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Abstract

Tree ensembles, such as random forests, are
renowned for their high prediction perfor-
mance. However, their interpretability is
critically limited due to the enormous com-
plexity. In this study, we propose a method
to make a complex tree ensemble inter-
pretable by simplifying the model. Specifi-
cally, we formalize the simplification of tree
ensembles as a model selection problem.
Given a complex tree ensemble, we aim at
obtaining the simplest representation that is
essentially equivalent to the original one. To
this end, we derive a Bayesian model se-
lection algorithm that optimizes the simpli-
fied model while maintaining the prediction
performance. Our numerical experiments on
several datasets showed that complicated tree
ensembles were approximated interpretably.

1 Introduction

Tree ensembles such as random forests [1] and boosted
trees [2] are popular machine learning models, partic-
ularly for prediction tasks. A tree ensemble builds nu-
merous decision trees that divide an input space into
a ton of tiny regions, places their own outputs for all
the regions, and makes predictions by averaging all the
outputs. Owing to the power of model averaging, their
prediction performance is considerably high, and they
are one of the must-try methods when dealing with
real problems. Indeed, XGBoost [3], the state-of-the-
art tree ensemble method, is one of the most popular
methods in machine learning competitions [4].
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However, this high prediction performance of the tree
ensemble makes large sacrifices of interpretability. Be-
cause every tree generates different regions, the re-
sulting prediction model is inevitably fragmented, i.e.,
it has a lot of redundancy and becomes considerably
complicated (Figure 1(b)), even if the original data are
simply structured (Figure 1(a)). The total number
of regions is usually over a thousand, which roughly
means that thousands of different rules are involved in
the prediction. Such a large number of rules are nearly
impossible for humans to interpret.

How can we make a tree ensemble more interpretable?
Clearly, reducing the number of regions, or equiva-
lently, reducing the number of rules, simplifies the
model and improves its interpretability. However, if
the model is too simplified, we may overlook impor-
tant rules behind the data. Also, oversimplification
of the model possibly degrades its prediction perfor-
mance. These observations imply that there is a trade-
off between the number of regions and the prediction
performance when simplifying the model.

In statistics, similar trade-offs have comprehensively
been addressed as the model selection problem. Given
multiple models, model selection methods typically
ailm to choose the model that achieves the best gen-
eralization performance, i.e., it can predict well for
new data [5, 6]. Since too complex models cause over-
fitting, simple models tend to be selected. One of the
most popular model selection is Bayesian model selec-
tion [7]. Bayesian model selection uses the marginal
likelihood as a criterion, which eliminates redundant
models as the Occam’s razor principle [6]. This is a
desirable property for tree ensemble simplification—
using Bayesian model selection, we can find a sim-
plified expression of the tree ensemble with smaller
number of regions that is essentially equivalent to the
original one.

Though the Bayesian model selection is a promising
approach, there are two difficulties. First, popular
tree ensembles such as XGBoost are not probabilistic
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Figure 1: The original data (a) are learned by tree ensembles with number of regions (b). In this example, the
first five trees in the ensembles generated around 1,000 regions. The complicated ensembles (b) are defragged
into a few regions using the proposed method (c¢). Each rectangle shows each input region specified by the model.

models, and their marginal likelihoods are not defined.
The Bayesian model selection is therefore not directly
applicable to them. Second, the model simplification
problem potentially incurs computational intractabil-
ity. For good model simplification, we have to make
large regions that approximate the original tree ensem-
ble as in Figure 1(c). However, because the possible
configurations of input regions, e.g., the shape and the
location of the regions, can be infinitely many, the full
search of all possible candidates is infeasible.

In this study, we propose a simplification method for
tree ensembles, both for classification and regression
tasks, in a Bayesian manner. Suppose a tree ensemble
that is already learnt with a number of regions (Fig-
ure 1(b)) is given. Our objective is to defrag the tree
ensemble into a simple model using a smaller number
of regions, as shown in Figure 1(c). In the proposed
method, we tackle the two difficulties by using the fol-
lowing approaches:

1. We adopt a probabilistic model representation of
the tree ensemble so that Bayesian model selection
to be applicable.

2. We search for a simple yet accurate model by op-
timizing the number of regions, their shapes, and
locations through estimating parameters of the
probabilistic model.

With these approaches, the model simplification prob-
lem then reduces to the Bayesian model selection prob-
lem that optimizes input regions for simplification
while maintaining the prediction performance as much
as possible. For efficient Bayesian model selection, we
further adopt the next approach:

3. We use an algorithm called factorized asymptotic
Bayesian (FAB) inference [8, 9].

FAB inference provides an asymptotic approximation
of the marginal likelihood in a tractable form. We
also propose an acceleration technique for FAB infer-
ence so that the proposed method to be scalable to
large datasets. Our numerical experiments on several
datasets showed that complicated tree ensembles were
approximated adequately while maintaining prediction
performance.

Notation: For N € N, [N] = {1,..., N} denotes the
set of integers. For a proposition a, I(a) denotes the
indicator of a, i.e., I(a) = 1 if a is true, and I(a) = 0
if a is false. Let * = (z1,%9,...,2p) € R be a D-
dimensional input and y € ) be an output. Here, for
regression problems, the output y is numeric, i.e., Y =
R. For classification problems with C' categories, the
output y is one-hot vector, i.e., for category ¢ € [C],
y.=1and yo =0 for c # .

2 Preliminaries

Decision Tree The decision tree makes the predi-
cation depending on the leaf node to which the input
x belongs. The corresponding leaf node is determined
by traversing the tree from the root. In each internal
node j of the tree, the input a is directed to one of
two child nodes depending on whether the statement
xq, > b; is true or not, where d; € [D] is a feature
index checked at the node j and b; € R is a thresh-
old. For example, suppose the case that D = 3 and
the leaf node 7 is described by four internal nodes as
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x1 > by, 9 < bo, x3 > b3, x3 < U, and let z; € Y
be the predictive value of the leaf node i. Then, if the
input « arrives at the leaf node ¢ by traversing these
internal nodes, the prediction mechanism is described
as a rule:

$1>b1/\$2§b2/\l‘3>b3/\$3§bg — Y = Z;.
—_—_—— e N T

statement statement statement statement

We refer to each component as a statement hereafter.

A list of statements can also be represented as a region.
The above list of statements (the left hand side of the
rule) can be written as & € R; := (b1, 00) X (—00, ba] X
(b3, bs]. Note that the regions are mutually disjoint,
ie, RiNRy =0 ifi#i. Letting Z = {2}, and
R = {R;}_,, the decision tree with I leaf nodes can
be expressed as follows:

f@; 2, R, 0) =Y zl(x € R,). (1)

Tree Ensemble The tree ensemble makes a pre-
diction by combining the outputs from 7 decision
trees.  Suppose that the ¢-th decision tree has
I; leaf nodes with predictive values Z; and re-
gions R;. With weights w; € R on each deci-
sion tree ¢t € [T, the output of the tree ensem-
ble y is determined by the weighted average y =
Zthl we f(x; Z¢, Ry, It) for regression, or the weighted
voting y = argmax, Zil wel(f(x; Z¢, Re, It) = ¢) for
classification. This formulation includes the ordinary
random forests [1], boosted trees [2], and XGBoost [3].

Extracting Rules from Tree Ensemble To inter-
pret the tree ensemble, we need to extract rules from
it. This corresponds to finding input regions and corre-
sponding predictive values as in the single tree case (1).
This can be achieved by considering multiple regions
assigned by each tree to the input . Suppose that
the region RZ is assigned to the input x in the t-th
tree for each ¢ € [T]. This means that the input x
belongs to the intersection of those regions, namely
Ry = NE | R! . The predictive value corresponding to
R, can be expressed as z5 = Zthl wtzft for regression,
and z, = argmax, Zthl wl(zf, = ¢) for classification.
As the result, the tree ensemble can be expressed as
f(x; 2, R,G) = 2521 zgl(x € Rg), where G is the
number of total regions determined by the tree ensem-
ble, Z = {z,}5_;, and R = {R,}5_,. Because each
region and predictive value corresponds to a rule, now
we obtain the rules of the tree ensemble as Z and R.

3 Problem Formulation

The aforementioned expression indicates that the tree
ensemble can be expressed using G regions. Because

R is generated from all the possible combination of the
regions of the individual trees R4, ..., Ry, the number
of regions G can grow exponentially in the number of
trees T, which makes the interpretation of the tree
ensemble almost impossible. For example, Figure 1(b)
shows that even five trees can generate more than a
thousand regions.

To make the tree ensemble with large G interpretable,
we approximate it using a smaller number of regions.
Once the tree ensemble is approximated using a few
regions as in Figure 1(c), it is easy to interpret the
underlying rules in the model. This idea is formulated
as the following problem.

Problem 1 Given G € N predictive values Z =
{2g}521 and regions R = {Ry}5,, find K < G pre-
dictive values Z' = {2} | and regions R' = { R}, }K_,
such that, for any x € RP,

f(x;2,R,G) = f(z; 2, R, K). (2)

In the following sections, we describe the proposed
method for solving Problem 1. The proposed method
is applicable to any tree ensemble defined in Section 2.

4 Probabilistic Model Expression

To solve Problem 1, we need to optimize the number of
regions K, the predictors Z’, and the regions R’. Here,
we introduce a probabilistic model that expresses the
predictive values and the regions.

4.1 Binary Vector Expression of the Regions

First, we modify the representation of the input « and
the regions R for later convenience. Suppose that the
tree ensemble consists of L statements in total, i.e., the
decision trees in the ensemble have L internal nodes
in total. By definition, each input region R, € R is
uniquely characterized by the combination of L state-
ments, meaning that R, is represented by the binary
vector 7, € {0,1}*, where 7,0 = 1 if 24, > by for all
x € R, and 7y = 0 otherwise. Figure 2 illustrates
an example. By using this binary vector 71y, we have
I(x € Ry) = I(s(x) = 7,), where the ¢-th element of
s(z) € {0,1}F is defined as so(z) = I(zq, > b). To
simplify the notation, we use s to denote s(x), and we
refer to s as a binary feature of the input .

4.2 Probabilistic Model Expression of the
Regions

As shown in Figure 1(b), the tree ensemble splits the
input region into small fragments. To derive a sim-
plified model as in Figure 1(c), we need to merge the
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Figure 2: The region Ry, = {(x1,22) | bi < a1 <
ba,bs < x2 < bs} is expressed by the binary vector
Mg = (1,0,0,1,0,0,0): 741 is 1 because Ry satisfies 1 > b1
while 742 is 0 because Ry does not satisfy x1 > b2. The
region Ry is also expressed by 7,/ in the similar manner.

small fragments to make a large region. We achieve
this by interpreting the region R, as a generative
model of the binary feature s.

From the definition, the next equation holds:

I(s =ny) = HZL:1 77;2(1 - ﬁg€)1_35~ (3)

The equation can be “soften” by extending 7, from a
binary vector to a [0, 1]-continuous vector n, € [0, 1]%.
Namely, now the right-hand-side of (3) is the Bernoulli
distribution on s with a model parameter 1, where 74,
indicates a probability ng¢ = p(s¢ = 1) = p(xa, > be).

With the extended vector 74, we can now express the
concatenated region using 1, as shown in Figure 3.
Here, 14¢ = 1 means that the region R, satisfies z4, >
by while 140 = 0 means that R, satisfies x4, < by.
Moreover, with the extended vector 74, we have a third
case when 74 € (0,1): this corresponds to the case
when some of x € R, satisfies x4, > b, while some
other ' € R, satisfies zj;, < by, i.e., the boundary
xq, = by is inside Ry, and hence does not affect the
definition of the region R,.

The probabilistic version of (3) is then given as the
following generative model:

p(slg) = TTimy myp(1 = mge) ', (4)

where 14 = p(s¢ = 1) = p(xq, > be). Note that n,
is now a parameter of the model such that its zero—
one pattern represents the shape of the concatenated
region R,. Hence, by optimizing 7y, we can optimize
the shape of the region R,. The resulting parameter
14 is then translated to the corresponding statements
describing the region R, from its zero—one pattern.

4.3 Probabilistic Model Expression of the
Tree Ensemble

We finally extend the tree ensemble into a probabilistic
model. For this purpose, we introduce an indicator
u € {0,1}% that describes which region the input x

s=1(1,0,0,1,1,0,0) s = (1,1,0,1,1,0,0)
Ty )

bi by by -
s=(1,0,0,1,0,0,0) s = (1,1,0,1,0,0,0)
i

779 = (17 *707 17 *107 0)

Figure 3: The concatenated region Ry = {(z1,22) | b1 <
1 < b3, by < z2 < b} is indicated by the vector gy =
(1,%,0,1,%,0,0) where * denotes the value between 0 and 1.

belongs to, i.e., if  belongs to the region R, ug = 1
and ug = 0 for ¢’ # g. We then model the probability
of the pair (y, s) given the indicator u as

Py, slu, G) =TI, (w(ylg)p(slg) ™,  (5)

where p(ylg) is the probability that y is output from
the region R, and p(s|g) is defined in (4). Specifically,
we adopt the next output model for p(ylg): p(y|g) :=
N (ylug, ;') for regression, and p(ylg) := HCC:1 Ve
for classification. We denote the parameter of p(y|g)
by ¢ which is given by ¢ = {1, )\g}ff:l for regression
and ¢ = {{7gc 5:1}5:1 with g > 0 and 25:1 Yge =1
for classification. We also model the probability of u
by p(u) = Hle oy’ where oy > 0 and Z?zl ag = 1.
Here, a4 represents the probability of an event u, = 1,
i.e., the probability that input & belongs to the region
R,. Therefore we write as oy = p(g|ew). Hence, the
overall probabilistic expression of the tree ensemble
can be expressed as follows:

Py, s.ullL,G) =TI, (p(ylg. &)p(slg. mp(gla))™
(6)

where we explicitly written down the model parame-
ters ¢, n, and « for each component, and II is the set
of all parameters II = {¢, n, a}.

4.4 Prediction

From (6), we can naturally derive the posterior distri-
bution of y given the binary feature s using Bayes’ rule.
In the prediction stage, we want to derive the output y
with the maximum posterior. However, searching for
the maximum posterior is computationally demand-
ing, and we therefore propose using the next two-step
MAP estimate. We first find the region ¢ with the
maximum posterior § := argmax, p(g|s,II, G). Then,
we output ¢ with the maximum posterior given § which
is § := argmax, p(y|g, ¢).
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5 Bayesian Model Selection Algorithm

Using the probabilistic model (6), Problem 1 is solved
by estimating the model parameter II and the num-
ber of regions K < G so that the model in (6) is
adequately simplified. If the number of regions K is
known and fixed, we can derive the optimal model pa-
rameter II of the simplified model using the maximum-
likelihood estimation with the EM algorithm (see Ap-
pendix A). For an unknown K, we need to optimize it
so that we can derive a simplified model with appro-
priate complexity. From standard Bayesian theory [7],
this model selection problem can be formulated as the
maximization of marginal log-likelihood. To solve the
problem, we employ factorized asymptotic Bayesian
(FAB) inference [8, 9], a Bayesian model selection al-
gorithm that determines II and K simultaneously. Be-
cause the number of regions K is automatically deter-
mined using FAB inference, we can avoid searching
several possible values of K. Hence, we can solve the
model selection problem efficiently.

5.1 FAB Inference

With observations D = {(y™,s™)}N_,, we aim
to determine the optimal number of regions K
by maximizing the marginal log-likelihood given by
log p(D|K) = log [ p(D|IL, K)p(I1)dIl . Here, the like-
lihood is given as p(D|IL, K) = [],, p(y™, sM, K) =

Hn Zu(") p(y(n)’ S(n)a U’(n) |Ha K)
Because the maximization of the marginal log-

likelihood is intractable, we instead maximize the
lower bound which is given by

SN S By [l log p(y ™|k, ¢)p(s™ |k, n)p(k|)

— w4 log (S0, By [uf”] + 1) + H(a(D)),
(7)

where w = (dim¢/K+L+1)/2, q(U) is the distribution
of U, and H(q(U)) is the entropy of ¢(U). The deriva-
tion of this lower bound can be observed in the sup-
plementary material (Appendix B). The EM-like FAB
inference algorithm is then formulated as an alternat-
ing maximization of the lower bound with respect to
q (E-step) and the parameter IT (M-step). See Algo-
rithm 1 for the pseudo code, and Appendix C for the
detailed algorithm derivation.

E-Step In E-Step, we update ¢(U) so that the lower
bound in (7) is maximized. Let ﬁ,gn) =Equ [u,(cn)] =
q(u,(cn)). The optimal B,(c") can be derived by iterating
the next update until convergence:

5 o 10 exp (ol (DAL B0+ 1) (®)

Algorithm 1 FAB Inference

Input: Training data D = {(y(”),s(”))}ﬁj:h maximum
number of regions Kmax, tolerance §

Output: # of regions K, Parameter II = {¢,n, a}
Initialize parameter II and {{q(u,(cm)}f;“f" W, ran-
domly
K+ Kmax
while lower bound not converged do

while not converged do
Update {{g(u;”) =1}l by (8)
end while
Remove k-th region when -+ S q(ui")) <6
K + # of active regions
Update II by (9), (10), and (11)
end while

where £ = p(y™ |k, ¢)p(s™ |k, n)p(k|a).

M-Step In M-Step, we update II so that the lower
bound in (7) is maximized. Let B,(Cn) = q(u,(cn)). The
parameter IT = {4, 7, a} is then updated as

ZTIY: ﬁ(”) (n)
) Hie = 2137%’
(regression): TSN g (9)
)\k} — n=1"k
TN B (v — )2’
N p(n) (n)
(classification): g, = anl—kyc, (10)
N p(n)
Zn:l ﬁk
n) (n N
St B LS g
e L ™
n=1Mk n=1

Region Truncation The iterative update of E-Step
in (8) induces truncation of the region [8, 9]. For in-
stance, when 25:1 ,(Cn) =€ < N, in (8), the updated
value 6’(:) is multiplied by exp(—w/(e + 1)) < 1 for
all n € [N]. The iterative multiplication of this small
value results in q(u;")) ~ 0 for all n € [N], which
means that the k-th region can be removed without
affecting the marginal log-likelihood. With this re-
gion truncation, FAB inference automatically decides
the number of regions K within the iterative optimiza-
tion. Hence, we only need to specify a sufficiently large
Kinax as the initial value of K. We note that we can
leave K pax as a constant (say, Kmax = 10) rather than
the tuning parameter.

5.2 Scalable Computation of FAB Inference

The time complexity of the proposed FAB inference is
dominated by E-Step which is O(Kpax LN+ KpaxN),
where ( is the number of iterations in E-Step. In E-
Step, we first need to compute f,gn) for all k € [Kpax]
and n € [N] which requires O(KyaxLN) time com-
plexity. We then iteratively update the value of
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ﬁ,(cn) based on (8). The one update step (8) for all
k € [Kmax] and n € [N] requires O(KpaxN) time
complexity. The overall time complexity of E-Step is
therefore O(KmaxLN + (KmaxN). In M-Step, the up-
date of ¢, n, and « require O(KpaxN), O(KmaxLN),
and O(KmaxN) time complexities, respectively. These
complexities are dominated by the complexity of E-
Step, and thus can be ignored.

We note that the time complexity O(KyaxLN) some-
times gets prohibitive when L is large, i.e., when the
tree ensemble is huge. To scale up the proposed FAB
inference to large L, we propose a simple heuristic, a
sampling FAB inference, based on the random sam-
pling of the statements: we do not use all the state-
ments in the tree ensemble but the randomly sampled
subset. If the number of statements is reduced and L
gets very small, FAB inference gets highly scalable.

The sampling idea follows from the intuition that most
of the statements in the tree ensemble are redundant
when we make a simplified expression. This is because
similar statements such as x1 < 0.500 and z; < 0.501
appear in the tree ensemble. When this subtle change
on the threshold is ignorable, removing one of these
two statements will have almost no impact to the re-
sulting simplified expression. Random sampling of the
statements can remove these redundancies effectively.

We now turn to the proposed heuristic, a sampling
FAB inference. Suppose that we randomly sampled
L statements out of L statements in the tree en-
semble.  Then, the binary feature defined on the
sampled statements is given by § € {0,1}* where
Sy = H(xdw > 55/), and dy and by denote the fea-
ture index and the threshold of each of the sampled

statement, respectively. The generative model of $ is
. ~ L 3 3,

given by p(8lg) = [[,_, 77’2‘@{1 - n’ge,)l 5¢ where

Nge = p(3¢ = 1) = p(zg, > by). Here, we assume

that the sampled version of this generative model be-

comes a good approximation of the original generative

model (3) when we virtually increase the number of
statements from L to L, i.e., p(8|g)“/* ~ p(s|g).

With the above approximation, we can derive the
approximate FAB lower bound by slightly modify-
ing the original lower bound (7). The sampling
FAB inference algorithm can then be derived by a
slight modification of the original E-step (32): we re-

place fi" = p(y™ |k, )p(s ™|k, n)p(K|a) with fi") =
p(y ™k, ¢)p(8") |k, n)=/Lp(k|a). The M-step remains
the same as the original FAB inference except that n
is replaced with the sampled version 7.

Because the number of statements appearing in the
sampling FAB inference is L rather than L, its time
complexity is O(KpmaxLN 4+ (KpmaxN), which can be

significantly smaller than the original FAB inference.
For example, when the number of original statements
is L = 10,000, the sampling FAB inference can be
nearly 100 times faster when we set L = 100.

6 Related Work

Interpretability of complex machine learning models
are now in high demand [10, 11]. Interpreting learned
models allows us to understand the data and predic-
tions more deeply [12, 13], which may lead to effective
usage of data and models. For instance, we may be
able to design a better prediction model by fixing the
bug [14] in the model [15], or we can make a better
decision based on the insights on the model [16, 13].

There are a few seminal studies on interpreting tree
ensembles: Born Again Trees (BATrees) [17]; inter-
pretable Trees (inTrees) [18]; and Node Harvest [19].

In BATrees, a single decision tree that mimics the tree
ensemble is build. The tree ensemble is used to gener-
ate additional samples that are used to find the best
split in the tree node. The single decision tree is then
built to perform in a manner similar to that of the
original tree ensemble. An important note regarding
BATrees is that it tends to generate a deep tree, i.e.,
a tree with several complicated prediction rules which
may be difficult to interpret. We also note that a sim-
ilar method as BATrees was proposed independently
by Zhou and Jiang [20].

The inTrees framework extracts rules from tree en-
sembles by treating tradeoffs among the frequency of
the rules appearing in the trees, the errors made by
the predictions, and the length of the rules. The fun-
damental difficulty with inTrees is that its target is
limited to the classification tree ensembles. Regres-
sion tree ensembles are first transformed into the clas-
sification ones by discretizing the output, and then
inTrees is applied to extract the rules. The number
of discretization levels remains as a tuning parameter,
which severely affects the resulting rules.

Node Harvest simplifies tree ensembles by using the
shallow parts of the trees. In the first step, the shallow
part of the trees (e.g., depth two trees) are extracted
and the remaining parts are discarded. Node Harvest
then combines the shallow trees so that they fit the
training data well. The shortcoming of Node Harvest
is that the derived simplified model is still an ensemble
of the shallow trees. It is therefore still challenging to
interpret the resulting simplified ensemble. It is also
important to note that Node Harvest is designed for
regression. Although it can handle binary classifica-
tion as an extension of regression, it cannot handle
classification with more than two categories.



Satoshi Hara, Kohei Hayashi

Our proposed method overcomes the limitations of
these existing methods: the resulting model tends to
have only a few rules that are easy to interpret; it can
handle both classification and regression tree ensem-
bles; and there are no tuning parameters.

We also note that there are some works attempting to
compress tree ensembles so that the model to fit in a
small memory [21, 22]. They reduce the size of the
model by pruning redundant leaves. Although they
can make the model size small, the number of rules can
remain as exponentially large as long as the model is
retained as an ensemble. Hence, these methods does
not fit our objective where we want a simple model
with small number of rules for interpretation.

7 Experiments

We demonstrate the efficacy of the proposed method
through synthetic and real-world data applications !.
We used two synthetic data (Synthetic 1 and 2)
and four real-world data [23] (Spambase, MiniBooNE,
Higgs, and Energy). The used data are summarized in
the supplementary material. The dataset Syntheticl
has a box-shaped class boundary (upper figure of Fig-
ure 1(a)). The dataset Synthetic2 has a more compli-
cated class boundary (bottom figure of Figure 1(a)).
Hence, it is more difficult to simplify the tree ensemble
and derive a good approximate model.

Baseline Methods: = We compared the proposed
method to four baseline methods. The first three
are BATrees [17], inTrees [18], and Node Harvest
(NH) [19]. The last baseline is the depth-2 decision
tree (DTree2). While the first three methods tend to
generate tens or hundreds of rules, DTree2 generates
only four rules. Hence, it is a good baseline method
to compare with the proposed method that tends to
generate only a few rules.

Implementations: In all experiments, we used
randomForest package in R to train tree ensembles
with 100 trees. The tree ensemble simplification
methods are then applied to extract rules from the
learned tree ensembles. The proposed method is im-
plemented in Python. For the proposed method, we
used the statement sampling heuristic with the sam-
pling size L = 100. We set Knax = 10 and ran
FAB inference for 20 different random initial param-
eters, and derived learned 20 parameters {IL,,}2_,.
We then adopted the parameter with the small-

Due to the page limitation, only a few important re-
sults are highlighted in this section. The full results are
reported in Appendix E. The exhaustive experimental re-
sults include the results on the computational scalability of
the proposed sampling heuristic. The codes are available
at https://github.com/satoShara/defragTrees

Table 1: Average runtimes in seconds for one restart
on three datasets: the EM algorithm ran over K =
1,...,10, and its total time is reported.

Spambase  MiniBooNE Higgs
FAB 5.32+1.98 93.0+49.2 54.34+13.7
EM  35.7+3.47 282 £60.1 227 £ 63.6
Syntheticl Spambase
§ o T e mv § 04@ T T T
LTJH . W FAB LTJH 82
% 0.2 z -
& | & 0.1
2 4 6 8 10 2 4 6 8 10
K K

Table 2: Test Error of FAB inference and the EM al-
gorithm on Syntheticl and Spambase.

est training error, i.e., II = argming Error(D,IL,,)
with Error(D,II) := EnN:1 (y(")—g(”))z for re-
gression, and Error(D,II) := 25:1 I(y™ # §m)
for classification. The BATrees is implemented
also in Python. The depth of BATrees is cho-
sen from {2,3,4,6,8,10} using 5-fold cross valida-
tion. For inTrees and Node Harvest, we used
their R implementations with their default settings.
For DTree2, we used DecisionTreeRegressor and
DecisionTreeClassifier of scikit-learn in Python
while fixing their depth to two. All experiments were
conducted on 64-bit CentOS 6.7 with an Intel Xeon
E5-2670 2.6GHz CPU and 512GB RAM.

7.1 FAB Inference vs. EM Algorithm

We compared the runtimes of FAB inference and the
EM algorithm. For the EM algorithm, we ran the
algorithm by varying the value of K from 1 to 10, and
reported the total runtime. For both methods, we used
the sampling heuristic.

Table 1 shows that FAB inference was from three to
nearly seven times faster than the EM algorithm. FAB
inference attained smaller runtimes by avoiding search-
ing over several possible number of rules K and de-
ciding the number automatically. Figure 2 shows the
comparison of the test errors of the found rules on
Syntheticl and Spambase: they show that FAB infer-
ence could find an appropriate number of rules K with
small prediction errors. These results suggest the su-
periority of FAB inference over the EM algorithm as it
could find an appropriate number of rules efficiently.

7.2 Comparison with the Baseline Methods

We compared the performance of the proposed method
with the baseline methods with respect to the num-
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Figure 4: Comparison of the simplification methods: # of rules vs. test error. Ensemble denotes the average
error of the tree ensemble over the ten random data realizations.

Table 3: Extracted rules using the proposed method

on Energy data.
Rule

Y
12.33  OverallHeight < 5.25, WallArea < 306.25
14.39  OverallHeight < 5.25, WallArea > 318.50
28.17  OverallHeight > 5.25, WallArea < 330.75
37.38  OverallHeight > 5.25, WallArea > 343.00

ber of found rules and the test errors. We conducted
the experiment over ten random data realizations for
each dataset. Figure 4 shows the trade-off between the
number of found rules K and the test errors of each
method on three datasets.

Number of Found Rules: Figure 4 shows that
DTree2 tended to attain the smallest number of rules
(i.e., four), and the proposed method was second (from
four to ten). The number of rules found by inTrees and
Node Harvest tended to be around 30 to 100, while the
number of rules found by BATrees sometimes exceeded
100.

Test Errors: Figure 4 also shows inTrees and BA-
Trees tended to attain the smallest test errors while
DTree2 appeared to perform the worst on most of the
datasets. The proposed method attained a good trade-
off between the number of rules and the test errors: it
tended to score smaller errors than DTree2 while using
only a few rules, which is significantly smaller than the
other baseline methods.

These results suggest that the proposed method is fa-
vorable for interpretation as it generates only a few
rules with small errors. A smaller number of rules
helps users to easily check the found rules. The small
errors support that the found rules are reliable, i.e., the
rules explain the original tree ensemble adequately.

7.3 Example of Found Rules

We show a rule example found in the energy effi-
ciency dataset (Energy data). The energy efficiency
dataset is a simulation dataset sampled from 12 differ-

ent building shapes. The dataset comprises eight nu-
meric features: Relative Compactness, Surface Area,
Wall Area, Roof Area, Overall Height, Orientation,
Glazing Area, and Glazing Area Distribution. The
task is regression, which aims to predict the heating
load of the building from these eight features.

Table 3 summarizes the four rules found by the pro-
posed method, where the rules are characterized by
the two features: Overall Height and Wall Area. The
four rules are expressed as a direct product of the two
statements; (i) Overall Height € {low, high}, and (ii)
Wall Area € {small, large}. The resulting rules are in-
tuitive such that the load is small when the building
is small, while the load is large when the building is
huge. Hence, from these simplified rules, we can infer
that the tree ensemble is learned in accordance with
our intuition about the data. In contrast to the sim-
ple rules found by the proposed method, the baseline
methods found more rules: BATrees learned 66 rules,
inTrees enumerated 23 rules, and Node Harvest found
10 rules, respectively.

8 Conclusion

We proposed a simplification method for tree ensem-
bles to enable users to interpret the model. We formal-
ized the simplification as a model selection problem to
obtain the simplest representation that is essentially
equivalent to the original one. To solve the problem,
we derived a Bayesian model selection algorithm that
automatically determines the model complexity. By
using the proposed method, the complex ensemble is
approximated with a simple model that is easy to in-
terpret.
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