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Abstract

This paper proposes a novel approach to
batch Bayesian optimisation using a multi-
objective optimisation framework with ex-
ploitation and exploration forming two ob-
jectives. The key advantage of this approach
is that it uses a suite of strategies to balance
exploration and exploitation and thus can ef-
ficiently handle the optimisation of a variety
of functions with small to large number of lo-
cal extrema. Another advantage is that it au-
tomatically determines the batch size within
a specified budget avoiding unnecessary func-
tion evaluations. Theoretical analysis shows
that the regret not only reduces sub-linearly
but also by an additional reduction factor de-
termined by the batch size. We demonstrate
the efficiency of our algorithm by optimising
a variety of benchmark functions, perform-
ing hyperparameter tuning of support vector
regression and classification, and finally heat
treatment process of an Al-Sc alloy. Compar-
isons with recent baseline algorithms confirm
the usefulness of our algorithm.

1 Introduction

Bayesian optimisation is a sample-efficient approach to
optimise expensive black-box functions. It has found
enormous applications in experimental design applica-
tions where the goal is to achieve a target by setting
a number of control variables - e.g. synthetic gene de-
sign (Gonzélez et al.,[2014)), optimisation of microalgae
metabolism (Ulmasov et al.l 2016]), sensor set selec-
tion (Garnett et al. |2010) or hyperparameter tuning
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(Snoek et al.l |2012)). It typically models a black-box
function using a Gaussian process (GP) (Williams and
Rasmussen,, 2006]) that expresses a “belief” over all
possible smooth objective functions through a prior
distribution. The prior is updated to derive a poste-
rior distribution as data is observed. The search is
guided by a surrogate (acquisition) function derived
from the GP posterior. Its global optimum can be
found because, unlike the expensive (to evaluate) ob-
jective function, it can be cheaply evaluated over the
search space. Examples of acquisition function include
Expected Improvement (EI) (Jones et al., [1998)), GP-
UCB (Srinivas et al., 2012) and Predictive Entropy
Search (Hernandez-Lobato et al., [2014)).

To efficiently search, the GP posterior is used to make
the next recommendation for function evaluation, bal-
ancing two conflicting needs at iteration ¢, namely the
need to “explore” regions of high epistemic uncertainty
in the objective function (o:), and the need to “ex-
ploit” regions where the mean of the objective func-
tion () is optimum. Assuming a maxima problem,
this trade-off is balanced through a weighted combi-
nation (p; + v/B¢0¢), where B is the trade-off factor.
Higher values of 8; move the strategy towards explo-
ration, whilst lower values favor exploitation. Thus a
raft of alternate strategies can be generated by varying
B:. Recently, an iteration dependent S; scheme called
GP-UCB with a statistical bound on regret has been
formulated (Srinivas et al.,|2012)). Similar progress has
also been made for EI (Bull, [2011)).

In many real-world cases where parallel resources are
available it may be possible to simultaneously evaluate
the function at multiple settings, leading to consider-
able saving in function optimisation time. In such sit-
uations it is often useful to implement batch Bayesian
optimisation, which recommends multiple evaluation
points per iteration. Previous work has focused on
identifying multiple extrema of the acquisition func-
tion as the recommendations in an iteration. Most
methods select the (top) extremum as the first point
in the batch, and then use diverse methods to derive
the remaining extrema. For example, Gonzalez et al.
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(2016) use a local penalisation technique to suppress
each extrema after detection. Other methods update
the GP with the extremum found, causing a “dip”
in the acquisition function at this point and allowing
other lower extrema to gain prominence. Examples
include “Kriging believer” (Ginsbourger et al.| [2010)
and methods using “fake” or “hallucinated” observa-
tions through prediction (Azimi et al., |2012; Desau-
tels et al., [2014). Two other efforts that differ slightly
are Nguyen et al|(2016), which uses a non-parametric
Bayesian method to derive the extrema without peak
suppression, and [Contal et al.| (2013]), which uses pure
exploration to derive all but the first extremum.

A common thread in the existing work is the construc-
tion of an acquisition function for the sequential BO,
followed by the location of all the peaks as recommen-
dations for the batch. The problem is that all the
recommendations are made by fixing a single trade-
off factor (3; at each iteration t. It is our intuition
that a richer approach would be to select each point
of the recommended batch through alternate trade-off
strategies, i.e. by using a multitude of 5; values, thus
combining a plethora of exploration and exploitation
strategies. The advantage of this approach is that it
hedges its bets, enabling it to handle a multitude of
as yet unseen situations. For example, if the function
has a large number of local extrema, then a judicious
approach is to tilt the strategy towards exploration -
as demonstrated in [Bulll (2011). In other situations, a
balanced approach is preferable.

The focus of this paper is the construction of a new
batch Bayesian optimisation method wherein the mul-
tiple recommendations are derived using a mixture of
trade-off strategies. For the first time we formulate a
multi-objective optimisation for y; and o;. The Pareto
front yields a set of possible recommendations, each
corresponding to a solution for a particular strategy
(B:). Thus the recommendations span a set of al-
ternate strategies across the exploration-exploitation
spectrum. We rigorously analyse the convergence of
this approach. We derive batch cumulative and total
cumulative regret bounds and show that their growth
is sub-linear, implying convergence. We also show that
the regret bounds reduce by an extra factor related to
the batch size. An advantage of our method is that it
automatically selects the batch size within a specified
budget avoiding unpromising explorations. We for-
mulate an algorithm to implement this approach and
demonstrate the efficiency of our algorithm through
3 optimisation benchmark functions, hyperparame-
ter tuning for machine learning using real-world data
(Abalone and QSAR biodegradation datasets), and
finally through a real world task of optimising heat
treatment process of an Al-Sc alloy to maximise the

strength. We compare the performance of our method
with two recent state-of-the-art multi-recommendation
baselines (Batch GP-UCB (Desautels et al., |2014) and
GP-UCB-PE (Contal et all [2013))). Our main contri-
butions are:

e A novel approach to batch Bayesian optimisation
by formulating it in a multi-objective optimisa-
tion framework, where exploitation (u;) and ex-
ploration (o) form the two objectives. This al-
lows us to use a raft of exploitation/exploration
strategies;

e Theoretical analysis of our proposed method
showing that regret reduces sub-linearly with
number of batches and additionally by a factor
equal to average batch size;

e Evaluation of our method using three benchmark
functions, hyperparameter tuning for SVM using
two real-world datasets, and finally a real-world
task of optimising the heat treatment process of
an Al-Sc alloy to maximise the strength.

2 Problem Statement and Background

We wish to maximise a function f : X — R to find
r* = argmax,x f(z), where X C R? is compact and
convex. We are interested in the case where f is ex-
pensive to evaluate - say for example the outcome of
a physical experiment or parameter tuning in machine
learning - but for which we may, at minimal additional

cost, evaluate multiple points in a single “batch”.

It is assumed that the function f can be modeled using
a Gaussian process (Williams and Rasmussen) [2006)),
ie. f~ GP(u, k) is a draw from a Gaussian process
characterised by a mean function g : X — R and a
covariance function k : X x X — R, where without loss
of generality it is assumed that u(x) = 0. Given obser-
vations Dy = {(xs,v:) 1 vi = f(zi) + 6,0 =1,2,...,t}
where ¢; € N(0,v?) we have the posterior f(x)|D; ~
N (u¢(z),02(z)) with mean p;(z) and variance o?(x)
as:

e (2) =XkF (2) (Ko +0°0) "y,

) =k (z,2) — kT (2) (K; +v21) "'k (2) W)

o (z
where y; = [yi](— yep,, ke(2) = [k(2i;2)](2;,—)ep,
and K¢ = [k(2i, 7)) (2,,-),(a;,—~)eD, (We write (z,—) €
D; if Jy € R : (z,y) € Dy; and likewise (—,y) € Dy if
Jr € X: (z,y) € Dy).

2.1 Bayesian Optimisation

Bayesian optimisation (Brochu et all |2010) (BO) is
an optimisation algorithm that aims to find the op-
timal solution to a function f in the fewest iter-
ations (evaluations) possible. At every iteration ¢
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Bayesian optimisation selects a sample x to maximise
a (cheap) acquisition function a; : X — R based
on p;—1 and oy—1. This point is then evaluated to
obtain y; = f(x¢) + ¢; and the GP model gets up-
dated to incorporate this new observation, and the al-
gorithm continues. Typical acquisition functions are
Expected Improvement (EI) (Jones et al., [1998), GP-
UCB (Srinivas et al., 2012) and Predictive Entropy
Search (Hernéandez-Lobato et al2014). In the present
paper we particularly use GP-UCB as it is amenable
to theoretical convergence analysis.

2.2 Batch Bayesian Optimisation

Batch Bayesian optimisation (Contal et al.l 2013;
Desautels et all 2014} [Kathuria et all 2016} [Shah
and Ghahramani, |2015) (batch BO) is an increas-
ingly popular approach to the problem considered
here. Batch BO operates like BO, except that at
each iteration it provides a batch of recommendations
Xy = (x},22,...2}") for evaluation - see algorithm
Typically the size of the batch n; is kept fixed for every
iteration, so n; = n. While this may be appropriate
in some situations it is not difficult to imagine many
others where “padding” the batch to reach some arbi-
trary goal may be pointless or even counter-productive
if the additional cost per recommendation in a batch
is negligible but non-zero.

Algorithm 1 Generic Batch-Bayesian Optimisation

input Dy := {(z;,yi)|ly: = fla:) +€,i=1,2,...}.
1: fort=1,2,...,7T do
2:  Select Batch X; = (x},27,...,2}").
3:  Perform Experiments V; = f(X;) + €.
4:  Update Dy := Dy U{(zt,y})|i = 1,2,...,n¢ }.
5: end for

Two representative examples of batch BO are:

e GP-UCB-PE (GP-UCB pure exploration) (Con-
tal et al.| 2013): generates a single recommenda-
tion z; using the standard GP-UCB and n — 1
recommendations {zi}" , using pure exploration
by maximising o?_, (), where oi_; is the predic-
tive variance calculated on D;_1, 1,27, ... ,xi_l,
which may be calculated without ); as oy is inde-

pendent of y;.

e GP-BUCB (batch GP-UCB) (Desautels et al.
2014): generates n recommendations at each iter-
ation using a standard GP-UCB strategy by ap-
plying hallucinated observations y! = p;—1(xt) to
update an intermediate GP model used to gener-
ate recommendations.

2.3 Regret

A popular measure of performance for BO algorithms
is regret. Let x* = argmax,cyx f(z) be the optimal
solution. The instantaneous regret for a single recom-
mendation z; is defined as r;, = f(z*) — f(x¢), and for
zi € X, we define r! = f(z*) — f(z%). For a batch
X; of size n; the simple regret (Bubeck et al., [2009) is
r¢ = min; rl. Subsequently the batch cumulative re-
gret is defined as (Bubeck et al.l 2012} 2009} |Contal
et al., 2013):
Ry =5, <T Tt

which is written Ry in the non-batch case (n; = 1).
Following the standard practice we will demonstrate a
sub-linear growth bound on RY., which implies conver-
gence R7./T — 0. As miny<r{r;} < R}./T it follows
that max; ;<7 {f(z)} — f(z*) as T — <.

Alternatively it may be appropriate to consider the to-
tal cumulative regret Ry, = >, p ., i if we wish to
have low regret for all samples in all batches. Though
we are primarily interested in R} we provide regret
bounds for our algorithm for both R%} and Rr,.

3 Relaxed GP-UCB and the
Exploration/Exploitation Tradeoff

The GP-UCB acquisition function (Srinivas et al.
2012) is:

at (],‘) = { Ht—1 (I’) + \/Egt—l ('JJ)

Ot—1 ({E)

if 515 < o0
if 5t =0

(2)
This represents a trade-off between two distinct objec-
tives, namely exploitation of the known good regions
of the system, as represented by the maximisation of
the mean p; (x) of the GP model, and exploration of
the unknown regions of the model, as represented by
the maximisation of the variance oy (x). The trade-off
between these objectives is controlled by the parame-
ter B; - smaller B; values will favour exploitation, while
larger 3; will favour exploration. We define:

Definition 1 A GP strategy T is a rule for gener-
ating a sequence [1,[s,..., thereby also generating
a sequence of acquisition functions a1, as, ... via @)
and subsequently a sequence of points x1,x2, ... where
Ty = argmax, xa:(z).

In GP-UCB (Srinivas et all|2012) 3, is defined as:
/Bt = bt (ﬂ't) = 210g (%ﬂ't) (3)

where:

X if [X] < oo
ne = 2 (4)
%Mwwg?ﬁ if [X] = o0
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where |X| denotes the cardinality of X. The sequence
w1, T2, ... > 0 is any sequence satisfying Zfil 7r[1 =1
such that f; is strictly increasing - for example m; =
72t? /6 (as used in |Srinivas et al. (2012)). In the case
X| is infinite it is assumed that X C [0,7]% and that f
satisfies Pr {sup,cy [0f/0z;| > L} < ae=(E/D)*,

The popularity of GP-UCB arises in part from the
fact that the regret Ry can be shown to grow at most
sub-linearly (Srinivas et all [2012]). We note that the
bound in [Srinivas et al.| (2012) still applies if we re-
lax the constraint Y ,-, 7, = = 1 and instead enforce
Zfil 7rt_1 = x < 1. In this case the regret bound pre-
sented in theorems 1 and 2 in [Srinivas et al.| (2012)
will hold with probability 1 — xd > 1 — 6P| Nor is it
necessary that §; be strictly increasing if we replace
Br with £, = maxi<7 f; in the relevant bounds in
Srinivas et al. (2012)E| Define:

Definition 2 A (relaxed) GP-UCB strategy is a GP
strategy defined by 71, ma, ... > 0 via Bt = bi(ms) (see
@); where Y 50 Tt =x < 1.

Note that the regret bounds of Srinivas et al.| (2012) are
valid for all GP-UCB strategies. We call m; = 7%t?/6
the standard GP-UCB strategy as it corresponds to
theorems 1 and 2 in |Srinivas et al.| (2012). Other GP-
UCB strategies include:

e For every p > 1 we can define a GP-UCB strategy
pT via pm, = ¢ (p) tP, where p controls the speed of
increase of 5; and ( is the Riemann zeta function.
The standard GP-UCB strategy is then o7.

e Given two GP-UCB strategies 7, 7 with sequences
1,7, ... and 71, o, ... we can define a GP-UCB
strategy T via m; = 27/, for even t, mp = 27 (1412
elsewhere.

e Given a GP-UCB strategy 7 with sequence
1,72, ... we can define a new GP-UCB strategy
T via m = 79 for even t, T = oo elsewhere,
interleaving GP-UCB and pure exploration.

etc. However it is not clear which strategy would be
the best in any given situation, nor how one would go
about exploring the space of possibilities.

Given the definition of GP-UCB strategies above a
batch BO approach that suggests itself here is to use
multiple distinct GP-UCB strategies to generate mul-
tiple recommendations. However we are once again
faced with the problem of selecting which strategies

2This follows from a simple adjustment to Lemma 5.1
in |Srinivas et al.| (2012).

°This arises in Lemma 5.4 in |Srinivas et al. (2012)) by
bounding f; by B, rather than Sr.

to apply. Clearly we want strategies that will provide
a range of distinct recommendations (diversity) or lit-
tle advantage will be gained, but it is not clear how
one can test a-priori which strategies will result in di-
verse recommendations. This motivates us to suggest
an entirely different approach in the next section.

4 Multi-Recommendation via
Multi-Objective Optimisation

Multi-objective optimisation (Debl |2001)) is concerned
with simultaneously optimising multiple objectives:

max (g1 (), 92 (¢) - -.) (5)
Multi-objective optimisation finds a set
(z1,22,...,2,) of Pareto-optimal solutions to ,
where x is Pareto-optimal if it is impossible to change
x to increase any objective g; without decreasing at
least one other objective g;. It can be shown (Zadeh),
1963) that any Pareto-optimal solution of is in
fact the solution to the scalarisation:

rilea}){(.@ () = g (&) + Aaga (z) + ... (6)

where A1, Ag,... > 0 are (unknown) scalarisation con-

stants.

Consider the acquisition function a;(z) defined by (2).
This is a tradeoff between two potentially conflicting
objectives - exploration (maximisation of oy_1(x)) and
exploitation (maximisation of p;—1(x)) - which is at
heart a multi-objective optimisation problem. Based
on this observation our proposed method for multi-
recommendation is to use multi-objective optimisation
at each iteration ¢ to generate a set of recommen-
dations (x},22,...,2}"") to maximise (in the Pareto
sense) (pi—1(z),0¢-1(x)). All recommendations so
generated correspond to some (unknown) scalarisation
constant 3¢, but without the need to directly define
strategies 7¢ and with multiple recommendations gen-
erated automatically. This is illustrated in Figure

Our proposed algorithm is shown in Algorithm
There are three stages to each iteration:

1. Recommendation set generation: one recommen-
dation x}' is generated using the standard GP-
UCB strategy along with a set of additional,
more exploratory recommendations that max-
imise (pt—1(x),0¢—1(x)) in the Pareto sense.

2. Pruning of recommendations: the recommenda-
tions produced at step 1 are pruned to ensure that
no more than M recommendations are made (the
maximum budget per batch).
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Figure 1: Using multi-objective optimisation to gen-
erate candidate recommendations. The range of the
two objectives is the set {(u¢(z),o0¢(z))|x € X}, the
Pareto front is the set of all possible Pareto optimal
solutions in objective space, and the Pareto set is a
representative set of ¢ that dominate &;. The (im-
plicit) scalarisation parameters 3 loosely correlate to
the position of the points as shown.

3. Evaluation and model update: remaining n; rec-
ommendations evaluated, GP models updated.

Details of these steps are given in the following sec-
tions. The key advantages of our algorithm are:

1. There is no need to painstakingly enumerate
diverse, optimal GP strategies 7. The multi-
objective optimiser will automatically obtain a
range of Pareto-optimal recommendations each
corresponding to some GP strategy.

2. The solution to multi-objective optimisation is a
batch of recommendations making this a natural
fit for batch BO.

3. The number of recommendations is tuned auto-
matically by the multi-objective optimiser.

4.1 Recommendation Set Generation

With regard to recommendation set generation (stage
1) note that a standard GP-UCB recommendation z}
is always included in the recommendation batch as this
will be necessary in the proof of Theorem 1| (the regret
bound). The search space for multi-objective optimi-
sation is restricted to the intersection of the relevant
region (described in (Contal et al. (2013))) and the set
of recommendations that are more exploratory than
the GP-UCB region:

pi—1 (z) +2y/28e4100-1 () > 4! } (7)

+ _
o= {x € o1 (z) > 01 ()

Algorithm 2 Proposed Batch Bayesian Optimisation

input Dy = {(zi,yi)|lyi = f(x:) +€i = 1,2,...},
maximum batch size M.
1: fort=1,2,...,7T do
2:  Let 28, = 2log(mw%t2/66) (m: is given by )
3:  Select GP-UCB Recommendation:

xy = argmax,ex (-1 () + v2Bioi—1 (2))

4:  Select Pareto-Optimal candidate set:
£
xR = argmax, cy+ (-1 (), 061 (x))

where the relevant region X; is given by

5. If|APY| > M —1 then randomly sub-sample XP*
to obtain M — 1 recommendations. The result
is denoted as XP.

6:  Construct Recommendation Batch as X, = XU
{z}} where n; = |X4|.

7:  Perform Experiments y! = f(z!) + € Va! € X;.

8:  Update Dy :=D;_1 U {(z},y})]i = 1,2,...,n:}.

9: end for

where 23; = 2log(n;m2t2/60) (n; is given by as per
the standard GP-UCB strategy) and:

yp = argmax (pi—1 (z) — Va2Bioi—1 (z))

is the maximum of the lower confidence bound on f,
which corresponds to the subset of X whose explo-
ration is likely to have an impact on future recom-
mendations (see (Contal et al.| (2013)). This approach
is similar to GP-UCB-PE; however rather than re-
stricting additional recommendation selection to rec-
ommendations that are purely exploratory we require
only that the additional recommendations be more ex-
ploratory than the initial standard GP-UCB recom-
mendation. This gives our algorithm more freedom to
generate recommendations from a variety of strategies.

In our implementation we have used a genetic al-
gorithm based multi-objective optimiser (Debj [2001)
(gamultiobj in Matlab) to generate the Pareto rec-
ommendation set yf f In practice we found that simi-
lar results were obtained by replacing X;~ with X (that
is, removing all restrictions from the Pareto optimiser
to allow for recommendations that are both more ex-
ploitative and more exploratory than the standard GP-
UCB recommendation); however using the stricter def-
inition allows us to bound both batch cumulative re-
gret and total cumulative regret, so we have chosen to
use this X; unless otherwise stated.

4.2 Pruning the Recommendation Set

Give a pre-specified maximum batch size M, if more
than M — 1 recommendations are present in tif then
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the set is randomly sub-sampled to reduce this to M —1
recommendations, leaving at most M recommenda-
tions in total when the standard GP-UCB recommen-
dation «} is included. This steps has no impact on the
regret bound presented in theorem

5 Performance Bounds

In this section we present regret bounds for the pro-
posed batch Bayesian optimisation algorithm. Our ap-
proach is comparable to |Srinivas et al.| (2012)); |Contal
et al.| (2013); [Desautels et al.| (2014) and represents a
generalisation of the methods of |Srinivas et al.| (2012)).

As previously noted in section we define regret as
per (Contal et al.| (2013) - specifically, for i € &; the
instantaneous regret is ri = f(z*)— f (), for the batch
X, the simple regret is r, = min;r}, and the batch
cumulative regret is:

Ry = Zth Tt

This assumes a scenario where one is interested in the
best result from each batch and other samples in the
batch help to explore the space and subsequently lead
to faster convergence in subsequent batches. An al-
ternative approach is to analyse the total cumulative
regret:

Rryn = Zth Ztﬁnt Ty

which is useful in cases where we want to minimise
regret on each sample in any batch.

As per [Srinivas et al.| (2012); (Contal et al.| (2013)), and
assuming the horizon T is unknown, a strategy has to
be good for any number of iterations. We show that
with high probability R%. (and also Rry,) grows at most
sub-linearly, and hence the minimum gap between the
maximum of f and the best point evaluated so far
converges to zero. Our main result is as follows:

Theorem 1 Let 6 € ]0,1].
Vo € X and either X is either finite or X C [0,7]
and f satisfies Pr{sup,cx |0f/0x;| > L} < ae~(L/b)?
then for all T:

Assuming k(z,xz) < 1
d

Ry <4/ Hchl 2Bt varT + Co 8)

Rrn < \/ArTCs 2817471 + NooCo

holds with probability > 1 — 6, where Ap = % Zth g

and Hy = r are, the arith-

Zth n%
metic and harmonic means of the batch sizes; Noo =
max;<rng; C1 = 8/log(1+v72); Cy = 0 if |X]| is
finite, 2/6 otherwise; Cs = 72/log (1 +v~2); and
YarT 18 the maz information gain obtainable from a
sequence of length ArT.

respectively,

Proof: A complete proof is provided in the sup-
plementary material. The proof proceeds as fol-
lows. In Lemma 1 we demonstrate that ordering in
the (implicit) scalarisation constants (3{ mimics the
ordering in the variances of = oy_1(z}) - that is,
Bl < BF = o] <oFand o] <of = B/ < pF. As
ot > oy_1(z}) by definition of X", and assuming with-
out loss of generality that O'tl < O't2 < ... < oy, this
implies that 8, = 8} < 2 < ... < 3" (Lemma 2)
- that is, the Pareto-optimal recommendations are all
(implicitly) generated by more exploratory strategies
than the standard GP-UCB recommendation.

Having established this basic framework the remainder
of the proof is modelled on |Contal et al.| (2013); |Srini-
vas et al.| (2012)), with some modifications to account
for the fact that (a) the batch size varies with itera-
tion ¢ and (b) the recommendations in addition to the
standard GP-UCB recommendation are generated by
more exploratory strategies than standard GP-UCB
but not necessarily purely exploratory ones. O

This theorem demonstrates that the regret converges
sublinearly for our algorithm, as is required. Compar-
ing with respective results in [Srinivas et al.|(2012) we
also see that the bound on R is at least as strong
as standard (non-batch) GP-UCB. More generally, as-
suming T' > Ap, we see that the performance bound
on our algorithm is tighter than the comparable bound
on GP-UCB by a factor of v/Hp - that is, improve-
ment is proportional to the square-root of the har-
monic mean of the sequence of batch sizes.

6 Experiments

In this section we study the empirical performance
of our proposed batch Bayesian method for optimis-
ing three benchmark functions, two hyperparameter
tuning tasks and for optimising heat treatment of a
Aluminum-Scandium (Al-Sc) alloy. We compare our
method with other batch Bayesian optimisation meth-
ods, namely, GP-BUCB (Desautels et al., |2014)) and
GPUCB-PE (Contal et all [2013). We set the maxi-
mum batch size to 5 meaning our method uses a batch-
size between 1 to 5 inferred automatically. We show
that our method outperforms the baselines when us-
ing the same number of total experiments. We also
use GP-UCB (a single recommendation algorithm) as
a reference baseline to assess the additional benefit of
performing batch experiments.

For function modelling, we scale each input dimen-
sion to [0,1] and use Gaussian process with squared-
exponential kernel having length scale 0.1. The opti-
misation is initialised with d + 1 observations where
d is input space dimension. All optimisation results
are reported by averaging 10 random runs along with
the standard errors. For each run, the optimisation is
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Figure 2: Results for benchmark functions. Optimisation performance shown in top row, distribution of number
of recommendations in bottom row. Functions are branin ((a),(d)), Hartmann3 ((b),(e)) and Eggholder ((c),(f)).
Results shown are after aggregation over 10 random initialisations.
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Figure 3: Experiments with hyperparameter tuning and alloy heat treatment tasks: (a) and (d) show the
hyperparameter tuning results of a support vector regression model, (b) and (e) show the hyperparameter tuning
results of a support vector classification model, and (c) and (f) show the heat treatment optimisation of an Al-Sc
alloy. The first row depicts the optimisation performance and the second row depicts the distribution of the
number of recommendations in a batch. Results shown are after aggregation over 10 random initialisations.
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performed up to 5 x d iterations. For optimisation of
acquisition function, we use DIRECT algorithm (Jones
et al., 1993).

Optimisation of Benchmark Functions

To study the convergence behaviour and optimisation
efficiency of our method we use three benchmark func-
tions commonly used to evaluate global optimisation
methods, namely the branin-Hoo, Hartmann3, and
Eggholder functions. These functions cover a variety
of scenarios typically faced in global optimisation. For
example, the branin function has three different global
minima, the Hartmann3 has 4 local minima, while the
Eggholder has plenty of local minima.

Figure [2| shows the comparison between the proposed
method and the baselines. From the top row in the
Figure (see subplots (a)-(c)) it can be clearly seen that
the optimisation efficiency of our proposed method is
either superior or comparable to the baseline multi-
recommendation methods. We note that branin func-
tion is a relatively simpler function to optimise when
compared to Hartmann3 and Eggholder due to the
complexity brought by the number of local minima.
Since the three functions are quite different in nature,
the consistent superior performance of our method in-
dicates that it can find a good balance between ex-
ploration and exploitation to be useful in a variety of
situations. A further advantage of using our method
is that the experimenter has to only specify the max-
imum batch size and the number of recommendations
in a batch can be inferred automatically. The dis-
tribution of the number of recommendations used by
our method is shown in the bottom row (see subplots
(d)-(f)) of Figure In the supplementary, we have
also included results comparing the two variants of our
method using X and Xf ; and comparisons between our
method and multipoint-EI (Ginsbourger et al., 2010).

Machine Learning Hyperparameter Tuning

For hyperparameter tuning experiments, we use two
machine learning models: support vector regression
(SVR) and support vector classification (SVC). We
use these models in combination to a radial basis ker-
nel (RBF) giving rise to two hyperparameters. The
first is the cost parameter of either »-SVR model or
C-SVC, and the second is the kernel width parameter
~ of the RBF kernel. We optimise both these hyperpa-
rameters in the range of [10~1, 10%]. The functions are
learnt in the exponent space [—1,3]. For the regres-
sion task, we use the Abalone dataset (Nash et al.|
1994) and for the classification task, we use QSAR
biodegradation dataset (Mansouri et al., |2013]) - see
http://archive.ics.uci.edu/ml/. The data was split into
70:30 ratio for training and validation purposes. We
used LibSVM Matlab library for our testbed. All the

algorithms were run for 10 random runs differing in ini-

tial 3 points and the average optimisation performance
is reported. Figure [3| (a) and (b) show the results of
the optimisation comparing our proposed method with
the baselines; and (d) and (e) the distribution of the
number of recommendations. For both tasks, our pro-
posed method slightly outperforms both baselines.

Heat Treatment Optimisation for Al-Sc Alloy
Heat treatment is a combination of heating and cooling
processes applied to an alloy to achieve desired prop-
erties such as strength, hot workability etc. During
the heat treatment process, a cast alloy is sequentially
heated at various temperatures for different time du-
rations. The temperatures and the exposition times
significantly affect the strength of the treated alloy.
Thus it is imperative to optimise this process. Since
each experiment is expensive in time and many ovens
may be available, we perform batch optimisation.

In our experiment, we use two-stage heat treatment
process including 4 variables: Temperature at each
stage and the two exposition times. To perform the
experiments, we use the industrial precipitation model
of Al-Sc alloy, known as Kampmann-Wagner model
(Wagner et al., [1991)). The search ranges are limited
to [100°C, 300°C] and [1080 sec, 10800 sec| for tem-
perature and time respectively. Figure 3| (c) and (f)
show the optimisation performance of our proposed al-
gorithm. The number of recommendations used by our
algorithm is mostly 3 or 4. As seen from the figure,
the use of our proposed algorithm has achieved sig-
nificant improvement in alloy strength outperforming
other baselines.

7 Conclusion

We presented a novel algorithm to perform batch
Bayesian optimisation in a multiobjective approach
for balancing exploitation/exploration requirements.
The batch of recommendations is constructed using
the Pareto set obtained from the multi-objective op-
timisation. The advantage of our approach is that
it can utilise a set of alternate strategies across the
exploration-exploitation spectrum. We theoretically
analysed our method and showed that the regret
bound is reduced by a factor that is equal to the har-
monic mean of the used batch sizes. We demonstrated
the efficiency of our algorithm by optimising several
benchmark functions, hyperparameters tuning and al-
loy heat treatment optimisation.
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