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Abstract

We develop an algorithm for minimizing a
function using n batched function value mea-
surements at each of T rounds by using classi-
fiers to identify a function’s sublevel set. We
show that sufficiently accurate classifiers can
achieve linear convergence rates, and show
that the convergence rate is tied to the diffi-
culty of active learning sublevel sets. Further,
we show that the bootstrap is a computation-
ally efficient approximation to the necessary
classification scheme.

The end result is a computationally effi-
cient derivative-free algorithm requiring no
tuning that consistently outperforms other
approaches on simulations, standard bench-
marks, real-world DNA binding optimiza-
tion, and airfoil design problems whenever
batched function queries are natural.

1 Introduction

Consider the following abstract problem: given access
to a function f : X → R, where X is some space, find
x ∈ X minimizing f(x). We study an instantiation
of this problem that trades sequential access to f for
large batches of parallel queries—one can query f for
its value over n points at each of T rounds. In this
setting, we propose a general algorithm that effectively
optimizes f whenever there is a family of classifiers
h : X → [0, 1] that can predict sublevel sets of f with
high enough accuracy.

Our main motivation comes from settings in which n is
large—on the order of hundreds to thousands—while
possibly small relative to the size of X . These types of
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problems occur in biological assays [21], physical sim-
ulations [27], and reinforcement learning problems [33]
where parallel computation or high-throughput mea-
surement systems allow efficient collection of large
batches of data. More concretely, consider the opti-
mization of protein binding affinity to DNA sequence
targets from biosensor data [11, 21, 38]. In this case,
assays measure binding of n ≥ 1000s of sequences and
are inherently parallel due to the fixed costs of set-
ting up an experiment, while the time to measure a
collection of sequences makes multiple sequential tests
prohibitively time-consuming (so T must be small). In
such problems, it is typically difficult to compute the
gradients of f (if they even exist); consequently, we fo-
cus on derivative-free optimization (DFO, also known
as zero-order optimization) techniques.

1.1 Problem statement and approach

The batched derivative free optimization problem con-
sists of a sequence of rounds t = 1, 2, . . . , T in which
we propose a distribution p(t), draw a sample of n can-

didates Xi
iid∼ p(t), and observe Yi = f(Xi). The goal

is to find at least one example Xi for which the gap

min
i
f(Xi)− inf

x∈X
f(x)

is small.

Our basic idea is conceptually simple: In each round,
fit a classifier h predicting whether Yi ≶ α(t) for some
threshold α(t). Then, upweight points x that h pre-
dicts as f(x) < α(t) and downweight the other points
x for the proposal distribution p(t) for the next round.

This algorithm is inspired by classical cutting-plane al-
gorithms [30, Sec. 3.2], which remove a constant frac-
tion of the remaining feasible space at each iteration,
and is extended into the stochastic setting based on
multiplicative weights algorithms [25, 3]. We present
the overall algorithm as Algorithm 1.
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Algorithm 1 Cutting-planes using classifiers

Require: Objective f , Action space X , hypothesis
class H.

1: Set p(0)(x) = 1/|X |
2: Draw X(0) ∼ p(0).
3: Observe Y (0) = f(X(0))
4: for t ∈ {1 . . . T} do

5: Set α(t) = median({Y (t)
i }ni=1)

6: Set h(t) ∈ H as the loss minimizer of L over
(X(0), Y (0) > α(t)) . . . (X(t−1), Y (t−1) > α(t)).

7: Set p(t)(x) ∝ p(t−1)(x)(1− ηh(t)(x))
8: Draw X(t) ∼ p(t)

9: Observe Y (t) = f(X(t)).
10: end for
11: Set i∗ = arg mini Y

(T )
i

12: return X
(T )
i∗ .

1.2 Related work

When, as is typical in optimization, one has substan-
tial sequential access to f , meaning that T can be
large, there are a number of major approaches to op-
timization. Bayesian optimization [34, 7] and kernel-
based bandits [9] construct an explicit surrogate func-
tion to minimize; often, one assumes it is possible
to perfectly model the function f . Local search al-
gorithms [12, 26] emulate gradient descent via finite-
difference and local function evaluations. Our work
differs conceptually in two ways: first, we think of T as
being small, while n is large, and second, we represent
a function f by approximating its sublevel sets. Exist-
ing batched derivative-free optimizers encounter com-
putational difficulties for batch sizes beyond dozens of
points [16]. Our sublevel set approach scales to large
batches of queries by simply sampling from the current
sublevel set approximation.

While other researchers have considered level set esti-
mation in the context of Bayesian optimization [17, 7]
and evolutionary algorithms [29], these use the level
set to augment a traditional optimization algorithm.
We show good sublevel set predictions alone are suffi-
cient to achieve linear convergence. Moreover, given
the extraordinary empirical success of modern clas-
sification algorithms, e.g. deep networks for image
classification [22], it is natural to develop algorithms
for derivative-free optimization based on fitting a se-
quence of classifiers. Yu et al. [40] also propose clas-
sification based on optimization, but their approach
assumes a classifier constrained to never misclassify
near the optimum, making the problem trivial.

1.3 Contributions

We present Algorithm 1 and characterize its conver-
gence rate with appropriate classifiers and show how
it relates to measures of difficulty in active learn-
ing. We extend this basic approach, which may be
computationally challenging, to an approach based on
bootstrap resampling that is empirically quite effective
and—in certain nice-enough scenarios—has provable
guarantees of convergence.

We provide empirical results on a number of differ-
ent tasks: random (simulated) problems, airfoil (de-
vice) design based on physical simulators, and finding
strongly-binding proteins based on DNA assays. We
show that a black-box approach with random forests
is highly effective within a few rounds T of sequential
classification; this approach provides advantages in the
large batch setting.

The approach to optimization via classification has a
number of practical benefits, many of which we ver-
ify experimentally. It is possible to incorporate prior
knowledge in DFO through domain-specific classifiers,
and in more generic optimization problems one can
use black-box classifiers such as random forests. Any
sufficiently accurate classifier guarantees optimization
performance and can leverage the large-batch data col-
lection biological and physical problems essentially ne-
cessitate. Finally, one does not even need to evaluate
f : it is possible to apply this framework with pairwise
comparison or ordinal measurements of f .

2 Cutting planes via classification

Our starting point is a collection of “basic” results
that apply to classification-based schemes and associ-
ated convergence results. Throughout this section, we
assume we fit classifiers using pairs (x, z), where z is a
0/1 label of negative (low f(x)) or positive (high f(x))
class. We begin by demonstrating that two quantities
govern the convergence of the optimizer: (1) the fre-
quency with which the classifier misclassifies (and thus
downweights) the optimum x∗ relative to the multi-
plicative weight η, and (2) the fraction of the feasible
space each iteration removes.

If the classifier h(t)(x) exactly recovers the sublevel
set (h(t)(x) < 0 iff f(x) < α(t)), α(t) is at most the
population median of f(X(t)), and X is finite, the basic
cutting plane bound immediately implies that

log

[
Px∼p(T )

(
f(x) = min

x∗∈X
f(x∗)

)]

≥ min

(
T log

(
2

2− η

)
− log(|X |), 0

)
.
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It is not obvious that such a guarantee continues to
hold for inaccurate h(t): it may accidentally misclas-
sify the optimum x∗, and the thresholds α(t) may not
rapidly decrease the function value. To address these
issues, we provide a careful analysis in the coming sec-
tions: first, we show the convergence guarantees im-
plied by Algorithm 1 as a function of classification er-
rors (Theorem 1), after which we propose a classifica-
tion strategy directly controlling errors (Sec. 2.2), and
finally we give a computationally tractable approxima-
tion (Sec. 3).

2.1 Cutting plane style bound

We begin with our basic convergence result. Letting
p(t) and h(t) be a sequence of distributions and classi-
fiers on X , the convergence rate depends on two quan-
tities: the coverage (number of items cut)∑

x∈X
h(t)(x)p(t−1)(x)

and the number of times a hypothesis downweights
item x (because f(x) is too large), which we denote

MT (x) :=
∑T
t=1 h

(t)(x). We have the following

Theorem 1. Let γ > 0 and assume that for all t,∑
x∈X

h(t)(x)p(t−1)(x) ≥ γ

where p(t)(x) ∝ p(t−1)(x)(1−ηh(t)(x)) as in Alg. 1. Let
η ∈ [0, 1/2] and p(0) be uniform. Then for all x ∈ X ,

log p(T )(x) ≥ γη

η + 2
T − η(η + 1)MT (x)− log(2|X |).

The theorem follows from a modification of standard
multiplicative weight algorithm guarantees [3]; see
supplemental section A.1 for a full proof.

We say that our algorithm converges linearly if
log p(t)(x) & t. In the context of Theorem 1, choice of
η maximizing −(η2 + η)MT (x∗) + η

η+2γT yields such
convergence, as picking η sufficiently small that

T − (η + 1)(η + 2)

γ
MT (x∗) = Ω(T )

guarantees linear convergence if 2MT (x∗) < Tγ.

A simpler form of the above bound for a fixed η shows
the linear convergence behavior.

Corollary 1. Let x ∈ X , where qT (x) := MT (x)
γT ≤

1/4. Under the conditions of Theorem 1,

log(p(T )(x)) ≥ min

(
1

5
,

1

3
− 4qT (x)

3

)
γT

2
− log(2|X |)

and
1

4
− log(2|X |)

2γT
≤ qT (x).

The condition qT (x) ≥ 1
4 −

1
2γT log(2|X |) arises be-

cause if MT (x) is small, then eventually we must have
p(T )(x) ≥ 1 − γ, and any classifier h which fulfils the
condition

∑
x∈X h

(t)(x)p(t−1)(x) ≥ γ in Thm. 1 must
downweight x. At this point, we can identify the op-
timum exactly with O(1/(1− γ)) additional draws.

The corollary shows that if MT (x∗) = 0 and γ =
(1− 1/e)− 1/2 < 0, we recover a linear cutting-plane-
like convergence rate [cf. 30], which makes constant
progress in volume reduction in each iteration.

2.2 Consistent selective strategy for strong
control of error

The basic guarantee of Theorem 1 requires relatively
few mistakes on x∗, or at least on a point x with
f(x) ≈ f(x∗), to achieve good performance in opti-
mization. It is thus important to develop careful clas-
sification strategies that are conservative: they do not
prematurely cut out values x whose performance is
uncertain. With this in mind, we now show how con-
sistent selective classification strategies [15] (related
to active learning techniques, and which abstain on
“uncertain” examples similar to the Knows-What-It-
Knows framework [23, 2]) allow us to achieve linear
convergence when the classification problems are real-
izable using a low-complexity hypothesis class.

The central idea is to only classify an example if all
zero-error hypotheses agree on the label, and otherwise
abstain. Since any hypothesis achieving zero popula-
tion error must have zero training set errors, we will
only label points in a way consistent with the true la-
bels. El-Yaniv and Wiener [15] define the following
consistent selective strategy (CSS).

Definition 1 (Consistent selective strategy). For a
hypothesis class H and training sample S, the version
space VSH,Sm ⊂ H is the set of all hypotheses which
perfectly classify Sm. The consistent selective strategy
is the classifier

h(x) =


1 if ∀g ∈ VSH,Sm , g(x) = 1

0 if ∀g ∈ VSH,Sm , g(x) = 0

no decision otherwise.

Applied to our optimizer, this strategy enables safely
downweighting examples whenever they are classified
as being outside the sublevel set. Optimization per-
formance guarantees then come from demonstrating
that at each iteration the selective strategy does not
abstain on too many examples.

The rate of abstention for a selective classifier is related
to the difficulty of disagreement based active learning,
controlled by the disagreement coefficient [18].
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Definition 2. The disagreement ball of a hypothesis
class H for distribution P is

BH,P (h, r) := {h′ ∈ H | P (h(X) 6= h′(X)) ≤ r}.

The disagreement region of a subset G ⊂ H is

Dis(G) := {x ∈ X | ∃h1, h2 ∈ G s.t. h1(x) 6= h2(x)}.

The disagreement coefficient ∆h of the hypothesis class
H for the distribution P is

∆h := sup
r>0

P (X ∈ Dis(BH,P (h, r)))

r
.

The disagreement coefficient directly bounds the ab-
stention rate as a function of generalization error.

Theorem 2. Let h be the CSS classifier in definition
1, and let h∗ ∈ H be a classifier achieving zero risk. If
P(g(X) 6= h∗(X)) < ε for all g ∈ VSH,Sm , then CSS
achieves coverage

P(h(X) = no decision) ≤ ∆h∗ε

This follows from the definition of the disagreement
coefficient, and the size of the version space (Supp.
section A.1 contains a full proof).

The dependence of our results on the disagreement
coefficient implies a reduction from zeroth order op-
timization to disagreement based active learning [15]
and selective classification [39] over sublevel sets.

Implementing the CSS classifier may be somewhat
challenging: given a particular point x, one must ver-
ify that all hypotheses consistent with the data classify
it identically. In many cases, this requires training a
classifier on the current training sample S(t) at iter-
ation t, coupled with x labeled positively, and then
retraining the classifier with x labeled negatively [39].
This cost can be prohibitive. (Of course, implement-
ing the multiplicative weights-update algorithm over
x ∈ X is in general difficult as well, but in a number
of application scenarios we know enough about H to
be able to approximate sampling from p(t) in Alg. 1.)

A natural strategy is to use the CSS classifier as part
of Algorithm 1, setting all no decision outputs to the
zero class, only removing points confidently above the
level set α(t). That is, in round t of the algorithm,
given samples S = (X(t), Z(t)), we define

h(t)(x) =


1 if ∀g ∈ VSH,S , g(x) = 1

0 if ∀g ∈ VSH,S , g(x) = 0

0 otherwise.

There is some tension between classifying examples
correctly and cutting out bad x ∈ X , which the
next theorem shows we can address by choosing large
enough sample sizes n.

Theorem 3. Let H be a hypothesis class containing
indicator functions for the sublevel sets of f , with VC-
dimension V and disagreement coefficient ∆h. There
exists a numerical constant C < ∞ such that for all
δ ∈ [0, 1], ε ∈ [0, 1], and γ ∈ (∆hε,

1
2 ), and

n ≥ max
{
Cε−1[V log(ε−1) + log(δ−1) + log(2T )],

1

2(γ − 0.5)2
(log(δ−1) + log(2T ))

}
,

with probability at least 1− δ

log(p(T )(x∗)) ≥ min
{

(γ−∆hε)
η

η + 2
T − log(2|X |),

log(1− γ)
}

after T rounds of Algorithm 1.

The proof follows from combining the selective classifi-
cation bound with standard VC dimension arguments
to obtain the sample size requirement (Supp. A.1 con-
tains a full proof).

Thus if ∆h is small, such as log(|X |), then choosing
ε = ∆−1

h achieves exponential improvements over ran-
dom sampling. In the worst case, ∆h = O(|X |), but
small ∆h are known for many problems, for example
for linear classification with continuous X over densi-
ties bounded away from zero, ∆h = poly(log(Vol(X ))),
which would result in linear convergence rates (Theo-
rem 7.16, [18]).

Using recent bounds for the disagreement coefficient
for linear separators [5], we can show that for linear
optimization over a convex domain, the CSS based
optimization algorithm above achieves linear conver-
gence with O(d3/2 log(d1/2) − d1/2 log(3Tδ)) samples
with probability at least 1 − δ (for lack of space, we
present this as Theorem A.2 in the supplement.)

When the classification problem is non-realizable, but
the Bayes-optimal hypothesis does not misclassify x∗,
an analogous result holds through the agnostic selec-
tive classification framework of Wiener and El-Yaniv
[39]. The full result is in supplemental Theorem A.7.

3 Computationally efficient
approximations

While selective classification provides sufficient control
of error for linear convergence, it is generally compu-
tationally intractable. However, a bootstrap resam-
pling algorithm [14] approximates selective classifica-
tion well enough to provide finite sample guarantees
in parametric settings. Our analysis provides intuition
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for the empirical observation that selective classifica-
tion via the bootstrap works well in many real-world
problems [1].

Formally, consider a parametric family {Pθ}θ∈Θ of
conditional distributions Z | X ∈ [0, 1] with compact
parameter space Θ. Given n samples X1, . . . , Xn, we
observe Zi|Xi ∼ Pθ∗ with θ∗ ∈ int Θ.

Let `θ(x, z) = − log(Pθ(z|x)) be the negative log like-
lihood of z, which majorizes the 0-1 loss of the linear
hypothesis class `θ(x, z) ≥ 1{(2z−1)x>θ<0}.

Define the weighted likelihood

Ln(θ, u) ≡ 1
n

n∑
i=1

(1 + ui)`θ(Xi, Zi),

and consider the following multiplier bootstrap algo-
rithm [14, 35], parameterized by B ∈ N and variance
σ2. σ adds additional variation in the estimates to
increase parameter coverage.

1. Draw {(Xi, Zi)}ni=1 from P.

2. Compute θn = arg minθ Ln(θ, 0).

3. For b = 1 to B,

(a) Draw ub
iid∼ Uni[−1, 1].

(b) Compute

θ◦ub = σ(arg min
θ
Ln(θ, ub)− θn) + θn.

4. Define the estimator

h◦(x) =


1 if ∀b ∈ [B], x>θ◦ub > 0

0 if ∀b ∈ [B], x>θ◦ub ≤ 0

no decision otherwise.

.

For linear classifiers with strongly convex losses, this
algorithm obtains selective classification guarantees
under appropriate regularity conditions as presented
in the following theorem.

Theorem 4. Assume `θ is twice differentiable and
fulfils ‖∇`θ(X,Z)‖ ≤ R, and

∥∥∇2`θ(X,Z)
∥∥
op
≤ S

almost surely. Additionally, assume Ln(θ, 1) is γ-
strongly convex and that ∇2Ln(θ, 1) is M -Lipschitz
with probability one.

For h◦ defined above and x ∈ X ,

P (x>θ∗ ≤ 0 and h◦u(x) = 1) < δ.

Further, the abstention rate is bounded by∫
x∈Rd

1{h◦u(x)=∅}p(x)dx ≤ ε∆h

with probability 1− δ whenever

B ≥ 15 log(3/δ),

σ = O(d1/2 + log(1/δ)1/2 + n−1/2),

ε = O
(
σ2n−1 log(B/δ)

)
,

and
n ≥ 2 log(2d/δ)S/γ2.

Due to length, the proof and full statement with con-
stants appears in the appendix as Theorem A.4, with
a sketch provided here: we first show that a given
quadratic version space and a multivariate Gaussian
sample θquad obtains the selective classification guar-
antees (Lemmas A.3,A.4,A.5). We then show that
θ◦ ≈ θquad to order n−1 which is sufficient to recover
Theorem A.4.

(a) Classification confidences
formed by bootstrapping ap-
proximate selective classifica-
tion.

(b) Bootstrapping results
in more consistent identi-
fication of minima.

Figure 1. Bootstrap consensus provides more con-
servative classification boundaries which prevents
repeatedly misclassifying the minimum, compared
to direct loss minimization (panel b, triangle).

The d∆h abstention rate in this bound is d times
the original selective classification result. This ad-
ditional factor of d appearing in σ2 arises from the
difference between finding an optimum within a ball
and randomly sampling it: random vectors concen-
trate within O(1/d) of the origin, while the maximum
possible value is 1. This gap forces us to scale the
variance in the decision function by σ (step 3b). We
present selective classification approximation bounds
analogous to Theorem 3 for linear optimization in the
Appendix as Theorem A.5.

To illustrate our results through simulations, consider
a optimizing a two-dimensional linear function in the
unit box. Figure 1a shows the set of downweighted
points (colored points) for various algorithms on clas-
sifying a single superlevel set based on eight observa-
tions (black points). Observe how linear downweights
many points (colored ‘x’), in contrast to exact CSS,
which only downweights points guaranteed to be in
the superlevel set. Errors of this type combined with
Alg. 1 result in optimizers which fail to find the true
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minimum depending on initialization (Figure 1b). The
bootstrapped linear classifier behaves similarly to CSS,
but is looser due to the non-asymptotic setting. Ran-
dom forests, another type of bootstrapped classifier is
surprisingly good at approximating CSS, despite not
making use of the linearity of the decision boundary.

4 Partial order based optimization

One benefit of optimizing via classification is that the
algorithm only requires total ordering amongst the ele-
ments. Specifically, step 6 of Algorithm 1 only requires
threshold comparisons against a percentile selected in
step 5. This enables optimization under pairwise com-
parison feedback. At each round, instead of observing

f(X(t)), we observe g(X
(t)
i , X

(t)
j ) = 1

f(X
(t)
i )<f(X

(t)
j )

,

which is a natural form of feedback in domains such
as human surveys [31] or matched biological experi-
ments [19].

Given the pairwise comparison function g, the thresh-
old f(X(t)) < α(t) can be replaced with the following
stochastic quantile estimator:

f̂(X
(t)
i ) =

c∑
k=1

g(X
(t)
Ik
, X

(t)
i ) ≤ 0.5, (1)

where Ik ∼ Unif({1, 2 . . . c}) with cn total pairwise
comparisons. We show that c > 10 seems to work well
in practice, and more sophisticated preference aggrega-
tion algorithms may reduce the number of comparisons
even further.

5 Experimental evidence

We evaluate Algorithm 1 as a DFO algorithm across a
few real-world experimental design benchmarks, com-
mon synthetic toy optimization problems, and bench-
marks that allow only pairwise function value compar-
isons. The small-batch (n = 1-10) nature of hyperpa-
rameter optimization problems is outside the scope of
our work, even though they are common DFO prob-
lems.

For constructing the classifier in Algorithm 1, we ap-
ply ensembled decision trees with a consensus decision
defined as 75% of trees agreeing on the label (referred
to as classify-rf). This particular classifier works in
a black-box setting, and is highly effective across all
problem domains with no tuning. We also empirically
investigate the importance of well-specified hypotheses
and consensus ensembling and show improved results
for ensembles of linear classifiers and problem specific
classifiers, which we call classify-tuned.

In order to demonstrate that no special tuning is nec-
essary, the same constants are used in the optimizer

for all experiments, and the classifiers use off-the-shelf
implementations from scikit-learn with no tuning.

For sampling points according to the weighted distri-
bution in Algorithm 1, we enumerate for discrete ac-
tion spaces X , and for continuous X we perturb sam-
ples from the previous rounds using a Gaussian and use
importance sampling to approximate the target distri-
bution. Although exact sampling for the continuous
case would be time-consuming, the Gaussian pertur-
bation heuristic is fast, and seems to work well enough
for the functions tested here.

As a baseline, we compare to the following algorithms

• Random sampling (random)

• Randomly sampling double the batch size
(random-2x), which is a strong baseline recently
shown to outperform many derivative-free opti-
mizers [24].

• The evolutionary strategy (CMA-ES) for con-
tinuous problems, due to its high-performance in
black box optimization competitions as well as in-
herent applicability to the large batch setting [26]

• The Bayesian optimization algorithm provided by
GpyOpt[4] (GP) for both continuous and dis-
crete problems, using expected improvement as
the acquisition function. We use the ‘random’
evaluator which implements an epsilon-greedy
batching strategy, since the large batch sizes (100-
1000) makes the use of more sophisticated eval-
uators completely intractable. The default RBF
kernel was used in all experiments presented here.
The 3/2- and 5/2-Matern kernels and string kernels
were tried where appropriate, but did not provide
any performance improvements.

In terms of runtime, all computations for classify-
rf take less than 1 second per iteration compared to
0.1s for CMA-ES and 1.5 minutes for GpyOpt. All
experiments were replicated fifteen times to measure
variability with respect to initialization.

All new benchmark functions and reference imple-
mentations are made available at http://bit.ly/

2FgiIxA.

5.1 Designing optimal DNA sequences

The publicly available protein binding microarray
(PBM) dataset consisting of 201 separate assays [6]
allows us to accurately benchmark the optimization
protein binding over DNA sequences. In each assay,
the binding affinity between a particular DNA-binding
protein (transcription factor) and all 8-base DNA se-
quences are measured using a microarray.

http://bit.ly/2FgiIxA
http://bit.ly/2FgiIxA
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(a) Binding to the CRX protein (b) Binding to the VSX1 protein (c) High-lift airfoil design

Figure 2. Performance on two types of real-world batched zeroth-order optimization tasks. classify-rf consis-
tently outperforms baselines and even randomly sampling twice the batch size. The line shows median function
value over runs, shaded area is quartiles.

This dataset defines 201 separate discrete optimization
problems. For each protein, the objective function is
the negative binding affinity (as measured by fluores-
cence), the batch size is 100 (corresponding roughly to
the size of a typical 96-well plate), across ten rounds.
Each possible action corresponds to measuring the
binding affinity of a particular 8-base DNA sequence
exactly. The actions are featurized by considering the
binary encoding of whether a base exists in a position,
resulting in a 32-dimensional space. This emulates the
task of finding the DNA binding sequence of a protein
using purely low-throughput methods.

Figure 2a,2b shows the optimization traces of two ran-
domly sampled examples, where the lines indicate me-
dian achieved function value over 15 random initializa-
tions, and the shading indicates quartiles. classify-
rf shows consistent improvements over all discrete ac-
tion space baselines. For evaluation, we further sample
20 problems and find that the median binding affinity
found across replicates is strictly better on 16 out of
20, and tied with the Gaussian process on 2.

In this case, the high performance of random forests is
relatively unsurprising, as random forests are known
to be high-performance classifiers for DNA sequence
recognition tasks [10, 21].

5.2 Designing high-lift airfoils

Airfoil design, and other simulator-based objectives
are well-suited to the batched, classification based op-
timization framework, as 30-40 simulations can be run
in parallel on modern multicore computers. In the air-
foil design case, the simulator is a 2-D aerodynamics
simulator for airfoils [13].

The objective function is the negative of lift divided
by drag (with a zero whenever the simulator throws
an error) and the action space is the set of all common
airfoils (NACA-series 4 airfoils). The airfoils are fea-
turized by taking the coordinates around the perime-

ter of the airfoil as defined in the Selig airfoil format.
This results in a highly-correlated two hundred dimen-
sional feature space. The batch size is 30 (correspond-
ing to the number of cores in our machine) and T = 10
rounds of evaluations are performed.

We find in Figure 2c that the classify-rf algorithm
converges to the optimal airfoil in only five rounds, and
does so consistently, unlike the baselines. The Gaus-
sian process beat the twice-random baseline, since the
radial basis kernel is well-suited for this task (as lift is
relatively smooth over `2 distance between airfoils) but
did not perform as well as the classify-rf algorithm.

5.3 Gains from designed classifiers and
ensembles

Matching the classifier and objective function gener-
ally results in large improvements in optimization per-
formance. We test two continuous optimization prob-
lems in [−1, 1]300, optimizing a random linear function,
and optimizing a random sum of a quadratic and lin-
ear functions. For this high dimensional task, we use
a batch size of 1000. In both cases we compare contin-
uous baselines with classify-rf and classify-tune
which uses a linear classifier.

We find that the use of the correct hypothesis class
gives dramatic improvements over baseline in the lin-
ear case (Figure 3a) and continues to give substan-
tial improvements even when a large quadratic term is
added, making the hypothesis class misspecified (Fig-
ure 3b). The classify-rf does not do as well as this
custom classifier, but continues to do as well as the
best baseline algorithm (CMA-ES).

We also find that using an ensembled classifier is an
important for optimization. Figure 3c shows an exam-
ple run on the DNA binding task comparing the con-
sensus of an ensemble of logistic regression classifiers
against a single logistic regression classifier. Although
both algorithms perform well in early iterations, the
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(a) Random linear function (b) Linear+quadratic function (c) Ensembling classifiers improves
optimization performance

Figure 3. Testing the importance of ensembling and well-specified hypothesis class in synthetic data where the
hypothesis for Classify-tuned exactly matches level set (panel a), matches level sets with some error (panel b).
Ensembling also consistently improves performance, and reduces dependence on initialization (panel c)

single logistic regression algorithm gets ‘stuck’ earlier
and finds a suboptimal local minima, due to an ac-
cumulation of errors. Ensembling consistently reduces
such behavior.

5.4 Low-dimensional synthetic benchmarks

We additionally evaluate on two common synthetic
benchmarks (Figure 4a,4b). Although these tasks are
not the focus of the work, we show that the classify-
rf is surprisingly good as a general black box opti-
mizer when the batch sizes are large.

We consider a batch size of 500 and ten steps due to
the moderate dimensionality and multi-modality rela-
tive to the number of steps. We find qualitatively sim-
ilar results to before, with classify-rf outperforming
other algorithms and CMA-ES as the best baseline.

(a) Shekel (4d) (b) Hartmann (6d)

Figure 4. classify-rf outperforms baselines on
synthetic benchmark functions with large batches

5.5 Optimizing with pairwise comparisons

Finally, we demonstrate that we can optimize a func-
tion using only pairwise comparisons. In Figure 5 we
show the optimization performance when using the or-
dering estimator from equation 1.

For small numbers of comparisons per element (c = 5)
we find substantial loss of performance, but once we
observe at least 10 pairwise comparisons per proposed

action, we are able to reliably optimize as well as the
full function value case. This suggests that classifica-
tion based optimization can handle pairwise feedback
with little loss in efficiency.

Figure 5. Optimization with pairwise comparisons
between each action and a small set of (c) randomly
selected actions. Between 10-20 pairwise compar-
isons per action gives sufficient information to fully
optimize the function.

6 Discussion

Our work demonstrates that the classification-based
approach to derivative-free optimization is effective
and principled, but leaves open several theoretical and
practical questions. In terms of theory, it is not clear
whether a modified algorithm can make use of empir-
ical risk minimizers instead of perfect selective classi-
fiers. In practice, we have left the question of tractably
sampling from p(t), as well as how to appropriately
handle smaller-batch settings of d > n.
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