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Abstract

We propose an efficient dual augmented La-
grangian formulation to learn conditional ran-
dom fields (CRF). Our algorithm, which can
be interpreted as an inexact gradient descent
algorithm on the multiplier, does not require
to perform global inference iteratively, and
requires only a fixed number of stochastic
clique-wise updates at each epoch to obtain a
sufficiently good estimate of the gradient w.r.t.
the Lagrange multipliers. We prove that the
proposed algorithm enjoys global linear con-
vergence for both the primal and the dual
objectives. Our experiments show that the
proposed algorithm outperforms state-of-the-
art baselines in terms of speed of convergence.

1 Introduction

Learning in graphical models has historically relied
on the computation of the (sub)gradient of the log-
likelihood w.r.t. to the canonical parameters, which
requires to solve a MAP or probabilistic inference prob-
lem at each iteration. This approach is slow given
that the inference problem is itself computationally
expensive. The difficulty of inference and learning in
graphical models is related to the fact that the log-
partition function is in general intractable.

Recent progress on the optimization problems whose
objective is a large finite sum of convex terms has
shown that they could be optimized very efficiently by
stochastic algorithms that sample one term at a time
(Defazio et al., 2014; Roux et al., 2012; Shalev-Shwartz
and Zhang, 2016). It turns out that the dual objective
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of the maximum likelihood estimation of CRF (a.k.a.
the maximum entropy principle) decomposes additively
over all cliques if a decomposable entropy surrogate is
used. Even though this dual formulation has a potential
to take advantage of stochastic algorithms, and can be
optimized without resorting to solve a global inference
on the entire graph per iteration, all dual parameters
(i.e. mean parameters) are coupled by the marginal
polytope constraints, which are in general intractable.
Even its most commonly used relaxation, namely the
local consistency polytope, is itself in practice difficult
to optimize over. Recently, Meshi et al. (2015a,b)
proposed to replace the marginalization constraints,
which are part of the local consistency polytope, by
quadratic penalty terms. The relaxed problem has then
only separable constraints over the cliques that makes
it possible to use efficient block coordinate optimization
schemes.

Following these ideas, we consider a dual formulation
for CRF learning in which the marginalization con-
straints are replaced by an augmented Lagrangian term,
and the intractable Shannon entropy is replaced by
a quadratic surrogate so that stochastic dual coordi-
nate ascent (SDCA) can be used to optimize over the
mean parameters, with similar guarantees as in Shalev-
Shwartz and Zhang (2016). We finally show that by
periodically updating the Lagrangian multipliers as
we are optimizing the relaxed dual, we can gradually
enforce the marginalization constraints, while retaining
global linear convergence. In terms of the primal prob-
lem associated with the Lagrange multipliers, our algo-
rithm is an inexact gradient descent algorithm using
stochastic approximation of the multiplier gradients.

Our paper is organized as follows. We review CRF
learning in Section 3. A dual augmented Lagrangian
formulation is presented in Section 4. The proposed
algorithm is presented in Section 5, followed by its
convergence analysis in Section 6. Finally, we present
experiments on three applications in Section 7 (Most no-
tations used in the paper can be found in Appendix F).
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2 Related Work

Due to the independent interest of inference problem
in discrete graphical models, in particular in computer
vision, a significant amount of work has been devoted
to develop efficient approximate inference algorithms
(Komodakis et al., 2007; Martins et al., 2015; Savchyn-
skyy et al., 2011; Sontag et al., 2008). However, the
learning problem is not necessarily easier (can even fail
to converge) with an approximate inference approach
as the subroutine (Kulesza and Pereira, 2007).

There is a large body of research on efficient algorithms
for structured learning. For the max-margin formula-
tion, the fastest algorithms to date rely on block coordi-
nate Frank-Wolfe updates (Lacoste-Julien et al., 2013;
Meshi et al., 2015b; Tang et al., 2016). Using dual de-
composition in the inner inference problem, Hazan and
Urtasun (2010); Komodakis (2011); Meshi et al. (2010)
proposed to solve the classical saddle-point formula-
tion for structured learning problem with algorithms
that alternate between message passing and model pa-
rameter updates. Going further Meshi et al. (2015b);
Yen et al. (2016) work on a purely dual formulation to
enable clique-wise updates. For maximum likelihood
learning, exponentiated gradient and its block variants
can be applied (Collins et al., 2008). Other recent work
have relied on incremental algorithms (Schmidt et al.,
2015) and the fact that the Gauss-Southwell rule can
be applied efficiently for coordinate descent in some
forms of graphical models (Nutini et al., 2015).

The BCMM algorithm of Hong et al. (2014) which
uses stochastic block coordinate updates inside ADMM
inspired our approach. But our algorithm performs
multiple passes over all blocks before updating the
multiplier; and we prove stronger convergence rates.

We list related structured learning methods with their
main characteristics in Table 1 in Appendix B.5.

Yen et al. (2016) is the most similar work to ours: the
proposed algorithm constructs greedily an (initially
sparse) working set of cliques, which is incremented at
each epoch, while we perform stochastic updates on
all cliques and possibly several passes over the data
between each update of all Lagrange multipliers. Also,
our work is leveraging the connection with SDCA, and
we prove both linear convergence in the primal and
the dual whereas Yen et al. (2016) prove only linear
convergence in the dual. Finally, our algorithm is
outperforming other methods in experiments.

3 CRF Learning

A discrete conditional random field (CRF) is a family
of conditional distributions over a vector of discrete

random variables Y := (Y7,...,Y,,) given the obser-
vation X. The form of the CRF is assumed to be a
product of local functions (a.k.a. factors or clique func-
tions) that each depends on only a small number of
random variables (i.e. a clique). If there exist multiple
cliques that share the same local function, then we
group cliques by clique types. Specifically, let w, € R
be the parameter vector associated with the clique type
7 € T, where T is the set of clique types. Let C denote
the set of all cliques, and C. the set of cliques of type
7 € T. Note that each clique ¢ has a unique clique
type, which we denote by 7.. With these notations the
density function of the CRF can be written

m H H exp (<wT,¢c($ayc)>)v

TET ceCr

pylz;w) ==

where w = (w;)re7, we denoted Z(x,w) the partition
function, and ¢.(z,y.) € R is the feature map for
clique c¢. Since all random variables are discrete, we use
a one-hot vector y; € V; := {u € {0,1}%: ||ulj; = 1} to
represent the value of Y. Here k; is the cardinality of );.
For a clique ¢, the value for the corresponding random
variables is y. = ®iecyi € Ve = Q. Vi, Where ®
(resp. ®) denotes the tensor product of vectors (resp.
of spaces). Similarly, y € ) is of the form y = ®;cyp y;-
W.lo.g., we consider in the paper only cliques of size at
most 2, that is C = VUE, with V and £ respectively the
set of nodes and of edges of the graph; the framework
generalizes easily to higher-order cliques. Notations
used in the paper are listed in Appendix F.

3.1 CRF as exponential family

Given a sample (z(™) y(™), for each clique ¢, let

n" (w) = [(wr, de(2™ . ye)): ye € Vel; then a nat-
ural parameter for the exponential family form of
the conditional distribution p(y | (™) is n(™ (w) :=
™ (w): ¢ € €]. The associated sufficient statis-
tics is T(y) = [ye: ¢ € C], and (n™(w),T(y)) =
Zc<n§") (w),y.). With these notations, p(y | (™) has
the exponential family form:

p(y |0 (w)) = exp [0 (w), T()) = F (1" (w)],

where F(n) :=log}_, exp(n,T(y)) =
the log-partition function.

log Z (2™, w) is

Given i.i.d. samples {(z(™), y("))}lgngN, the maximum
likelihood estimator for w is computed by the maxi-
mizing ) log p(y™ | (™);w). Using the exponential
family representation, we can rewrite this problem in
two equivalent forms:

maxz [0 (@), T@™)) = F (™ (w)) ],
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and min,, 25:1 F (6™ (w)), with 0 (w) another nat-
ural parameter obtained via the affine transforma-
tion 0 (w) = ™ (w) — (n™ (w), T(y™))1. Alter-
natively, by defining (™) as a sparse block matrix with
|7] x |C| blocks, whose (7, c)-th block is the matrix

T ¢ Rre ke with
‘I’E") = [¢C($(n),yc) - ¢c(x(n)7y£n)): Ye € yC]v

we have eﬁ") (w) = \IIE”)TU)TC and 0" (w) = O

W.lo.g., we assume N = 1 and drop the superscript
(n) from now on, since one may view N graphs as a
single large graph with several connected components.

Regularized maximum likelihood estimation with a
regularization constant A > 0 is thus formulated as

min F(6(u)) + 3 w3 1)

In order to extend this formulation to cover as well
max-margin learning (i.e., structured SVMs), we con-
sider the loss-augmented CRF learning introduced by
Pletscher et al. (2010) and Hazan and Urtasun (2010),
which leads to a slightly generalized formulation:

) A
min yF (30, (w)) + 5 [wll3, (2)

where 6;(w) := 6(w) + £ is then the natural parameter,
with £ = [[lc(y}, ye): ye € Ve]: ¢ € C] the user-defined
loss and v € (0,4+00) the temperature hyperparame-
ter. For a derivation for the loss-augmented CRF see
Appendix A.

It is well known that the cost of gradient descent to
optimize either (1) or (2) (for v > 0) is prohibitive
since V., F(0(w)) = > co. Ve Eg[Ye] involves an ex-
pectation over the exponentially large space ). To
exploit the underlying structure of the function F' it is
useful to work on the dual problem. Indeed, since F'
is convex, it has a variational representation based on
conjugate duality:

F(9) = max {u, 0) — F*(p),

where F* is the Fenchel conjugate of F', and the dual
variable p called the mean parameter is defined by
= (fe)cec with p. = Eg[Ye]. The set of valid mean
parameters form the so called marginal polytope M,
which is defined as the convex hull of {T'(y) : y € V}.
Moreover, if Hshannon(ft) is the Shannon entropy of a
CRF with mean parameter pu, it is a classical result
(Wainwright, 2008, Thm 3.4) that

F*(M) = _HShannon(,u/) + LM(M)’

with ¢aq(p) equal to 0 if 4 € M and +oo otherwise.

4 Relaxed Formulations

In this section, we derive a general relaxed dual, primal
and corresponding saddle-point formulations for the
CRF learning problem: first, we use the classical local
polytope relaxation (Sec. 4.1). Second, we further relax
the marginalization constraints via an augmented La-
grangian (Sec. 4.2). Third, we propose a surrogate for
the entropy, which is decomposable, and retains good
properties even when the aforementioned constraints
are relaxed (Sec. 4.3). The resulting formulation is
convex and is amenable to fast optimization algorithm
that are presented in Section 5.

4.1 Classical local polytope relaxation

Both M and Hgpannon (1) are in general intractable
due to the exponentially large structured-output space
Y and they are typically replaced by decomposable
surrogates.

It is common to relax M to the local consistency poly-
tope (Wainwright, 2008)

L= {“ €T:)  pij(yinys) = Ui(yi)av{i7j}€5,Vyi},

Y €V

where Z denotes the Cartesian product of simplex con-
straints on each clique. Note that £ O M, since any
set of true marginals must satisfy the simplex con-
straints and the marginalization constraints, but not
vice versa. Equivalently, if we define 4; = I, ® 127,7 the
equality constraints can be written in a matrix form
as p; — Ajpi; = 0 for all {i,5} € £. Combining all
equations, we have Ap = 0, where A is a || x |C| block
matrix (see Appendix F). So, we have equivalently
L=TN{p: Ap=0}.

Since Hshannon is also intractable for graphs with large
tree-width, we will use an approximation H s pprox Which
will be constructed so as to be defined and concave on
the whole set Z. We propose several entropy approxi-
mations suited to our needs in Section 4.3.
Definition 1. Let F7 and F, be the counterparts of F
obtained by relazing M to T and L respectively, which,
in other words, are the Fenchel conjugates of F; and
F7 when these are defined with Happrox:

Fr(0e) -= max{u, 0r) — Fz (),
Fr(0e) -= max{u, 0¢) — Fz(u),

with F7(p) = —Happrox(t) + tz(p) and Fz(p) =
Fr (M) + t{Au=0}-

Replacing F' with F in (2) yields the relaxed primal

Pw) =1Fe(R0w) + Jlwlp 3)
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The corresponding dual objective function is given by

. 1
D(p) = (s €) = YFE () = 51 0all3. (4)
See Appendix B.1 for a derivation.

4.2 A dual augmented Lagrangian

It is difficult to optimize D(u), since the optimization
requires some form of projection onto £, which can be
shown to be equivalent to perform graph-wise marginal
inference (Collins et al., 2008). The difficulty is due to
the coupling equality constraint Ay = 0. Meshi et al.
(2015b) proposed to relax ¢y 4,—0} by a quadratic term
2%,”14#”%’ which corresponds to employ the penalty
method (Bertsekas, 1982). They argue that it is not
crucial to enforce exact Ap = 0 in learning, since the
relaxed problem works well in practice and enables an
efficient optimization with only clique-wise updates.
However, the penalty method is known to have issues
associated with the choice of p: unless we use a reason-
ably small p, or use a carefully designed scheduling to
update p, the algorithm will be slow; on the other hand,
using a large fixed value of p degrades the problem to
independent logistic regression problems, and, thereby,
leads to suboptimal solutions.

Instead, we propose to solve problem (4) as a saddle
problem of the form max, ming D,(u,§) where D, is
the augmented Lagrangian

Dy €) =€, 1) = vF3 (1) + (€, Ap)]|
- 514l + 55 1wulE]. )

with ¢ is the Lagrangian multiplier and p > 0.

Using duality again, we can derive an associated relaxed
primal objective

]BP(“% 5,§) == VFZ(M)

A p
+§||w||§+§\|5—§|\§,

so that min,, 5y P,(w,d,&) is a primal problem associ-
ated with the dual problem max, D,(u,§).

Strong duality between these two problems yields a
representer theorem

which provides a duality gap

gap(wa 63 H,y 5) = pp(wa 6; 5) - DP(:U‘, é-)

for the convergence of the maximization of D,(u,§)
with respect to u. Moreover, it is easy to check

that ming 5 P,(w, 4, &) = P(w) because mins Fr(0(w) +
AT0) = Fz(6(w)) for any w (see Appendix B.2). This
shows that w* defined in (6) is also an optimum of the
original primal problem min,, P(w). As a consequence,
if a sequence u! converges to u* then the corresponding
w' = —+Wp' converges to a solution of (2). For more

details, see Appendix B.

4.3 Gini entropy surrogate

We seek a concave entropy surrogate Happrox that de-
composes additively on the cliques. Since the constraint
Ap = 0 is relaxed, we need a surrogate well defined
on the whole set Z. The Bethe entropy (Yedidia et al.,
2005) is generally non-concave. Its concave counter-
parts, such as the tree-reweighted entropy (Wainwright
et al., 2005) or the region-based entropy (London et al.,
2015; Yedidia et al., 2005), are only concave on the
local consistency polytope, but non-concave on 7.

Moreover, a generic difficulty with these entropies is
that they do not have Lipschitz gradients, which pre-
vents the direct application of proximal methods with
usual quadratic proximity terms. We thus propose a
coarse but convenient entropy surrogate of the form:

Happrox(p) = ZhC(NC) with  Ae(pe) = (1=|pell3)-
ceC

Another surrogate with the same separable form is
the second-order Taylor expansion of the oriented tree-
reweighted entropy (OTRW, Globerson and Jaakkola,
2007) around the uniform distribution, This surrogate
is also concave on Z (although not strongly concave)
and smooth. Preliminary experiments however did
not show that using this more sophisticated entropy
improved the results. See Appendix C for more details.

5 Algorithm

Given the form of the entropy surrogate proposed, D,
decomposes as a sum of convex separable terms over
the block associated to cliques plus a smooth term:

Dp(m,€) = = fr(pe)—r(p)  with (7)
ceC
falpe) = —vhe(pe) +ea.(pie)
1 1
r(p) = *<AT€+5,M>+5H‘I’NH2+%HA#H2,

where A, := {u. € R% | uT1 = 1} is the canonical sim-
plex. It can be thus be maximized efficiently by a block-
coordinate proximal scheme, like proximal stochastic
dual coordinate descent (SDCA, Shalev-Shwartz and
Zhang, 2016), which has linear convergence guarantees
both in the primal and the dual.
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Algorithm 1 IDAL scheme
: Input: Ti, Tey, €
: Initialize: 4 = 21 for all c€ C and ' =0
cfort=1,...,Tex do
it = A(p* 1, T, t)
Stop if Gy < e and || Aft]]? < e
£t+1 — gt _ %dAﬂt
end for
: Output: it &t

Algorithm 2 SDCA version of A(p, Tin, t)
1: ‘ut,o =u
2: for s=1,...,T;, do
3 Draw a clique ¢ uniformly at random
4: M?S = Proxﬁf: (pz’s_l — L%Vucr(ut’s_l))
5
6
7

t,s _  t,s—1
M,C - /J/*C
: end for

: Output: ub*®

To solve ming max,, D,(u, &) we thus propose an algo-
rithm similar to the block coordinate method of mul-
tipliers (BCMM) of Hong et al. (2014): perform dual
stochastic block coordinate ascent (SDCA) on the vari-
ables pi. to partially maximize D,(u,&) in p and regu-
larly take a gradient descent step in £. Our algorithm, is
an inexact dual augmented Lagrangian (IDAL) method,
in the sense that it is an inexact gradient descent al-
gorithm on the function & — d(€) := max, D,(u,§).To
be precise, if at epoch t, ¢ takes the value &' and jif~!
is the value of y from the previous epoch, Algorithm 2
takes T, stochastic block-coordinate proximal gradient
steps on 4 to obtain if. Denoting L. the Lispchitz
smoothness of r w.r.t. p., u. is updated by a partial
gradient step, and an application of the proximal op-
erator of L% f. Then, by Danskin’s theorem', applied
to equation (5), we have that Aj' is an approximate
gradient of d(£'), and so, Algorithm 1 updates £ with
el = ¢t L%Aﬂt, where L4 is a smoothness con-
stant for d(£). As for the stopping criteria, we use
Gy = gap(w(it), 5(t, €), i, €) < € and [ AG!| < e
where w(fit), 5(it, £Y) are defined via the representer
theorem (6) (see Appendix B.4).

6 Convergence Analysis

In this section, we study the convergence rate of our
algorithm. First, we show that if we use an iterative
and linearly convergent algorithm A to approximately
solve min, D,(u,§), and if we use warm starts, that is,
following the notations of the previous section, we use

At~1 as the initial value to solve min,, D,(u,£?), then

!(see e.g. Bertsekas, 1999, Prop. B.25)

running A for a fixed number of iterations is sufficient
to guarantee global linear convergence in the primal
and in the dual. We show that SDCA or simple block-
coordinate proximal gradient descent are applicable as
the algorithm A.

6.1 Conditions for global linear convergence

To study the convergence, we consider:

o i = (€l = argmax, D,(11,€)
ub*, the value of u after s inner steps at epoch ¢

tTin the value of y at the end of epoch ¢

e D,-suboptimality: Aj := D, (i, &) — D, (u"*, &),
with at the end of each epoch A, := ATin = AY

e d-suboptimality: Ty := d(&') — d(£*).

o i :=p

Lemma 1 (Linear convergence of the outer itera-
tion). Let A be an algorithm that approximately solves
max,, D,(u,&") in the sense that

3B € (0,1), E[A,] < BE[AY].

Then 3k € (0,1) characterizing d(§) and C > 0 such
that, if Amax(B) is the largest eigenvalue of the matriz

me =7 %)

then after Tey iterations of Algorithm 1 we have

E[Ao]

< C/\max(B)Tex ]E[Fo]

HE[ATeX]
Ell'r,]

The constant x in the theorem is of the form k = Lid
with Ly the Lipschitz constant of d(£) and 7 a restricted
strong convexity constant for d obtained by Hong and

Luo (2017) (see Lemma D.3 in Appendix D.2).

Corollary 1. If A is a linearly convergent algorithm
with rate ™ and if it is run for a number of iterations Tiy,
such that, for some > (1 —m)Tm  we have Apax(B) <

1, then E[A¢] and E[T't] converge linearly to 0.

Note that linear convergence of the expectations implies
that A; and T'; converge linearly to 0 almost surely, as
a classical consequence of Markov’s inequality and the
Borel-Cantelli lemma. We will show in the next section
that when A is SDCA it is linearly convergent.

Note that the convergence of the gaps A; and I'; imply
the linear convergence for the augmented Lagrangian
formulation, in the following sense:

Corollary 2. Let Doo(p):= (€, ) =y F7 (1) — 55 [ W ul|3,
s0 that we have D(j) = Doo (1) — t{ap—oy- If At and
Ty converge linearly to 0, then |Doo(fi') — Doo(11*)| and
| Aat]|3 both converge to 0 linearly.
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Furthermore, if A is linearly convergent as in Corol-
lary 2, the algorithm is linearly convergent in terms of
the total number of inner steps (for SDCA this is the to-
tal number of clique updates) performed by algorithms
A throughout:

Corollary 3. With the notations of the previous corol-
lary, for any B € (0,1) such that Anax(8) < 1, it is
possible to obtain E[A,] < ¢ and E[Ty] < € with a total
number of inner iterations Ty := TinTex such that

log(f)
Tror 2 log Amax(8) log(1 — 7

] log(e).

We show in Appendix D.4 that to have Apax(8) < 1

we should have 8 = ax with a < m

To reason in terms of rate, if the rate of convergence is

r then we should have T,y > lolg()(g’i(f)r)-

the rate of convergence of the algorithm yields r =

log(k”f{};?g‘““‘(ﬁ))). If o and k are not too

large, we can get a simplified expression for the rate,
characterized as follows.

Corollary 4. Let Afp = Af + 1. If k< % and
_ 1 log(ak)
o = 127 Zf j_‘in 2 log(1—m) "~
C’" > 0 such that after a total of s inner updates, we

have

So identifying

1fexp(

then, there exist a constant

E[a]<c(1- m)

6.2 Convergence results with SDCA

Given the structure of D, if the functions f in (7) are
strongly convex, a good candidate for A is stochastic
dual coordinate ascent (SDCA). Indeed, the results of
Shalev-Shwartz and Zhang (2016) show that

Proposition 1. If A is SDCA, let |C| be the total

number of cliques, o. the strong convexity constant of
*, and L, the Lipschitz constant of p. — r(u), then A

is linearly convergent with rate m = mingec W

ES
Moreover SDCA allows us to bound the duality gap by
the increase of D,, which yields linear convergence in
the primal.

Proposition 2. Let w' = w(it). If A is SDCA, then

—_

E[P(w) — P(w*)] < =E[A,] + E[[].

T
For the some of the natural surrogates for the en-
tropy (like the Gini-OTRW entropy proposed in Ap-
pendix C), individual functions f are not strongly
convex, although D, is strongly convex, because the
entropy surrogate is strongly convex on £ and || Apu?
is strongly convex on Ker(A)*. In that case another
decomposition is relevant: if ¢ is the strong convexity

constant of D, then let f*(uc) = ta,(pte) + ollpell3
and 7(p) = _HApprOX(/f) +r(p) - ‘7||MCH%-~W€ again
have D, () = — > cc fo(pe) — 7(1), with fZ strongly
convex and 7 convex and smooth. SDCA and its theory
are here applicable again and guarantees that Proposi-
tion 1 and following hold. However, for the convergence
in the primal a slightly different argument is needed.

Proposition 3. Let wh* = w(u®®). If A is a linearly
convergent algorithm and 1 — —Happrox + ﬁ”AuH% is
strongly convex then P(w™*) — P(w*) converges to 0

linearly.

6.3 Discussion

Optimization with inexact gradients (Devolder et al.,
2014) and inexact proximal operators (Schmidt et al.,
2011) have been shown to yield the same convergence
rate as their exact counterparts, provided that errors
decrease at a certain rate. Linear convergence of an
inexact augmented Lagrangian method in which both
inner and outer optimizations use Nesterov’s acceler-
ated gradient descent is shown in Lan and Monteiro
(2016). We use the same ideas, except that we leverage
the large finite sum structure of the dual problem to
use randomized algorithms. The use of warm-start is
also similar to its use in the meta-algorithm proposed
by Lin et al. (2017), who use inexact gradient descent
on the Moreau-Yosida regularization of a non-smooth
objective. In our context, this approach would actually
be applicable by working on P,(w, &) instead of work-
ing in the dual. An investigation in this direction is of
interest but beyond the scope of this paper.

7 Experiments

We evaluate our algorithm IDAL on three different CRF
models including 1) a simulated Gaussian mixture Potts
model with grid graph and two clique types (nodes and
edges); 2) a semantic segmentation model with planar
graph and two clique types (nodes and edges); 3) a
multi-label classification model with fully-connected
graph and unique clique type for all cliques.

We compare with algorithms using only clique-wise
oracles for solving ming max,, D,(u, £), namely, the soft-
constrained block-coordinate Frank-Wolfe algorithm
(SoftBCFW) by Meshi et al. (2015b) and the greedy
direction method of multipliers (GDMM) algorithm by
Yen et al. (2016). Note that SoftBCFW in fact solves
only the special case max, D,(u,& = 0), thus it will
converge to a different point than IDAL. In addition,
we include a third baseline for the special case using
SDCA (referred as SoftSDCA). Since SoftBCFW and
GDMM have been shown outperforming other baselines
such as Lacoste-Julien et al. (2013), Meshi et al. (2010)
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Figure 1: The comparison between IDAL and other baselines. For the choices of A and «y, we set (A =10,p =1,y =
10) for Gaussian mixture Potts, (A = 10, p = 1,y = 10) for semantic segmentation and (A =1,p = 0.1,y = 1) for
multi-label classification. The z-axis is running time in seconds.

and Hazan and Urtasun (2010), we will not make an
extensive comparison for all these algorithms.

7.1 Setup

Gaussian mixture Potts models This is an ex-
tension of the Potts model given observations, whose
conditional density function is defined via Bayes’ rule
p(ylx) o p(x|y)p(y), with p(y) a Potts distribution

associated with a grid graph and parameterized by
Whinary € R*, and with p(z|y) = [L p(xily:) assumed
to factorize into independent conditional Gaussian dis-
tributions with canonical parameters wypary € R?¥,
i'e'a p(xl|yl) X exp(<wunary(yi)a [xi) 1,22]>) We consider
a 10 x 10 grid graph with node cardinality k£ = 5. To
generate the data, we first draw the label y from p(y),
and then the observation x; is generated from the condi-
tional Gaussian p(z;|y;) for each node. The simulated
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dataset contains 100 samples and is equally divided for
training and testing.

Semantic image segmentation We consider a typ-
ical CRF model used in computer vision for label-
ing image pixels with semantic classes. The graph
is built upon clustering pixels into superpixels. Each
superpixel defines a node. Two superpixels with a
shared boundary define an edge. The CRF model
takes the form p(ylz) o exp (Y, wlyary¥i(®,3:) +
Zi,j wginarywij (.T, Yi, yj))v where ¢z(xa y’L) measure the
intra-cluster compatibility within the superpixel ¢, and
¥i;(2, yi,y;) measure the inter-cluster compatibility be-
tween superpixels ¢ and j. We conduct the experiment
on the MSRC-21 dataset introduced by Shotton et al.
(2006), which has 21 classes, 335 training images and
256 testing images.

Multi-label classification The task for this prob-
lem is assigning each input vector a set of binary target
labels. It is natural to model the inter-label depen-
dencies by CRFs that treat each label as a node in
a fully connected label graph. Following Finley and
Joachims (2008), we define the CRF density function
as p(ylr) oc exp(X2; wl i@, y:) + 30, s wlidij(yis ;)
where the feature maps are specified as ¢;(x, y;) = y;Qx
for each node and ¢;;(yi,y;) = yi ® y; for each edge.
We conduct the experiments on the Yeast dataset?,
which contains 1500 training samples and 917 testing
samples. Each sample has 14 labels and 103 attributes.

Hyperparameters In theory, T;, could be very large
depending on the choice of o and the condition num-
ber. We find that in practice only a relatively small
Tin is needed. We empirically choose Tj, = 2|C|. We
set the number of outer iterations T, = 3000 and
the stopping threshold € = 1076. The ranges of \ is
pre-defined as {10,1.0,0.01,0.001} and the range of
~ is {100.0,10.0, 1.0,0.001}. For each experiment, we
choose the best A and « in terms of the validation
accuracy and a reasonable running time (not all ex-
periments finished in 3000 outer iterations). We set
p = 1.0, since this value works well for all algorithms.

7.2 Results

To compare IDAL with GDMM, we use the cri-
terion P,(w',0%, &) — D,(jif,&") + P,(wt,dt, &) —
Dp(ﬂTGX, ¢Tex), which is an upper bound of the theoret-
ical quantity A, + T, that we analyzed. To compare
IDAL with Soft BCFW, since & = 0 for Soft BCFW, we
use the criterion D, (i, £*), in which ¢* is obtained
from running IDAL to convergence. Besides, we also

*http://sourceforge.net/projects/mulan/files/
datasets/yeast.rar

use the criteria ||Ajf||? (it measures the convergence
of d(€), since Vd(£') ~ Aft) and the testing accuracy,
which are applicable for all three algorithms. The
results are shown in Figure 1.

There are several interesting points that we can say
based on the results. 1) By tightening the marginaliza-
tion constraints Ay = 0, it does help to gain a better
testing accuracy (IDAL and GDMM gain ~ 3% over
SoftBCFW); 2) Based on the curves of D,(u,£%), we
can see that it is key to approach p* by first obtain-
ing &%, which again shows the importance of enforcing
exactness of the local consistency polytope; 3) IDAL
is shown to be a faster algorithm than GDMM. One
possible reason is that GDMM is in fact an active-set
algorithm, which means the number of updated cliques
at very beginning is insufficient comparing to IDAL.
Based on our analysis, we have shown that the quality
of the approximate gradient §; depends on T;,,. There-
fore, it is very likely that GDMM suffers from a slow
convergence because of the poor gradients.

8 Conclusion

We proposed a relaxed dual augmented Lagrangian
formulation for CRF learning, in which, thanks to
dual decomposition, SDCA can be used to partially
optimize over mean parameters in order to yield suffi-
ciently approximate multiplier gradients. Our theoreti-
cal analysis shows that if warm-starts are leveraged and
multiplier gradients are approximated with a linearly
convergent algorithm, global linear convergence can
be obtained. If SDCA is used, linear convergence is
obtained both in the primal and for the convergence of
the dual Lagrangian method.

Comparing to other baselines such as GDMM and
Soft BCFW, our algorithm is faster in terms of the
distance to the optimal objective function value (i.e.
Ay +T,) and the feasibility of the constraints || Apul|2.

It would be of interest to investigate the use of the
same dual augmented Lagrangian formulation for both
inference and learning, since according to Wainwright
(2006) this should improve the performance.

In future work, we intend to investigate applications to
other problems in machine learning, the use of Nesterov
acceleration or quasi-Newton methods for multiplier
updates, or the connection to other approaches based
on Moreau-Yosida regularization.
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