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Supplementary Material for “Approximate ranking from pairwise comparisons”

6 Proofs

In this section, we provide the proofs of our theorems. In order to simplify notation, we assume without
loss of generality (re-indexing as needed) that the underlying permutation ⇡ equal to the identity, so that
⌧1 > ⌧2 > . . . > ⌧n.

6.1 Proof of Theorem 1

Our analysis uses an argument inspired by the proof of the performance guarantee of the original LUCB algorithm
from the bandit literature, presented in [Kal+12]. We begin by showing that the estimate b⌧i(Ti) is guaranteed
to be ↵i-close to ⌧i, for all i, with high probability.

Lemma 1 ([Kau+16, Lem. 19]). For any � 2 (0, 0.0005), with probability at least 1� �, the event

E↵ := {|b⌧i(t)� ⌧i|  ↵i, for all i 2 [n] and for all t � 1} (12)

occurs. The statement continues to hold for any � 2 (0, 1) with ↵i = ↵(Ti) =
q

�(Ti,�
0)

2Ti
, and

�(t, �0) = 2 log(125 log(1.12t)/�0).

Underlying Lemma 1 is a non-asymptotic version of the law of the iterated logarithm [Kau+16; Jam+14].

We first show that, on the event E↵ defined in equation (12), the Hamming-LUCB algorithm returns sets bS1 and
bS2 obeying D( bS`,S`)  2h for ` = 1, 2, as desired. Indeed, suppose that {(1), . . . , (k � h)} ✓ S1. This implies
that S1 and bS1 di↵er in at most h values, which in turn implies that S2 and bS2 di↵er by at most h values.
Therefore, D( bS`,S`)  2h for ` = 1, 2. Next, suppose that {(1), . . . , (k � h)} * S1. Then, at least one item in
{(1), . . . , (k � h)} is in S2. Thus, on E↵, the termination condition (5) implies that {(k + 1 + h), . . . , (n)} ⇢
{k + 1, . . . , n} = S2. Similarly as above, this in turn implies that D( bS`,S`)  2h for ` = 1, 2.

We next show that on the event E↵, Hamming-LUCB terminates after the desired number of comparisons. Let
� := ⌧k�h+⌧k+1+h

2 , and define the event that item i is bad as

Ebad(i) =

8
><

>:

b⌧i < � + 3↵i, i 2 {1, . . . , k � h}
b⌧i > � � 3↵i, i 2 {k + 1 + h, . . . , n}
↵i >

⌧k�h�⌧k+1+h

4 , otherwise.

Lemma 2. If E↵ occurs and the termination condition (5) is false, then either Ebad(b1) or Ebad(b2) occurs.

Given Lemma 2, we can complete the proof in the following way. For an item i, define

�i =

8
><

>:

⌧i � ⌧k+1+h, i 2 {1, . . . , k � h}
⌧k�h � ⌧i i 2 {k + 1 + h, . . . , n}
⌧k�h � ⌧k+1+h, otherwise,

and let T̃i be the largest integer u satisfying the bound ↵(u)  �i/4. A simple calculation (see Section 6.1.1 for
the details) yields that

On the event E↵, if Ti � T̃i holds, then Ebad(i) is false. (13)

Let t � 1 be the t-th iteration of the steps in the LUCB algorithm, and let b1 and b2 be the two items selected
in Step 5 of the algorithm. Note that in each iteration only those two items are compared to other items. By
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Lemma 2, we can therefore bound the total number comparisons by

2
1X

t=1

1{Ebad(b1) [ Ebad(b2)}  2
1X

t=1

nX

i=1

1{(i = b1 [ i = b2) \ Ebad(i)}

(i)
 2

1X

t=1

nX

i=1

1{(i = b1 [ i = b2) \ Ti  T̃i}

(ii)
 2

nX

i=1

T̃i. (14)

For inequality (i), we used the fact (13), and inequality (ii) follows because Ti(t)  T̃i can only be true for T̃i

iterations t.

We conclude the proof by noting that the definition of ↵(·) and some algebra yields (see [Hec+16, Eq. (20)])
that for c1 su�ciently large

T̃i 
c1

(�i/4)2
log

✓
n

�
log

✓
2

(�i/4)2

◆◆
 c2 log

⇣n
�

⌘ log(2 log(2/�i))

�2
i

.

Applying this inequality to the RHS of equation (14) concludes the proof.

6.1.1 Proof of fact (13)

First, consider an item i 2 {k + 1 + h, . . . , n}. We show that if Ti � T̃i, then Ebad(i) is false. On the event E↵,

b⌧i(T̃i) + ↵(T̃i)  ⌧i + 2↵(T̃i)
(i)
 ⌧i +

�i

2
= � +

�i

2
� ⌧k�h � ⌧i + ⌧k+1+h � ⌧i

2
 �, (15)

where inequality (i) follows from ↵(Ti)  �i/4 for Ti � T̃i, by definition of T̃i, and the last inequality follows
from �i = ⌧k�h � ⌧i and ⌧k+1+h � ⌧i � 0. Thus, Ebad(i) does not occur.

For an item i 2 {1, . . . , k � h}, Ebad(i) that is false, the argument is equivalent. For an item in the middle
i 2 {k � h+ 1, . . . , k + h}, the event Ebad(i) is false by definition. This concludes the proof.

6.1.2 Proof of Lemma 2

We prove the lemma by considering all di↵erent values the indices b1 and b2 selected by the LUCB algorithm
can take on, and showing that in each case Ebad(b1) and Ebad(b2) cannot occur simultaneously. For notational
convenience, we define the indices

m1 = argmax
i2{(k�h+1),...,(k)}

↵i, and m2 = argmax
i2{(k+1),...,(k+h)}

↵i,

and note that

b1 = argmax
i2{d1,m1}

↵i, and b2 = argmax
i2{d2,m2}

↵i.

1. Suppose that b1 2 {1, . . . , k � h} and b2 2 {k + 1 + h, . . . , n}, and that both Ebad(b1) and Ebad(b2) do not
occur. First note that

b⌧d1 � ↵d1 � b⌧b1 � ↵b1 . (16)

In order to establish this claim, note that the inequality holds trivially with equality if b1 = d1. If b1 = m1,
then it follows from b⌧d1 � b⌧m1 and ↵d1  ↵b1 . Thus, we obtain

b⌧d1 � ↵d1 � b⌧b1 � ↵b1 > �, (17)

where the last inequality holds by the assumption that Ebad(b1) does not occur. An analogous argument
yields that

� > b⌧b2 + ↵b2 � b⌧d2 + ↵d2 . (18)

Combining those inequalities yields b⌧d1�↵d1 > b⌧d2+↵d2 , which contradicts that the termination condition (5)
is false.
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2. Next, suppose that b1 is an index in the middle and b2 is in the very bottom, i.e., b1 2 {k�h+1, . . . , k+h},
and b2 2 {k + 1 + h, . . . , n}, and both Ebad(b1) and Ebad(b2) do not occur.

First note that from b2 2 {k + 1 + h, . . . , n} and Ebad(b2) not occurring, we have that

� � b⌧b2 + 3↵b2

(i)
� b⌧d2 + ↵d2 + 2↵b2

(ii)
� b⌧i + ↵i + 2↵b2 , for i 2 {(k + 1 + h), . . . , (n)} .

Here, inequality (i) holds by b⌧b2 � b⌧d2 and ↵b2 � ↵d2 , and inequality (ii) follows by the definition of d2. On
the event E↵, this implies

� � ⌧i + 2↵b2 . (19)

Inequality (19) can only be true for all i 2 {(k+1+h), . . . , (n)} if �� ⌧k+1+h � 2↵b2 , which is equivalent to

↵b2  �

4
, � := ⌧k�h � ⌧k+1+h.

Again using that b2 2 {k + 1 + h, . . . , n} and Ebad(b2) not occurring, we have that

� � b⌧d2 + ↵d2

(i)
� b⌧d1 � ↵d1

(ii)
� b⌧d1 �

�

4
, (20)

where inequality (i) holds since the termination condition (5) is false, and inequality (ii) follows from
↵d1  ↵b1  �

4 , where the last inequality holds since Ebad(b2) does not occur, by assumption.

From b⌧d1 � b⌧i for all i 2 {(k � h+ 1), . . . , (n)}, it follows that for i 2 {d1} [ {(k � h+ 1), . . . , (n)},

� > b⌧i �
�

4
� ⌧i � ↵i �

�

4
. (21)

Below, we show that

↵i 
�

4
, for all i 2 {d1} [ {(k � h+ 1), . . . , (k + h)}. (22)

It follows that

� > ⌧i �
�

4
� �

4
, ⌧k�h > ⌧i, for all i 2 {d1} [ {(k � h+ 1), . . . , (k + h)}. (23)

Together with equation (19), this yields that ⌧k�h > ⌧i for all i 2 {d1} [ {(k � h + 1), . . . , (n)}, which is a
contradiction. This concludes the proof.

It remains to establish the claim (22). From the bound ↵b2  �
4 , as shown above, we have �

4 � ↵b2 �
↵m2 � ↵i for all i 2 {(k+1), . . . , (k+ h)}, by defintion of m2. Moreover, for i 2 {(k� h), . . . , (k)}, we have
↵i  ↵d1  ↵b1  �

4 , where the last inequality holds since b1 is in the middle and is not bad. This concludes
the proof of (22).

3. The case where b1 lies in the very top and b2 lies in the middle, i.e., b1 2 {1, . . . , k � h} and b2 2 {k � h+
1, . . . , k+h}, and both Ebad(b1) and Ebad(b2) do not occur, can be treated analogously as the previous case.

4. Next suppose that both b1 and b2 lie in the middle, i.e., b1, b2 2 {k � h + 1, . . . , k + h} and both Ebad(b1)
and Ebad(b2) do not occur. We show that this leads a contradiction.

Towards this goal, first note that either

� < b⌧d2 + ↵d2 . (24a)

holds true or

� > b⌧d1 � ↵d1 , (24b)

holds true, but not both. In order to see this fact, note that if inequality (24a) is violated, then

� � b⌧d2 + ↵d2

(i)
< b⌧d1 � ↵d1 , (25)
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where step (i) follows from the termination condition (5) being false, by assumption. Likewise, if inequal-
ity (24b) does not hold, then

�  b⌧d1 � ↵d1 < b⌧d2 + ↵d2 .

Thus, we have shown that either condition (24a) or (24a) holds true, but not both simultaneously; conse-
quently, we may conclude that at least one of these two conditions does not hold. Next, we show that this
fact leads to a contradiction, which concludes the proof.

First, suppose that inequality (24a) does not hold true. Then by the definition of d2, on E↵,

� � b⌧d2 + ↵d2 � b⌧i + ↵i � ⌧i, for all i 2 {(k + 1 + h), . . . , (n)}. (26)

Moreover, by inequality (25) together with Ebad(b1) and Ebad(b2) not occurring, which implies that ↵b1 ,↵b2 
�
4 , the following inequality follows by the same argument as inequality (23) follow from inequality (20):

⌧k�h > ⌧i, for all i 2 {d1} [ {(k � h+ 1), . . . , (k + h)}. (27)

Together with (26), this yields a contradiction. The argument for the case in which condition (24a) is true
is entirely analogous.

5. Finally, if b1 2 {k + 1+ h, . . . , n} or if b2 2 {1, . . . , k � h}, and both Ebad(b1) and Ebad(b2) do not occur, we
reach a contradiction using similar arguments as in the previous cases.

6.2 Proof of Theorem 2

We now turn to the proof of the lower bound from Theorem 2.

We first introduce some notation required to state a useful lemma [Kau+16, Lem. 1] from the bandit literature.
Let ⌫ = {⌫j}mj=1 be a collection of m probability distributions, each supported on the real line R. Consider
an algorithm A, that, at times t = 1, 2, . . ., selects the index it 2 [m] and receives an independent draw Xt

from the distribution ⌫it in response. Algorithm A may select it only based on past observations, that is, it is
Ft�1 measurable, where Ft is the �-algebra generated by i1, Xi1 , . . . , it, Xit . Algorithm A has a stopping rule ⇠
that determines the termination of A. We assume that ⇠ is a stopping time measurable with respect to Ft and
obeying P [⇠ < 1] = 1.

Let Ni(⇠) denote the total number of times index i has been selected by the algorithm A (until termination).
For any pair of distributions ⌫ and ⌫0, we let KL(⌫, ⌫0) denote their Kullback-Leibler divergence, and for any
p, q 2 [0, 1], let d(p, q) := p log p

q
+ (1 � p) log 1�p

1�q
denote the Kullback-Leiber divergence between two binary

random variables with success probabilities p, q.

With this notation, the following lemma relates the cumulative number of comparisons to the uncertainty between
the actual distribution ⌫ and an alternative distribution ⌫0.

Lemma 3 ([Kau+16, Lem. 1]). Let ⌫, ⌫0 be two collections of m probability distributions on R. Then for any
E 2 F⇠ with P⌫ [E ] 2 (0, 1), we have

mX

i=1

E⌫ [Ni(⇠)] KL(⌫i, ⌫
0
i
) � d(P⌫ [E ] ,P⌫0 [E ]). (28)

Let us now use Lemma 3 to prove Theorem 2.

Define the event
E :=

n
D( bS`,S`)  2h for ` = 1, 2

o
,

corresponding to success of the algorithm A. Recalling that ⇠ is the stopping rule of algorithm A, we are
guaranteed that E 2 F⇠. Given the linear relations Mij = 1 � Mji, the pairwise comparison matrix M is
determined by the entries {Mij , i = 1, . . . , n, j = i + 1, . . . , n}. Let Nij(⇠) be the total number of comparisons
between items i and j made by A. For any other pairwise comparison matrix M 0 2 C0, Lemma 3 ensures that

nX

i=1

nX

j=i+1

EM [Nij ] d(Mij ,M
0
ij
) � d(PM [E ] ,PM 0 [E ]). (29)
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Let M := {m1, . . . ,m2h+1} be a set of distinct items in S1. We next construct M 0 2 C1/8 such that
m1, . . . ,m2h+1 /2 S1(M 0) under the distribution M 0. Since we assume algorithm A to be uniformly (h, �)-
Hamming-accurate over C1/8, we have both PM [E ] � 1� � and PM 0 [E ]  �. To see this note that since S1 and
S1(M 0) di↵er in 2h+ 1 elements, there is no set of cardinality k that di↵ers from both S1 and S1(M 0) in only h
elements. It follows that

d(PM [E ] ,PM 0 [E ]) � d(�, 1� �) = (1� 2�) log
1� �

�
� log

1

2�
, (30)

where the last inequality holds for �  0.15.

It remains to specify the alternative matrix M 0 2 C0. The alternative matrix M 0 is defined as

M 0
ij
=

8
><

>:

Mmj � n�1
n�1�2h (⌧m � ⌧k+1+2h), if i = m for m 2 M, j 2 [n] \M

Mim + n�1
n�1�2h (⌧m � ⌧k+1+2h), if j = m for m 2 M, i 2 [n] \M

Mij otherwise.

(31)

It follows that, for m 2 M,

⌧ 0
m

=
1

n� 1

X

j2[n]\{m}

M 0
mj

=
1

n� 1

X

j2[n]\{m}

Mmj �
1

n� 1

X

j2[n]\M

n� 1

n� 1� 2h
(⌧m � ⌧k+1+2h)

= ⌧k+1+2h.

Similarly, all other scores ⌧ 0
i
are larger than ⌧i by a common constant, that is, for i 2 [n] \M,

⌧ 0
i
= ⌧i +

1

n� 1� 2h

X

m2M
(⌧m � ⌧k+1+2h).

It follows that, under the distribution M 0 the items in the set M are not among the k highest scoring items,
which ensures that M \ S1(M) = ;. Moreover, M 0 2 C1/8. This follows from the assumption M 2 C3/8, which
implies

M 0
mj

 5

8
+

✓
5

8
� 3

8

◆
 7

8
,

and similarity M 0
mj

� 1
8 .

Next consider the total number of comparisons of item m with all others items,
that is, Nm =

P
j2[n]\{m} Nmj . By linearity of expectation, we have

X

m2M
max

j2[n]\{m}
d(Mmj ,M

0
mj

)EM [Nm] =
X

m2M
max

j2[n]\{m}
d(Mmj ,M

0
mj

)
X

j02[n]\{m}

EM [Nmj0 ]

(i)
�
X

m2M

X

j2[n]\{m}

EM [Nmj ] d(Mmj ,M
0
mj

)

(ii)
=

nX

i=1

nX

j=i+1

EM [Nij ] d(Mij ,M
0
ij
)

(iii)
� d(PM [E ] ,PM 0 [E ])

� log
1

2�
. (32)

Here steps (i) and (ii) follows from the fact that d(Mij ,M 0
ij
) = 0 for all (i, j) not in {(m, j) | m 2 M, j 2 [n]\M}

and not in {(i,m) | m 2 M, i 2 [n] \M}, by definition of the M 0
ij

(see equation (31)), and step (iii) follows from
inequality (29) (that is, from Lemma 3). Finally, inequality (32) follows from inequality (30).
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We next upper bound the KL divergence on the left hand side of inequality (32). Using the inequality log x  x�1
valid for x > 0, we have that

d(Mmj ,M
0
mj

) 
(Mmj �M 0

mj
)2

M 0
mj

(1�M 0
mj

)
 dm, dm := 16(⌧m � ⌧k+1+2h)

2. (33)

Here, the last inequality follows from the definition of M 0 in equation (31), for j 2 [n] \ {m}, and from 1
8 

M 0
mj

 7
8 , which implies 1

M
0
mj(1�M

0
mj)

 16. Applying inequality (33) to the left hand side of inequality (32)

yields

X

m2M
dmEM [Nm] � log

1

2�
, valid for each subset M ✓ S1 of cardinality 2h+ 1. (34)

We can therefore obtain a lower bound on
P

i2S1
EM [Nm] by solving the minimization problem:

minimize
em�0

X

m2S1

em subject to
X

m2M
dmem � log

1

2�
for each subset M ✓ S1 of cardinality 2h+ 1. (35)

Since the dm are decreasing in m, the solution to this optimization problem is ek�2h, . . . , ek = 0 and
em = log(1/2�)/dm.

Using an analogous line of arguments for items in the set S2, we arrive at the following lower bound

log
1

2�

 
k�2hX

i=1

1

8(⌧i � ⌧k+1+2h)
+

nX

i=k+1+2h

1

8(⌧k�2h � ⌧i)

!

on the number of comparisons. This concludes the proof.

6.3 Alternative lower bound

In this section, we state a second lower bound on the number of comparisons, which shows that to obtain an
(h, �)-Hamming accurate ranking, an algorithm has to compare each item a certain number of times. The proof
of this lower bound also forms the foundation for the proof of Theorem 3.

Theorem 4. Let A be a symmetric algorithm, i.e., its distribution of comparisons commutes with permutations
of the items, that is uniformly (h, �)-Hamming accurate over C, with �  1

2 min( 1
k
, 1
n�k

). Choose an integer
q � 1. Then, for any item a 2 [n], when applied to a given pairwise comparison model M 2 C, the algorithm A
must make at least

2

3

✓
2q � 1

2h+ q

◆2.✓
max

b2{k�2(h+q),...,k+1+2(h+q)}
max

✓
max

j 6={a,b}
d(Maj ,Mbj), d(Mab, 1/2)

◆◆

comparisons on average.

In the remainder of this section, we provide a proof of Theorem 4. For a given item a, we divide our proof into

two cases, corresponding to whether or not P
h
a /2 bS1

i
> c1 + ⌘, where we define the scalar ⌘ := 1�c1�c2

2 .

Case 1: First, suppose that P
h
a /2 bS1

i
> c1 + ⌘. Pick some other item b in {k � h0, . . . , k} that obeys

P
h
b /2 bS1

i
 c1. The following lemma guarantees that such an item exists:

Lemma 4. Let A be an algorithm that is (h, �)-Hamming accurate, with �  1
2 min( 1

k
, 1
n�k

). Let bS1 and bS2 be
A’s estimate of the top k items S1 and the bottom n � k items S2, respectively. Choose constants c1, c2 and h0

such that h+ 1
2  c1h0, h+ 1

2  c2h0, and c1 + c2 < 1. Then

i) there exists an item b 2 {k � h0, . . . , k} such that P
h
b /2 bS1

i
 c1, and
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ii) there exists an item b0 2 {k + 1, . . . , k + 1 + h0} such that P
h
b0 2 bS1

i
 c2.

We use Lemma 3 from Kaufmann et al., which relates the expected number of comparisons to the uncertainty
between the actual distribution M and an alternative distribution M 0 about the events Ea := {a /2 bS1} and
Eb = {b /2 bS1}. Concretely, define the alternative matrix M 0 as

M 0
ij
=

8
>>><

>>>:

Mbj , i = a, j 2 [n] \ {a, b}
Mib, j = a, i 2 [n] \ {a, b}
1/2, i = a and j = b, or i = b and j = a

Mi,j , otherwise.

(36)

Since the algorithm A is invariant to permutations of the labels, by assumption, we have that PM 0 [Ea] = PM 0 [Eb],
since a and b have the same distribution under the distribution specified byM 0, and we assumeA to be symmetric.
Moreover, by construction of M 0, we have

nX

i=1

nX

j=i+1

E⌫ [Nij(⇠)] KL(Mij ,M
0
ij
) =

X

j /2{a,b}

EM [Naj(⇠)] KL(Maj ,Mbj) + EM [Nab(⇠)] KL(Maj , 1/2).

Applying Lemma 3 from Kaufmann et al. (see equation (29)) then yields
X

j /2{a,b}

EM [Naj(⇠)] KL(Maj ,Mbj) + EM [Nab(⇠)] KL(Maj , 1/2)

� max{d(P⌫ [Ea] ,P⌫0 [Ea]), d(P⌫ [Eb] ,P⌫0 [Eb])}
= max{d(P⌫ [Ea] ,P⌫0 [Ea]), d(P⌫ [Eb] ,P⌫0 [Ea])}
� min

p2[0,1]
max{d(P⌫ [Ea] , p), d(P⌫ [Eb] , p)}

� 2

3
⌘2, (37)

where the last inequality follows from Lemma 5 stated below, together with P
h
a /2 bS1

i
� P

h
b /2 bS1

i
� ⌘, which

follows from P
h
a /2 bS1

i
> c1 + ⌘ and P

h
b /2 bS1

i
 c1.

Lemma 5. For scalar pa, pb 2 [0, 1], let p̄ denote their average pa+pb

2 . Then,

d(pa, p̄) + d(pb, p̄) � min
p2[0,1]

max{d(pa, p), d(pb, p)} � 1

2
(d(pa, p̄) + d(pb, p̄)). (38)

Moreover, if pb � pa � ⌘, then

1

2
(d(pa, p̄) + d(pb, p̄)) �

2

3
⌘2. (39)

Case 2: Turning to the other case, suppose that P
h
a /2 bS1

i
 c1+⌘. Pick some other item b0 in {k+1, . . . , k+

1 + h0} obeying P
h
b0 /2 bS1

i
> 1 � c2, and note that Lemma 4 ensures that such an item exits. Using a line of

argument analogous to that above, we find that
X

j /2{a,b}

EM [Naj(⇠)] KL(Maj ,Mb0j) + EM [Nab(⇠)] KL(Maj , 1/2) �
2

3
⌘2. (40)

Here we used that Lemma 5 together with the lower bound P
h
a 2 bS1

i
� P

h
b0 2 bS1

i
� (1 � c1 � ⌘) � c2 = ⌘,

which in turn follows from the relations P
h
a /2 bS1

i
 c1 + ⌘, P

h
b0 /2 bS1

i
> 1� c2, and 1� c1 � c2 = 2⌘.

Combining inequalities (37) and (40) yields

max
b2{k�h0,...,k+1+h0}

8
<

:
X

j /2{a,b}

EM [Naj(⇠)] KL(Maj ,Mbj) + EM [Nab(⇠)] KL(Maj , 1/2)

9
=

; � 2

3
⌘2. (41)

Choosing h0 = 2(h+ q) and c1 = c2 = 1/2� ⌘ concludes the proof.



Approximate ranking from pairwise comparisons

6.3.1 Proof of Lemma 4

Since A is (h, �)-accurate, we have
X

i2S1

P
h
i /2 bS

i
 h+ �k  h+

1

2
 c1h

0,

where the last inequality holds by assumption. Thus, there are at most h0 many i 2 S1 with P
h
i /2 bS

i
� c1,

which implies that for at least k � h0 many items i 2 S1, we have that P
h
i /2 bS

i
 c1. This in turn implies that

there is at least one item b 2 {k � h0, . . . , k} obeying P
h
b /2 bS

i
 c1.

Likewise, assuming that A is (h, �)-accurate, we have
X

i2S2

P
h
i 2 bS

i
 h+ �(n� k)  h+

1

2
 c2h

0.

Then there exists at least one arm b0 2 {k + 1, . . . , k + 1 + h0} such that P
h
b0 2 bS1

i
 c2.

6.3.2 Proof of Lemma 5

We start with proving inequality (38). Observe that, since d(x, y) � 0, we have

min
p2[0,1]

(d(pa, p) + d(pb, p) � min
p2[0,1]

max{d(pa, p), d(pb, p)} � min
p2[0,1]

1

2
(d(pa, p) + d(pb, p)).

Hence, it su�ces to show that minp2[0,1]
1
2 (d(pa, p) + d(pb, p)) =

1
2 (d(pa, p̄) + d(pb, p̄)). To this end, define the

binary entropy H(q) := �q log q � (1� q) log(1� q). We then have

1

2
(d(pa, p) + d(pb, p)) = �1

2
(H(pa) +H(pb)) + p̄ log

1

p
+ (1� p̄) log

1

1� p

= �1

2
(H(pa) +H(pb)) +H(p̄) + p̄ log

p̄

p
+ (1� p̄) log

✓
1� p̄

1� p

◆

= �1

2
(H(pa) +H(pb)) +H(p̄) + d(p̄, p),

which is minimized by taking p = p̄, for which d(p̄, p̄) = 0. We can then expand

�H(p̄) =
pa + pb

2
log(p̄) +

✓
1� pa + pb

2

◆
log (1� p̄)

=
pa
2

log(p̄) +
1� pa

2
log(1� p̄) +

pb
2
log(p̄) +

1� pb
2

log(1� p̄).

Thus

�1

2
(H(pa) +H(pb)) +H(p̄) =

1

2
(�H(pa)� pa log(p̄)� (1� pa) log(1� p̄))

+
1

2
(�H(pb)� pb log(p̄)� (1� pb) log(1� p̄))

=
1

2
{d(pa, p̄) + d(pb, p̄)),

as needed.

We next prove inequality (39). We have

d(pa, p̄) = d

✓
pa,

pb � pa
2

+ pa

◆

� min
p2[0,1]

d(p, ⌘/2 + p) = d(1/2 + ⌘/4, 1/2� ⌘/4) =
⌘

2
log

✓
1/2 + ⌘/4

1/2� ⌘/4

◆

� ⌘

2

✓
1� 1/2� ⌘/4

1/2 + ⌘/4

◆
� 2

3
⌘2,



Reinhard Heckel, Max Simchowitz, Kannan Ramchandran, Martin J. Wainwright

where the second to last, and the last inequality follow from log x � 1 � 1/x and ⌘ 2 [0, 1], respectively. This
concludes the proof of inequality (39).

6.4 Proof of Theorem 3

The proof is analogous to that of the proof of Theorem 4 in Section 6.3, and only requires minor changes.
Specifically, we only need to show that for a given pairwise comparison matrix M 2 CPAR(�) \ CMmin , we can
construct an alternative matrix obeying equality (36), that lies in CPAR(�) \ CMmin as well.

Consider any parametric pairwise comparison matrix M 2 CPAR(�) \ CMmin . Then there exists a parameter
vector w 2 Rn such that Mij = �(wi � wj). For the items a, b 2 [n], in the proof of Theorem 4, define a set of
alternative parameters as

w0
i
:=

(
wb if i = a ,

wi otherwise.

Now let M 0 be the matrix with pairwise comparison probabilities M 0
ij
= �(w0

i
�w0

j
). Note that M 0 2 CPAR(�) \

CMmin , and observe that it obeys equality (36), as desired.

Thus, the proof of Theorem 4 yields that for any item a, when applied to a given pairwise comparison model
M 2 CPAR(�) \ CMmin , the algorithm A must make at least

2

3

✓
2q � 1

2h+ q

◆2.✓
max

b2{k�2(h+q),...,k+1+2(h+q)}
max

✓
max

j 6={a,b}
d(Maj ,Mbj), d(Mab, 1/2)

◆◆

 2

3

✓
2q � 1

2h+ q

◆2.✓ 2�2
max

Mmin�2
min

(⌧a � ⌧b)
2

◆

comparisons on average. Here, the last inequality follows from [Hec+16, Eq. (31)], which holds for any i 2 [n]:

d(Mia,M
0
ib
)  2�2

max

Mmin�2
min

(⌧a � ⌧b)
2. (42)

Moreover, we used that

d(Mab, 1/2) 
2�2

max

Mmin�2
min

(⌧a � ⌧b)
2, (43)

which follows along the lines as [Hec+16, Eq. (31)]. This concludes the proof.

A Proof of equation (9)

Equation (9) follows by upper bounding the terms in

Nup
h

(M) = eO
 

k�3hX

i=1

��2
i,k+1+3h +

nX

i=k+1+3h

��2
k�3h,i + 2(3h)��2

k�3h,k+1+3h

!
.

Specifically, if i1 < i2 and j2 > j1, then �i1,j1  �i1,j1 . Therefore, the terms above can be upper bounded by

k�3hX

i=1

��2
i,k+1+3h 

k�3hX

i=1

��2
i,k+1+2h,

nX

i=k+1+3h

��2
k�3h,i 

nX

i=k+1+3h

��2
k�2h,i,

and 2h��2
k�3h,k+1+3h 

k�2hX

i=k�3h+1

��2
i,k�2h+1 +

k�3hX

i=k+2h+1

��2
k�2h,i.


