to check how our method com-
pares to the multi-point EI algorithm (Ginsbourger
et al., 2010). We have performed this comparison
using the implementation available from the URL
(https://github.com/cran/DiceOptim/blob/master/R
/qEI.R). The results for the Hartmann3 function are
shown in Figure 3. We tried to perform this compari-
son for the other two benchmark functions (eggholder
and branin) but could not get reportable results as
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Figure 1: The number of recommendations with respect to optimisation iterations - (a) Branin (b) Hartmann3
(c) Eggholder (d) Support vector regression hyperparameter tuning task (e) Support vector classification hyper-
parameter tuning task (f) Heat treatment optimisation of Al-Sc alloy.
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Figure 2: A comparison between two variants of proposed algorithm using X+
t or X - (a) Branin (b) Hartmann3

(c) Eggholder.
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Figure 3: A comparison between our proposed algo-
rithm using X+

t and multi-point EI using Hartmann3
function.

the multi-point EI implementation did not improve at
all over the initial random points.

References

Emile Contal, David Buffoni, Alexandre Robicquet,
and Nicolas Vayatis. Parallel gaussian process
optimization with upper confidence bound and
pure exploration. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 225–240. Springer, 2013.

David Ginsbourger, Rodolphe Le Riche, and Lau-
rent Carraro. Kriging is well-suited to parallelize
optimization. In Computational Intelligence in
Expensive Optimization Problems, pages 131–162.
Springer, 2010.

Niranjan Srinivas, Andreas Krause, Sham M. Kakade,
and Matthias W. Seeger. Information-theoretic re-
gret bounds for gaussian process optimization in the
bandit setting. IEEE Transactions on Information
Theory, 58(5):3250–3265, May 2012.


	Preliminaries
	Regret Bounds
	A Note on Relevant Region Selection for (only) Batch Cumulative Regret Bounding
	Additional Experimental Results
	Evolution of Batch size
	Comparison with other methods


