
Cheap Checking for Cloud Computing:
Statistical Analysis via Annotated Data Streams

Graham Cormode Christopher Hickey
University of Warwick

Abstract

As the popularity of outsourced computation in-
creases, questions of accuracy and trust between
the client and the cloud computing services be-
come ever more relevant. Our work aims to pro-
vide fast and practical methods to verify anal-
ysis of large data sets, where the client’s com-
putation and memory costs are kept to a mini-
mum. Our verification protocols are based on
defining “proofs” which are easy to create and
check. These add only a small overhead to re-
porting the result of the computation itself. We
build up a series of protocols for elementary sta-
tistical methods, to create more complex proto-
cols for Ordinary Least Squares, Principal Com-
ponent Analysis and Linear Discriminant Analy-
sis, and show them to be very efficient in practice.

1 Introduction

The massive leap in popularity of machine learning tech-
niques can be attributed in part not simply to novel al-
gorithms, but also to dramatic increases in scale: much
larger models with many parameters to set optimally, and
much larger training data sets to determine these parame-
ters. However, this presents a challenge to data owners who
do not have a convenient data centre at their disposal. The
size of data and computational cost in order to extract ac-
curate models begins to look prohibitive. At the same time,
a potential answer has emerged, in the form of outsourced
computation. That is, instead of building the infrastructure
needed to store and analyse large quantities of data, compu-
tation can be ‘rented’ on demand. Initially cloud offerings
provided only the barebones of a remote system, but cur-
rent options provide many tools, libraries and algorithms
available to take “off the shelf”.

Proceedings of the 21st International Conference on Artificial
Intelligence and Statistics (AISTATS) 2018, Lanzarote, Spain.
PMLR: Volume 84. Copyright 2018 by the author(s).

One doubt remains. If we send data off to the cloud, and
request some analysis to be performed, what guarantee do
we get that the processing has been done to our satisfac-
tion? The provider has an economic incentive to cut cor-
ners: to perform the computation on only a sample of pro-
vided data, or to terminate an iterative parameter search
before convergence has occurred, for example. Such short
cuts yield plausible but suboptimal models. So how could
we be assured that the best model has been found, with-
out repeating the computation ourself or having multiple
providers repeat the work, substantially driving up costs?

In this paper, we adopt the Annotated Data Streams ap-
proach (Chakrabarti et al., 2009) for verifying the models
found by an outsourced provider Rather than repeating all
or some of the computation, we instead provide protocols
in which the cloud also provides some extra information
that allows us to check a strict adherence to the required
computation. The overhead for the cloud provider is min-
imal – often, the required information is a relatively low
cost function of the input data or natural by-products of
the target computation. These do not restrict the cloud to
use any particular implementation or algorithm; just that
they demonstrate that the output meets certain necessary
properties. The key part of these protocols is that the in-
formation required is very easy for the original data owner
to check, based on appropriately defined fingerprints of the
input. These fingerprints can be computed flexibly and in-
crementally from the input as it arrives in any order, so the
data owner does not even need to retain a complete copy
of the input. The overhead for the data owner is therefore
low: it is typically dominated by the cost of sending the
data to the cloud and receiving the output of the computa-
tion. If the data owner’s checks pass, then they are assured
that the computation has been performed by the cloud sat-
isfactorily, with a very high degree of certainty. One can
then think of these protocols as providing effective “check-
sums for computation”.

Work on annotated data streams draw on the theory of In-
teractive Proofs. This model was developed in the early
1990s as an alternate perspective on computational com-
plexity. An early celebrated result was that the set of com-
putations that could be effectively checked by a “weak”

Cheap Checking for Cloud Computing

verifier corresponded exactly to the powerful class of com-
putations that could be performed using polynomial space
(PSPACE) (Babai, 1985; Goldwasser and Sipser, 1986;
Shamir, 1992). Such results were initially thought to be of
purely theoretical interest. A decade ago, this topic was re-
visited from a perspective closer to our own: to what extent
could arbitrary programs be checked without fully repeat-
ing them (Goldwasser et al., 2008)? Several strong models
were proposed, allowing a large class of computations to be
checked in this way. However, the costs were still typically
large: programs have to be compiled into non-standard for-
mats (such as circuits with gates performing arithmetic op-
erations), and the overheads for the cloud can be very sub-
stantial, often hundreds or even millions of times slower
than directly performing the computation.

We break away from this paradigm, and achieve protocols
that have minimal overheads by deliberately narrowing the
scope of the computations considered. By focusing on a
collection of important tasks in machine learning based
on linear algebra, we can provide bespoke protocols based
on “fingerprinting” the input data that take advantage of
specific structure in the target problem. These problems
are of sufficient generality that our efforts are repaid. Af-
ter surveying prior work and providing a technical back-
ground (Section 2), we begin with primitives for ubiqui-
tous steps in data analysis: matrix multiplication and inver-
sion, Cholesky decomposition and eigenvalue finding (Sec-
tion 3). In Section 4, we present applications of these to
tasks of interest: regression, PCA, and LDA. These core
tasks are sufficient to show the power of this paradigm. We
provide empirical validation of our claims in Section 5.

This work represents some first steps in verifying out-
sourced computation of machine learning. The next steps
are to extend this work to more complex models and algo-
rithms currently enjoying popularity in machine learning,
such as deep learning and beyond. Since, at the risk of
drastic oversimplification, almost all of machine learning
can be performed via numerical data encodings (vectors,
matrices and tensors) combined with optimization, we are
optimistic that the foundations laid in this work will nat-
urally extend to further protocols for common mining and
modelling tasks.

2 Preliminaries

2.1 Annotated Data Stream Model

In our protocols, we have a data stream S, which is ob-
served by two parties, a “helper” (H) and a “verifier” (V).
The data stream will usually be arranged as a sequence of
n tuples of elements, where each tuple typically defines an
element of a larger structure, such as a matrix or vector.
Abstractly, the verifier wishes to compute some function
on S, f(S), with assistance from the helper. Typically, the

helper will provide the value of f(S), along with a proof
of its correctness. This yields the Annotated Data Stream
model, introduced by Chakrabarti et al. (2009). We formal-
ize the model via the definitions below.

Definition 1. We have a helper H , and a verifier V , with
the aim of cooperating to compute some function f(S) of
the stream S. The helper provides a message MH(S) com-
prised of ,f̂ , the claimed value f(S), and a proof PH which
supports this claim according to some pre-agreed structure.
The output of V based on the stream S, V ’s randomly cho-
sen bitsRV , and the helper’s message is

OutV (S,RV ,MH(S)) =

{
f̂ If V is convinced
⊥ Otherwise

A protocol is defined by the functions MH and OutV . We
say that a protocol is complete if

∃H : P[OutV (S,RV ,MH(S)) = f(S)] = 1 (1)

The Verifier’s protocol is sound if

∀H ′,S ′ : P
[
OutV (S ′,RV ,MH′(S ′)) /∈ {f(S ′),⊥}

]
≤ 1

3

Intuitively this says that we seek protocols so that an honest
helper (one who faithfully follows the protocol) can always
persuade the verifier to accept the correct answer, while a
dishonest helper cannot persuade the verifier to accept an
incorrect result with more than a constant probability. Our
protocols allow this probability to be reduced to an arbitrar-
ily small value with minimal cost.

In order to show an annotated data streaming protocol, we
need to show completeness and soundness. This is suffi-
cient to check that our protocol will successfully do what
we want: verify the computation with a high probability
of detecting a malicious helper. Trivial protocols always
exist wherein the helper’s message is null, and the verifier
evaluates the function in full. Consequently, we seek proto-
cols whose costs for the verifier are substantially lower than
this. Ideally, the protocol should run in sublinear memory
space for the verifier, without the need for intensive com-
putation and the message should be as small as possible.
Similarly, we seek protocols where the honest helper does
not have to do substantially more work than simply com-
puting f(S). Our focus in this paper are on the memory
space for the verifier, and the size of the proof, which we
call the communication cost.

Definition 2. A (h,v)-protocol is a valid annotated data
streaming protocol using a message of sizeO(h), andO(v)
space cost for the verifier.

2.2 Fingerprint techniques

To build up complete protocols for the statistical methods,
we start with fingerprinting, which provides equality tests
on which our subsequent protocols rely.

Graham Cormode, Christopher Hickey

Finite Fields. In line with prior work, all our protocols rely
on computations performed over finite fields. For ease of
implementation, we use prime fields. Given a prime q, the
finite (prime) field Fq is the set {0 . . . q − 1} with addition
and multiplication modulo q. Hence, storing field values re-
quires O(log q) bits. We make use of the fact that in many
cases arithmetic in the field and arithmetic over the integers
is in exact correspondence. However, as we consider more
complicated computations, we encounter situations where
we seek solutions over the reals, which do not correspond
to solutions in the field. To avoid this, we will use scaling
and rounding techniques to approximate using field values.
Specifically, we consider the input to be fixed precision ra-
tional numbers which can be represented as members of
the set Fρ,M = {x ∈ R ∩ [−M,M] : bρx ∈ Z}, with
respect to a base, b. We then choose the field size q as a
function of ρ and M , in order to allow us to maintain the
exact correspondence between the field and the fixed pre-
cision rationals. We map y ∈ Fρ,M to y′ ∈ Fq , where
y′ = mod (xbρ, q), choosing q to be a prime bigger than
(2M + 1)bρ.

Fingerprints. Most of the values stored by our verifier will
be fingerprints of large objects, such as vectors or matri-
ces. Fingerprints (based on randomly chosen seeds x) have
the property that if two fingerprints agree, then with high
probability the objects that gave rise to the fingerprints are
identical.

Definition 3 (Matrix fingerprint). For A ∈ Fn×mq , the ma-
trix fingerprint of A is fmat

x (A) with x ∈R Fq and

fmat
x (A) =

∑n−1
i=0

∑m−1
j=0 Aijx

in+j

From the Schwartz-Zippel Lemma (Shamir, 1992), we
have that for a randomly chosen x ∈ Fq , given A,B ∈
Fn×mq , if A 6= B, then Pr[fx(A) = fx(B)] ≤ nm−1

q .
Therefore for sufficently large q (say, greater than 3nm)
we will always have soundness and completeness for ver-
ifying equality with fingerprints. We can view vectors as
a special case of matrices, so similarly for vectors u ∈ Fq
we use the notation fvecx (u) =

∑n−1
i=0 uix

i to denote a vec-
tor fingerprint. Fingerprints have several useful properties,
such as linearity, with fx(A+B) = fx(A) + fx(B).

2.3 Related Work

We briefly survey the most related work in this area.
Chakrabarti et al. (Chakrabarti et al., 2009) introduced the
annotated streams model and provided protocols for fre-
quency moments in data streams, and several graph prob-
lems, including triangle counting, connectivity and bipar-
tite matchings. They also introduced a square matrix mul-
tiplication protocol built extending the classical result of
Freivalds (1979). Subsequently, Cormode et al. (2013) pro-
vided further protocols for graph problems, using linear
and integer programs to validate optimal matchings and

shortest paths. More recently, Daruki et al. (2015) extended
results on matrix analysis, provided more general protocols
for matrix multiplication, and a protocol for eigenvalue (but
not eigenpair) checking. For matrices A ∈ Fk×nq and B ∈
Fn×k′q , they show an (kk′h log(q), v log(q))−protocol,
where hv ≥ n. These protocols are used to perform
shape fitting and clustering, although they shift away from
annotated data streams and towards an interactive proof
model which allows several exchanges of messages be-
tween helper and verifier. The annotated data stream model
is generalized by definitions of streaming interactive proofs
(SIPs) (Cormode et al., 2011, 2012). Note that annotated
data stream verification protocols can be considered as sin-
gle message SIPs.

3 Linear Algebraic Checks

In this section, we define protocols for checking a variety
of linear algebraic primitives, based on careful use of fin-
gerprints. We use the notation A→i to denote the ith row of
the matrix A, and A↓i to denote the ith column of A.

3.1 Fingerprinting the Gramian Matrix

We first show how to efficiently build a fingerprint of the
Gramian matrix G = ATA given a stream that specifies A.

Lemma 1. For A ∈ Fn×mq ,

fmat
x (ATA) =

∑n
i=1 f

vec
xm (A→i)fvecx (A→i)

Proof. Given p, q ∈ Fmq ,
fmat
x (p⊗ q) =

∑m−1
i=0

∑m−1
j=0 piqjx

im+j

=
∑m−1
i=0 pix

im
∑m−1
j=0 qjx

j

= fvecxm (p)fvecx (q)

,

Using the outer product definition of matrix multiplication;
fmat
x (ATA) =

∑n−1
i=0 f

mat
x

((
(AT)↓i

)
(A→i)

)
=
∑n−1
i=0 f

vec
xm (A→i)fvecx (A→i)

Hence, we can compute the fingerprint of ATA from A
row-by-row and summing the product of row vector finger-
prints. This immediately implies a protocol to verify that
a matrix G provided by H is the Gramian: simply use the
above identity to compute fx(ATA) from the stream, and
check that this is equal to fx(G). Soundness and complete-
ness follow immediately from properties of fingerprints in
Section 2.2, and the cost is O(m2 log q) communication to
specify G, while the verifier can maintain the needed fin-
gerprints in space O(log q).

3.2 Matrix Multiplication

We generalize the previous protocol to solve matrix multi-
plication. Given two matrices, A ∈ Fk×nq and B ∈ Fn×k′q ,

Cheap Checking for Cloud Computing

a similar proof to Lemma 1 shows

fmat
x (AB) =

n−1∑
i=0

fvec
xk′ (A↓i)f

vec
x (B→i) (2)

Equation (2) allows for an efficient matrix multiplication
protocol, where the main work of the helper is to repeat the
input matrices in a convenient order. To find the fingerprint
of AB we need to see each column of A and row of B in-
terleaved in order, i.e. MH = 〈Ã↓0, B̃→0 , ..., Ã

↓
n−1, B̃

→
n−1〉.

The verifier uses fingerprints to check that the reordered
versions of A and B agree with the versions present in the
stream S , and that the claimed matrix product C has the
same fingerprint as the fingerprint computed via (2).

Theorem 1. There is a (max(k′k, kn, k′n) log(q),
log(q))-protocol for verifying matrix multiplication with
A ∈ Fk×nq , B ∈ Fn×k′q .

Soundness and completeness are again immediate from the
properties of fingerprints. The verifier keeps a constant
number of fingerprints in space O(log(q)), and the com-
munication cost of O(max(k′k, kn, k′n) log(q)) is due to
sending each of A, B and AB.

Matrix multiplication has been considered in prior work
on annotated streaming. Daruki et al. (2015) showed that
any protocol for this problem must have the product of the
communication cost and space cost at least Ω((k + k′)n).
Our protocol achieves this lower bound up to logarithmic
factors (noting that any protocol which reports (AB) re-
quires Ω(kk′) communication for this step). The previous
best rectangular matrix multiplication protocol, achieved
by Daruki et al. (2015), was a

(
kk′h log(q), v log(q)

)
-

protocol with hv ≥ n, that used the inner product proto-
col of Chakrabarti et al. (2009). Our protocol can be un-
derstood as setting v = 1, but removing the high overhead
factor of n from the communication cost in this case. When
our input matrices are constituted of fixed precision ratio-
nals, we choose q as follows:

Corollary 1. Given A ∈ Fk×nρ,M and B ∈ Fn×k
′

ρ,M , the ma-
trix AB is in Fn×n2ρ,nM2 , and we choose q > n(2M +1)222ρ

so that the product can be represented exactly in the field.

Choosing q to be this large means that when we move
A and B from Fρ,M to Ã, B̃ ∈ Fq by multiplying by
2ρ, and then compute ÃB̃ all these values remain in Fq ,
and by scaling back down by 22ρ we get our result in
the desired format, without wraparound or rounding er-
rors. The memory required to store elements of Fq is
log(q) = O(log(M) + log(b)ρ), which is proportional to
the space required to store the original matrices in Fρ,M is
log(M) + log(b)ρ.

Lower bounds on computing matrix fingerprints. The
verifier needs very little memory for the above protocol,
since the matrix is provided in a convenient order. More

generally, we would like to be able to find fmat
x (AB) from

just fmat
x (A) and fmat

x (B), without requiring the helper to
repeat these. This would reduce communication and sim-
plify the protocol; however, we show this is not possible.

Theorem 2. Any function g with fmat
x (AB) = g(fmat

x (A),
fmat
x (B)) forA,B ∈ Fn×nq requires that fingerprints fmat

x

are at least Ω(n) bits in size.

Proof. We make use of a hard problem from communica-
tion complexity to show the space lower bound. In the DIS-
JOINTNESS problem, two players Alice and Bob each have
a bit string, a, b ∈ {0, 1}n, and they wish to see whether
for any i ∈ [n] they have ai = bi = 1. If we had a func-
tion fmat

x : Fn×nq → Fq they could create n × n matrices
A and B with a and b on the diagonals and 0’s elsewhere.
Then Alice could send Bob fmat

x (A), Bob could compute
fmat
x (B), and then find fmat

x (AB) using g.Observe that
AB = 0 iff strings a and b are disjoint, and is non-zero
otherwise. So by comparing fmat

x (AB) to fmat
x (0), we

can determine the answer to the disjointness problem. The
fingerprints must be at least Ω(n) bits from the correspond-
ing communication complexity of DISJOINTNESS (Håstad
and Wigderson, 2007).

3.3 Eigenvalue Check

For the subsequent problems, we need to apply scaling and
rounding, as mentioned earlier. There is a tension here,
since matrix computations can include values which are
very large compared to the input values. We also need to
ensure that our approximation tolerance always allows an
honest helper to find a satisfying answer, but prevents a dis-
honest helper from getting a wildly wrong answer accepted.

We first work with (approximate) eigenvectors and eigen-
values of a symmetric matrix, i.e. a matrix such that
∀i, j. Aij = Aji. We wish to find pairs (λi, vi) over the
reals, for all i ∈ [n], such that A acts on each of the vec-
tors by only scaling them by λi and that the vectors are
orthonormal, i.e.

Avi = λivi vTi vj = δij =

{
0 i 6= j

1 i = j

Mapping these eigenpairs to the finite field can be deli-
cate, since they may not align with coordinates in the field.
Our protocol relies on a scaling factor T , which is used
to multiply up values from the original domain. The field
size q must grow by a corresponding factor to accommo-
date the large range of values. To tolerate this, we relax
to allow approximate eigenvectors as defined below. We
first show that rounding to the scaled field FTq is always
possible. Consider a particular eigenvector vi, and write
v̂i = Tvi + r, with rj ∈

[
− 1

2 ,
1
2

]
, and λ̂i = Tλi + ρ,

where ρ ∈
[
− 1

2 ,
1
2

]
. The following theorem shows that this

“rounded” eigenpair acts like the original eigenpair. Proofs
for Theorem 3 and 4 are in the supplementary material.

Graham Cormode, Christopher Hickey

Theorem 3. For symmetric A ∈ Fn×nq if (λi, vi), for all
i ∈ [n] are the eigenpairs of A and v̂i = Tvi + r, with
r ∈

[
− 1

2 ,
1
2

]n
, λ̂i = Tλi + ρ for ρ ∈

[
− 1

2 ,
1
2

]
, then (in R)

|TAv̂i − λ̂iv̂i| ≤
⌈
Tn‖A‖F +

T
√
n

2
+
n

4

⌉
|v̂iT v̂j − T 2δij | ≤

⌈
T
√
n+

n

4

⌉
These bounds show how the error scales with the rounding
factor T . To better interpret this, we next show that this
error can be made arbitrarily small by increasing T .

Theorem 4. If we have

|TAv̂i − λ̂iv̂i| ≤
⌈
Tn‖A‖F +

T
√
n

2
+
n

4

⌉
|v̂iT v̂j − T 2δij | ≤

⌈
T
√
n+

n

4

⌉
Then we have (in R)

|Tλi − λ̂i|
T

≤ 2n
√
n‖A‖F
T

+
n

T
+
n
√
n

2T 2
:= EA,n(T)

and EA,n(T)→ 0 as T →∞

This means that if we want to find eigenvalues within cer-
tain error, we simply have to check that the bounds of The-
orem 4 hold, using a T ∗ satisfying As ‖A‖F = Ω(1),

this expression is O(n
3/2‖A‖F
T). Hence it suffices to pick

T = O(n3/2‖A‖F /ε).

Theorem 5. There is an annotated steaming(
n2 log

(
qn

3
2 ‖A‖F /ε

)
, log

(
qn

3
2 ‖A‖F /ε

))
−protocol

for finding the eigenvalues of a symmetric matrix
A ∈ Fn×nq to a precision of ε > 0.

Proof. The protocol is relatively straightforward. The ver-
ifier can compute ‖A‖F and a fingerprint of A as the in-
put is received. The helper provides the claimed matrix
of (approximate) eigenvectors V and corresponding eigen-
values D We then make use of the matrix multiplication
protocol to compute (TA − D)V . If the eigenvectors
were exact, this would be 0; since they are approximate,
we allow each entry in the result matrix to be at most⌈
Tn‖A‖F + 1

2T
√
n+ 1

4n
⌉

(computed over the reals and
rounded to the finite field), and can verify that each entry
of the product satisfies this bound. We also need to check
that the eigenvectors are (almost) orthogonal, that is that
each entry of (V TV −T 2I) is at most

⌈
T
√
n+ 1

4n
⌉
. Thus

we need two invocations of the matrix multiplication proto-
col, evaluated over a sufficiently large finite field. Setting T
according to the above bounds gives the claimed costs.

Once again, we consider the consequences of our input be-
ing A ∈ Fn×nρ,M , and choose the value of q as follows

Corollary 2. Given A ∈ Fn×nρ,M and desired precision
ε, our matrices V and D are in Fn×n2ρ′,nM2 , where ρ′ =

max{ρ,− log ε}. Therefore, to keep a direct correspon-
dence between verification done in the field, and our real
values, we choose q > n2(2M + 1)222ρ

′
.

This value of q is determined by the matrix multiplication
step, and the fact that the largest possible eigenvalue of A
is bounded by n||A||max, where ||A||max is M .

3.4 Matrix Inversion

For matrix inversion we again scale the field by a factor
T . Over this expanded field, given an n × n matrix A, we
want to find a matrix B such that AB = TI . To allow for
rounding, we can relax the requirement of exact equality,
and instead seek a matrix B that acts approximately like an
inverse. We first show that such a matrix is guaranteed to
exist.

Lemma 2. For an invertible A ∈ Fn×nq , we can find a
matrix B ∈ Fn×nqT satisfying

||AB − TI||max ≤ Tε (3)

if T ≥ n2||A||max

2ε and ε > 0

Proof. Consider the true inverse ofA,A−1, computed over
the reals. Then we can find B = TA−1 + E so that
B ∈ Zn×n and ∀i, j.|Ei,j | ≤ 1

2 . We can then map the
entries of B directly into the field FTq. We then have

‖AB − TI‖max ≤ ‖AE‖2 ≤ 1
2n

2‖A‖max

That is, the error is at most n
2‖A‖max

2T . We can set the pa-
rameter T to be as large as needed to make this error value
some small ε at quite modest cost: the field values are rep-
resented using O(log n+ log ‖A‖max + log 1/ε) bits.

Theorem 6. There is a streaming interactive(
n2 log(n||A||maxq/ε), log(n||A||maxq/ε)

)
-protocol

to invert an invertible matrix A ∈ Fn×nq with the above
criteria, (3).

Proof. The protocol is based on the above Lemma: we
require the helper to provide such a matrix B under the
extended field FTq, along with the claimed value of AB.
We then run the above protocol for matrix multiplica-
tion, and check that each entry of AB meets the re-
quired size bound. This ensures that the required con-
dition on entries is met. The cost of storing the fin-
gerprints is O(log(n‖A‖maxq/ε)), and the communica-
tion costs come from sending B over FTq, which is
O(n2 log(n‖A‖maxq/ε)).

In the case that the matrix is singular, the helper could
demonstrate this by showing that there is an eigenvalue of
A that is 0 to our precision.

Cheap Checking for Cloud Computing

Ensuring that everything is representable within finite pre-
cision is a little more involved, since A−1 can contain very
large values, depending on the condition number κ(A) =
||A−1||2 · ||A||2. Since ||A||2 ≥ ||A||max, we see that

κ(A) = ||A||2||A−1||2 ≥ ||A||max||A−1||max

So, given a bound on κ(A), we choose a field large enough
to represent κ(A)

||A||max
≥ ||A−1||max.

3.5 Cholesky Decomposition

If we have a positive semi-definite matrix A ∈ Fn×nq , the
Cholesky Decomposition of A involves finding a lower tri-
angular matrix L ∈ Rn×n, with A = LLT . As before, we
seek an approximate answer, L̂ ∈ Fn×nqT .

Theorem 7. Given a positive semi-definite matrix A ∈
Fn×nq , and T ≥ 2n‖A‖F

ε there is an annotated steam-
ing (n2 log(qn‖A‖F /ε), log(qn‖A‖F /ε))-protocol to find
L̂ ∈ Fn×nqT satisfying

||L̂L̂T − T 2A||max ≤ T 2ε

Proof. The protocol has the helper provide L̂ ∈ Rn×n in
order, and the helper executes the matrix multiplication
protocol. It is straightforward to check that L̂ is lower
triangular as it is presented. For a L̂ = TL + E with
Ei,j ∈

[
− 1

2 ,
1
2

]
, we have

‖L̂L̂T − T 2A‖max ≤ ‖TLET + TELT + EET ‖2
≤ 2T‖L‖2‖E‖2 + ‖E‖22
≤ Tn‖A‖F + n2

4

So we have an error ε at most n‖A‖F
T + n2

4T 2 . Picking
T ≥ 2n‖A‖F /ε suffices for any given ε (since ‖A‖F ≥
1). Via the matrix multiplication protocol, we just check
||L̂L̂T − T 2A||max ≤ T 2ε. The resulting protocol has
communication cost n2 log(qn‖A‖Fε) and memory cost of
log(qn‖A‖Fε), as claimed.

3.6 Symmetric Generalised Eigenvalues

The Cholesky Decomposition allows us to solve the sym-
metric generalised eigenvalue problem for A,B ∈ Fn×nq ,
withA symmetric, andB symmetric positive semi-definite:

Find V,D ∈ Rn×n such that AV = BVD

We do this by finding the Cholesky Decomposition of
B, L and then finding the eigenvalues of the symmetric
matrix C = L−1A(L−1)T to get matrices V ′, D′ with
CV ′ = V ′D′. The solutions we want are D = D′, and
V = L−1V ′.

Theorem 8. There is a streaming annotated (n2 log(qT),
log(qT))-protocol with T = q2n4/ε for verifying V̂ , D̂ ∈
Fn×nqT approximately solving the generalised eigenvalue

problem for A ∈ Fn×nq symmetric, and B ∈ Fn×nq sym-
metric positive semi-definite:

AV = BVD
with ε the maximum absolute error between D̂ and D.

The proof of Theorem 8 can be found in the supplementary
materials.

4 Statistical Analysis

With the primitives outlined above, we can construct pro-
tocols for several common statistical analysis tasks.

4.1 Ordinary Least Squares

We first consider ordinary least squares regression (OLS),
where we aim to find the optimal linear relationship be-
tween a data set X and a set of observations y.

Definition 4. Let S = 〈{y1, X1}, ..., {yn, Xn}〉 where
yi ∈ Fq is an observation of the set of d predictors Xi ∈
Fdq . If we defineX ∈ Fn×d+1

q with the i’th row being [1Xi],
OLS involves finding the linear relationship y = Xβ + ε
with ε ∈ Rn and β ∈ Rd+1 minimizing

∑n
i=1 ε

2
i .

The OLS problem is solved with the Moore-Penrose
pseudo inverse,

(
XTX

)−1
XT . The optimal β is then(

XTX
)−1

XT y. This leads directly to a protocol where
the helper provides a β which is claimed to be optimal

Theorem 9. There is an annotated streaming(
max{(d+ 1)2, (d+ 1)n} log(q), log(q)

)
-protocol

for OLS for X ∈ Fn×d+1
q , y ∈ Fnq as above.

Proof. The algorithm requires two applications of our ma-
trix multiplication protocol to check that the β provided
satisfies (XTX)β = XT y. This avoids explicitly in-
verting XTX . Via Theorem 1, the costs for XT y are
((d+ 1)n, 1) and for (XTX)β are

(
(d+ 1)2, 1

)
. Our to-

tal communication and space costs for OLS will therefore
beO

(
max{(d+ 1)2, (d+ 1)n} log(q)

)
andO(log(q)) re-

spectively. As XTX , XT and y are in Fq , we can find a
β ∈ Fq and perform an exact equality check.

4.2 Principal Component Analysis

Given a large data matrix S ∈ Fn×dq where Sij repre-
sents the jth observation of the ith variable, PCA finds
the principal components of the data, which can be used
for dimensionality reduction or classification. PCA max-
imises the variation captured by successive vectors in Rn,
i.e. var

(
vT1 S

)
≥ var

(
vT2 S

)
≥ ... ≥ var

(
vTnS

)
, with each

λi = var
(
vTi S

)
maximised with respect to λj , ∀j < i.

These vi are the principal components and we can perform
dimensionality reduction on S by choosing the k columns
of V = [v1, ..., vn] corresponding to the k largest λi and

Graham Cormode, Christopher Hickey

forming V T1...kS = S′ ∈ Fn×kq . This is equivalent to find-
ing vectors corresponding to approximate eigenvalues of
the covariance matrix of S.

Definition 5. For a data set S ∈ Fn×d, the Covariance
Matrix of S is

Cov(S)ij = 1
n−1

∑d
k=1

(
Sik − E[S↓i]

)(
Sjk − E[S↓j]

)
Using the above protocols to check matrix multiplication
and approximate eigenvectors (Sections 3.2 and 3.3), we
can check PCA results to any desired precision ε > 0 with
the costs stated in the following theorem.

Theorem 10. Given S ∈ Fn×dq and ε > 0, there is a
(d2 log(qnd‖S‖F /ε), log(qnd‖S‖F /ε))-protocol for ver-
ifying that PCA has been done to the desired precision.

Proof. We have a primitive for producing STS whilst
streaming S, and we can adapt this to generate the covari-
ance matrix of S (scaled by n − 1 to be in the field). This
method can be found in the supplementary material and
is a (d2 log(qn), log(qn))−protocol. This algorithm al-
lows us to have a (d2 log(qnd‖S‖F /ε), log(qnd‖S‖F /ε))-
protocol for PCA.

We use the approximate eigenvalue check (Section 3.3)
with scaling factor T = O(n3/2‖S‖2F /ε) to ensure that
V has the necessary properties, i.e. is almost orthogo-
nal, and each claimed eigenvector acts on the covariance
matrix as an approximate stretch. Each principal com-
ponent vi corresponds to var(v̂Ti S) = λ̂i and therefore
| var(v̂Ti S) − Tλi| ≤ Tε, allowing us to reduce the di-
mensionality of S, confident of how much variance we are
removing with each principal component. Soundness and
correctness then follow from the invoked protocols.

4.3 Fisher Linear Discriminant Analysis

In Linear Discriminant Analysis (LDA), we again have a
large data matrix S ∈ Fn×dq , with Sij representing the jth
observation of the ith variable, however, we also have a
classification for each observation, ωm for m ∈ [k], where
we have k classes. The aim is to do dimensionality reduc-
tion, as in PCA, while maximizing the class discriminatory
information between the classes in the reduced dimension.

If we have k classes, we wish to transform S to a new set
S′ ∈ Fn×k−1q , i.e. S′ = WTS where W ∈ Fd×k−1q is a
matrix projecting S to S′ and S′ has the maximum Fisher
linear discriminant J(W) = det(WTSBW)

det(WTSWW)
where we have

Within-class scatter SW =
∑k
i=1 Cov(Si)

Between-class scatter SB =
∑k
i=1 ni(µi − µ)(µi − µ)T

We first treat the two-class case, then generalize to k classes.

4.3.1 Two Classes

To find w ∈ Fdq we split S into two matrices, S1 ∈ Fn1×d
q

holding the observations in class 1 with average µ1 ∈ Fn1
q ,

and S2 ∈ Fn2×d
q for the observations in class 2 with aver-

age µ2 ∈ Fn2
q . Then our two scatter matrices are:

SW = Cov(S1)+Cov(S2) and SB = (µ1−µ2)(µ1−µ2)T

To ensure that we can easily represent elements in the finite
field, we actually find the (scaled-up) matrices (n1n2)SW
and (n1n2)SB . We wish to maximise the function J(w) =
wTSBw
wTSWw

. As such, these rescalings do not affect the result.
Using the KKT conditions, we can shift the optimisation
problem above to solving SBw = λSWw, for some λ.
Theorem 11. There is a (dn log(nq), log(nq))−protocol
for verifying LDA with 2 classes on S ∈ Fn×dq .

Proof. We can simplify SBw = λSWw for 2 classes, since
for all vectors v ∈ Rd;

SBv = (µ1 − µ2)(µ1 − µ2)T v

As α = (µ1 − µ2)T v is just a scalar, SBv points in the
direction of (µ1 − µ2). Hence we get that SBw = λSWw
is equivalent to α(µ1 − µ2) = λSWw. To verify we
have been sent the correct w, all we need do is check that
SWw = (µ1−µ2), and our result will lie in the (scaled-up)
field, since all the scalars and vectors involved do, and so
we can check this with a simple implementation of matrix
multiplication protocol and covariance (Gramian) finger-
printing (Sections 3.1 and 3.2). The helper just has to send
S, making the communication cost O (nd log(qn)). The
memory space is O (log(qn)), where we have log(qn) due
to the scaling of the scatter matrices. Completeness and
Soundness follow from Theorem 1.

4.3.2 k Classes

With k classes, we now need to find a matrixW ∈ Fd×k−1q .
We still want to maximise the ratio between the between-
class and within-class scatter, J(W). The simplification
to an eigenvalue problem is more complex here, but from
Devijver and Kittler (1982) we see it reduces to finding (at
most) k− 1 eigenvectors with non-zero real eigenvalues of
the matrix S−1W SB .

ConsiderA,B ∈ Fn×nq , withA symmetric, andB symmet-
ric positive semi-definite (psd) the task is to find V,D ∈
Rn×n such that AV = BVD where A = SB and B =
SW . SW is psd since it is the sum of psd matrices, so we
can apply the Symmetric Generalised Eigenvalue Method.
Theorem 12. There is a (dn log(qd/ε), log(qd/ε))-
protocol for verifying LDA with k classes on S ∈ Fn×dq .

Proof. We stream in and fingerprint S, which then al-
lows us to receive in the data class by class to build up

Cheap Checking for Cloud Computing

0 2 4 6 8

·106

0.5

1

1.5

·10−2

nk2

Ti
m

e(
s)

Manual
Verifying

(a) Matrix Multiplication of A ∈ Fk×n
q

and B ∈ Fn×k
q and 500 runs per test, for

n and k from 10 to 200.

200 400 600 800 1,000
0

2

4

Dimension, n

Ti
m

e(
s)

Manual
Verifying

(b) Eigen-decomposition of symmetric
A ∈ Fn×n

q with ε = 0.01 and 150 runs
per test.

200 400 600 800
0

0.5

1

1.5

2

Dimension, n

Ti
m

e(
s)

Manual
Verifying

(c) Matrix Inversion of A ∈ Fn×n
q

where ε = 1
2

and 100 runs per test.

Figure 1: Experimental Results, with time taken for self computation (blue dots), and for verification (red squares).

the scatter matrices, with this we then use the method
in Section 3.6 to find V̂ and D̂ with error ε. This is a(
d2 log(qd/ε), log(qd/ε)

)
-protocol, note however that we

are only interested in columns of V̂ corresponding to non-
zero eigenvalues. We can use these get our r ≤ k − 1
vectors to form W and compute WTS using the matrix
multiplication protocol to get the desired result. Our to-
tal protocol will therefore be (dn log(nqd/ε), log(nqd/ε))
from constructing our scatter matrices.

5 Practical Results

We performed a series of experiments with a field size
of q = 231 − 1, using implementations in C of our
protocols for matrix multiplication, inversion, and eigen-
decomposition. We used a machine with an Intel i7
processor and 16 GB of memory. We worked on matrices
up to 1000 by 1000, as this allowed us to get a distinguish-
ing result between the verifier running the computation
and the verifier using our checking protocols. We used
the GNU Scientfic Library for C, using gsl blas dgemm
for matrix multiplication, gsl linalg LU invert to find the
inverse and gsl eigen symm for the eigen-decomposition.
The verification was done on the result produced by the
self-computation. We created dense random matrices
with entries drawn uniformly. Note that our protocols do
not depend on any structure in the matrices, so uniform
random data suffices to test them. Where we require
symmetric matrices, we set Aij = Aji ∀i < j.

Our verification protocols were built as discussed in the
paper, with the time taken to find the fingerprints of all
relevant matrices and check the necessary bounds being
the verification time seen in Figure 1. We tested the veri-
fication protocols against a variety of incorrect matrices,
which were successfully rejected. The memory costs for
our verification, even in the case of A ∈ F1000×1000

q was

only a few hundred bytes, a significant reduction over
self computation, which would be in the order of several
megabytes. The communication cost is the cost of sending
the matrix, simply the size of the matrix multiplied by
a small constant. Consequently, the main aim of our
experiments is to quantify the potential timing gains of
verification over self-computation.

For our matrix multiplication protocol (Figure 1a), we con-
sider the number of scalar multiplications required to find
the result of multiplying A ∈ Fk×nq and B ∈ Fn×kq , that is,
k2n. When we plot the time taken against k2n, we see the
expected linear relationship between self-computation and
time taken. The verifier needs to compute the fingerprint
of A, B, which will involve nk multiplications, and AB,
which involves k2 multiplications. This agrees with the
observation in the graph; that the self-computation time is
linear, and the verification time is sublinear.

In both matrix inversion (Figure 1b) and eigen-
decomposition (Figure 1c), we see the expected cubic
increases in running time for self-computation, with a
significantly lower increase for the verification. The
verification running time depends primarily on the O(n2)
cost of computing the needed fingerprints, as above, and as
such, we see the asymptotically shallower lower curve.

6 Concluding Remarks

We have introduced effective protocols for checking mod-
els generated by common tasks, such as Ordinary Least
Squares, Principal Components Analysis and Linear Dis-
criminant Analysis. Natural next steps are to study more
complex models, such as Support Vector Machines, and
(initially shallow but ultimately deep) neural networks,
which have high training costs but could be cheap to verify.

Acknowledgements. This work is supported by European
Research Council grant ERC-2014-CoG 647557.

Graham Cormode, Christopher Hickey

References
László Babai. Trading group theory for randomness. In

Proceedings of the seventeenth annual ACM symposium
on Theory of computing, pages 421–429. ACM, 1985.

Amit Chakrabarti, Graham Cormode, and Andrew Mcgre-
gor. Annotations in data streams. Automata, Languages
and Programming, pages 222–234, 2009.

Graham Cormode, Justin Thaler, and Ke Yi. Verifying
computations with streaming interactive proofs. Pro-
ceedings of the VLDB Endowment, 5(1):25–36, 2011.

Graham Cormode, Michael Mitzenmacher, and Justin
Thaler. Practical verified computation with streaming
interactive proofs. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, pages 90–
112. ACM, 2012.

Graham Cormode, Michael Mitzenmacher, and Justin
Thaler. Streaming graph computations with a helpful ad-
visor. Algorithmica, 65(2):409–442, 2013.

Samira Daruki, Justin Thaler, and Suresh Venkatasubra-
manian. Streaming verification in data analysis. In In-
ternational Symposium on Algorithms and Computation,
pages 715–726. Springer, 2015.

Pierre A Devijver and Josef Kittler. Pattern recognition: A
statistical approach. Prentice hall, 1982.

Rūsiņš Freivalds. Fast probabilistic algorithms. Mathe-
matical Foundations of Computer Science 1979, pages
57–69, 1979.

Shafi Goldwasser and Michael Sipser. Private coins versus
public coins in interactive proof systems. In Proceedings
of the eighteenth annual ACM symposium on Theory of
computing, pages 59–68. ACM, 1986.

Shafi Goldwasser, Yael Tauman Kalai, and Guy N Roth-
blum. Delegating computation: interactive proofs for
muggles. In Proceedings of the fortieth annual ACM
symposium on Theory of computing, pages 113–122.
ACM, 2008.

Johan Håstad and Avi Wigderson. The randomized com-
munication complexity of set disjointness. Theory of
Computing, 3(1):211–219, 2007.

Adi Shamir. IP=PSPACE. Journal of the ACM (JACM), 39
(4):869–877, 1992.

	Introduction
	Preliminaries
	Annotated Data Stream Model
	Fingerprint techniques
	Related Work

	Linear Algebraic Checks
	Fingerprinting the Gramian Matrix
	Matrix Multiplication
	Eigenvalue Check
	Matrix Inversion
	Cholesky Decomposition
	Symmetric Generalised Eigenvalues

	Statistical Analysis
	Ordinary Least Squares
	Principal Component Analysis
	Fisher Linear Discriminant Analysis
	Two Classes
	k Classes

	Practical Results
	Concluding Remarks

