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Abstract

We investigate statistical efficiency of estima-
tors for non-smooth density functions. The den-
sity estimation problem appears in various situ-
ations, and it is intensively used in statistics and
machine learning. The statistical efficiencies of
estimators, i.e., their convergence rates, play a
central role in advanced statistical analysis. Al-
though estimators and their convergence rates for
smooth density functions are well investigated
in the literature, those for non-smooth density
functions remain elusive despite their importance
in application fields. In this paper, we propose
new estimators for non-smooth density functions
by employing the notion of Szemerédi partitions
from graph theory. We derive convergence rates
of the proposed estimators. One of them has the
optimal convergence rate in minimax sense, and
the other has slightly worse convergence rate but
runs in polynomial time. Experimental results
support the theoretical performance of our esti-
mators.

1 Introduction

Density estimation is one of the most significant and fun-
damental topics in statistical science and machine learn-
ing. Suppose that we have independent and identically dis-
tributed n observations:

X1, Xo,..., X, ~ F,

where F' is a probability distribution function, and the
probability density function f is defined by F'. The goal
of density estimation is to estimate f from the observa-
tions {X;}" ;. This density estimation problem is em-
ployed in many application fields such as obtaining spec-
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trum densities in signal processing, estimating the distri-
bution of animals in zoology, and analyzing volatility in
financial analysis. Numerous studies investigated its statis-
tical properties (See [1, 10, 31, 32] for summaries). There
are a plethora of methods for the density estimation prob-
lem, e.g., histogram estimators [3, 5, 12, 28], kernel den-
sity estimators [2, 8, 15, 36], and orthogonal-series estima-
tors [7,11,39].

Statistical efficiency of an estimator plays a central role in
statistical analysis. It denotes the convergence rate of the
error incurred by the estimator, that is, the speed of the
convergence of the error to zero as n increases. The no-
tion of statistical efficiency is used in various advanced in-
ferences such as tests, confidence analysis, hyperparameter
tuning, and others (summarized in [37,40]). Clarifying the
statistical efficiencies of estimators is essential to control
uncertainty.

The smoothness of a density function has been an essen-
tial factor to bound the statistical efficiency of an estimator.
For example, when a density function on a D-dimensional
space is 3-times differentiable, the convergence rate of the
kernel density estimator is O(n~2%/(28+D)) under some
regularity conditions (see [37] for a summary). Similarly,
statistical efficiencies of other estimators are clarified only
when the density function is differentiable.

In contrast, when the density function is non-smooth, i.e.,
non-differentiable or discontinuous, no estimator has been
developed with a provable convergence rate, though some
consistency results are known [6,26,42]. We note that non-
smooth density functions frequently appear in real data; for
instance, the spectrum density function has sharp peaks for
some materials, and the distribution of a financial data often
has many discontinuous points.

In this work, we propose two new estimators for non-
smooth density functions with provable statistical efficien-
cies. The first one is called the minimized Szemerédi den-
sity estimator (M-SDE) and the second one is called the
Voronoi Szemerédi density estimator (V-SDE). These es-
timators approximate density functions using a histogram,
where its cells are constructed from a Szemerédi partition, a
notion developed in graph theory [13, 16,20,24,25,33,34].
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Because the existence of a Szemerédi partition does not
rely on the smoothness of the density function, our estima-
tors can be used for non-smooth density functions. Then,
we derive convergence rates of our estimators, and show
that the convergence rate of the M-SDE is optimal in the
minimax sense. Furthermore, we discuss how to tune the
histogram size and time complexities of our estimators.
Our numerical experiments confirm the performance of our
estimators.

The contributions of this work are summarized as follows.

e We propose two estimators called the M-SDE and the
V-SDE. We derive their convergence rates on non-
smooth density functions. This is a first work which
clarifies statistical efficiency of estimators for non-
smooth densities.

e For M-SDE, we show that its convergence rate is op-
timal in the minimax sense. We also provide a hy-
perparameter selection method that attains the optimal
convergence rate. For V-SDE, we show that its con-
vergence rate is slightly worse than that of M-SDE.
However, it runs in a polynomial time in n.

e Experimental results show that the M-SDE success-
fully estimated non-smooth density functions. We
also show that V-SDE has a comparable approxima-
tion performance with M-SDE.

2 Preliminaries

2.1 Notations

Let Ry := {z € R : > 0} be the set of nonnega-

tive numbers, and I := [0,1] be the unit interval. For a
matrix A, A;; denotes an (4, j)-th element of A. For a
positive integer z, [z] := {1,2,...,z} is the set of posi-

tive integers no more than z. For a function f : I — R,
[l fll1 :== [; |f(t)|dt denotes the L' norm. X denotes the
Lebesgue measure. For a set S, 1;gy(z) is an indicator
function which is 1 if x € S and 0 otherwise. For an ele-
ment s € S, asubset S’ C S,andametricd : SxS — R,
we define d(s, S') := mingcg d(s, s').

We recall Landau notations. For functions f,g : N — R,
f(n) = Qg(n)) means g(n) = O(f(n)) and f(n) =
©(g(n)) means f(n) = O(g(n)) and f(n) = Q(g(n)).

O(-) and ©(-) ignore the O(log log n)-factor.

2.2 Density Estimation Problem

We formulate the density estimation problem. Suppose that
we observe n independent and identically distributed D-
dimensional random variables:

X1, Xo,..., X, ~F*on (IP, A),

where F'* is an unknown true probability distribution, and
(IP, A) is a measurable space with a compact set I and

its o-algebra A. The true density function f* : I? — R
is defined using the Radon-Nikodym derivative of F'* with
respect to the Lebesgue measure \ as

. dF*
=

Note that f* satisfies [,, f*d\ = 1.

The goal of the density estimation problem is to estimate
J* from the set of observations {X;};c[,). The method-
ological and theoretical aspects of this problem have been
investigated in the literature [1, 10,31, 32].

2.3 Szemerédi Partitions

We introduce the notion of a Szemerédi partition that en-
ables us to approximate a broad class of functions. The
idea comes from the problem of approximating a graph by
its small induced subgraph.

For partitions P1,...,Pp of I, we define a partition
S(P1,...,Pp)of I as

S(Pl,...,PD) ::P1><~-~><7>D.

Each element in the partition S = S(Py, ..., Pp) is called
a cell. Let fs denote the step function on S of a function
f: IP = R defined as

fs(@):= Y

SES;A(S)>0

Is(x)
E) /Sf(y)dy-

Roughly speaking, fs is obtained from f by taking the av-
erage ineach cell S € S.

For partitions Py, ..., Ppof I,letS = Py x---xPp. For
a > 0, we say that a partition S is an a-Szemerédi partition
of I'P with respect to f if

sup
{TaCTl}ae(p)

/ (f—fo)ir| <o )
Ty x---xTp

and that cells in S are «-Szemerédi cells. Here, T} is taken
from all measurable subsets of I for d € [D].

By the notion of Szemerédi partitions, we state an impor-
tant result about the partitions.

Lemma. (The Regularity Lemma [24,25]) For any measur-
able bounded function f on IP, there exist (equi)partitions
P1,...,Pp of I into K parts such that the partition S =
Py x --- x Pp of IP is an O(1/y/Dlog K )-Szemerédi
partition with respect to f.

3 Szemerédi Density Estimators

We explain our density estimation methods based on Sze-
merédi partitions.
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Given observations X1,...,X,, and a (Szemerédi) parti-
tion S of I”, our methods construct a histogram function
hs : IP — R, defined as

_ EZSes L (x) Zie[n] Lix;es)
n >ses Ls(x)A(S)
This histogram counts the number of observations in each

cell S € S and normalizes it according to its size (the
Lebesgue measure of 5).

hs(z) : 2

In what follows, we propose two estimators, both of which
finds a partition S and returns the histogram function hs.

3.1 Minimized Szemerédi Density Estimator
(M-SDE)

Here, we explain our first estimator, named the minimized
Szemerédi density estimator (M-SDE). The M-SDE con-
structs a Szemerédi partition by combining sets in a finer
partition of I. This method is standard in graphon analysis
(see [24] for more details).

Let K € Nbe anumber of cells in P4 for each d € [D]. For
preparation, we consider a random partition with M = zK
cells, where z > 2 is a positive integer. Let 1, ..., 7y be
random variables uniformly sampled from /. Using these
random variables, we define a random interval

Ry={zel:|z—ry| <|z—rmw|,Vm € [M]},

for each m € [M], and define R := { Ry, }meqnr- As the
Lebesgue measure of each R, is roughly 1/M when M is
large, we can roughly express a set with Lebesgue measure
1/K by combining M /K sets in R. This fact suggests us-
ing an equipartition of { R, } e[ into K parts to roughly
represent an equipartition of [ into K parts. Let P(SIR) be a
partition of I which is generated from a K equipartition of

To obtain partitions Py, ..., Pp such that S(P1,...,Pp)
is an a-Szemerédi partition for small & > 0, we employ the
k-fold cross-validation method. We split the observations
into subsamples and generate « pairs of a training data D*
and a validation data D", denoted by {D}, D} } ;). Also,
we define S® := S(R, ..., R) as the partition of I” con-
structed from R. We define the validation function on par-
titions of ¥ with respect to the j-th pair as

CVy(8) = [ [hsn.py () = hopy(a)] o 3

where hs p is the histogram function (2) with the partition
S and the data D. Then, we define the cross-validation
problem as

1
min ~ Y CV; (3(73@,...,79;3))). @)

(R) p) K
PP R

This optimization problem (4) is an approximated ver-
sion of ming ||f* — fs|1, i.e., we approximate S by
S (731(3), . ,P,(DR)) and f* by the empirical distribution.
Theorem 1 in Section 4 will provide its validity.

We set a minimizer of (4) as S™, and define the minimized
Szemerédi density estimator (M-SDE) as

FM (@) = hsw (). 5)

In Section 4, we will provide a methodology for selecting
hyper-parameters and will show theoretical properties of
the methodology.

We mention that there are some limitations of M-SDE.
Solving the minimization problem (4) requires an expo-
nential time in n and a global convergence property is not
assured. To avoid the difficulties, we will suggest another
estimator in the next section.

3.2 Voronoi Szemerédi Density Estimator (V-SDE)

We provide another estimator named the Voronoi Sze-
merédi density estimator (V-SDE). It has slightly worse
convergence rate than M-SDE but can be constructed in
polynomial time in n.

The V-SDE is based on Voronoi partitions of R which is
introduced in Section 3.1 . For the V-SDE, we consider
the case D = 2. Also, we assume that f* is symmetric
around, that is, f*(x,y) = f*(y, ) in this section. We
note that, to estimate asymmetric density functions, we can
repeat our estimation method on {(x,y) € I? : & > y} and
{(z,y) € I? : z < y} separately.

We introduce the Voronoi partition induced by a set of in-

dices V C [M]. First, we define ametric d4 : [M]x[M] —
R, as

da(a,b) = D> | D Aji(Aja — Ajp)

i€[M] |jE[M]

where A is an M x M matrix with A;; =
fR,; ij [*(z,y)dydz. Then, we define c4 y : [M] — [M]
so that c4 (1) is the index in ) closest to 1 with respect
to d a4, where we break ties arbitrarily. The Voronoi parti-
tion of I generated by R, V, and d 4 is defined as

PV):=¢ |J Rm:tevy,

mENs(@)
where Ns(¢) := {m € [M]: cay(m) = £} is the Voronoi
cell centered at £ € V.

We can show that S(P(V), P(V)) is a Szemerédi partition
with an existing V by using results in [24]. Specifically, for
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Algorithm 1 Generating indices for Voronoi partition
input ¢, € (0,1),0 € (0,1) and d 3.
output A setV C [M].
1: YV« 0.
Cr + €% log(1/en) +
c+ 0.
while ¢ < Cr do
¢ «+ an index uniformly sampled from [M].
ifd;(0,V) > en/20rdsr (L, V) > €,/2 then
V< VU {{l}]
else
c+c+ 1.
end if
end while

e, Hlog(1/6).

_.
e N B A AR AR

—

any € > 0, there exists 7 > 0 such that, if V satisfies

Z mlndA (m,0) <n, (6)
me M]

then we have || f* — <e.

fspowypoplh

To estimate V satisfying (6), we provide an algorithm with
an empirical metric. As we cannot exactly calculate ele-
ments of the matrix A, we consider an empirical metric
dz: [M] x [M] — R, defined as

Z Z A\j,i(‘;l\j,a - A\j,b) .

1€[M] |j€[M]

dz(a,b) :=

Here, A is an M x M matrix generated from the observa-
tions:

Aij = (nA(R; x R;)

Z]l(x €R;xR;)-

Algorithm 1 provides a pseudo-code for constructing V sat-
isfying (6) using d ;7 and predetermined parameters ¢, €
(0,1) and 0 € (0, 1) for controlling convergence of V-SDE.
Also, we define C'r in Algolithm 1 as a maximum iteration
defined by €,, and §. Since A converges to A as n increases,
we can bound the difference between d 4 and d 5 for suffi-
ciently large n. The analysis of this difference is deferred
to Section 4.

Let V be an output of Algorithm 1, the Voronoi Szemerédi
density estimator (V-SDE) is defined as

fv(x) = hS(P(\A))’P(\A;))(‘T)' (7

The time complexity of the V-SDE is polynomial in n:
Constructing V requires O(n + M?) preprocessing and
O((Ct + M)M?) time, and constructing P()) requires
O((Cr + M)M?) time. In Section 4, we will show that it
suffices to set M = O(K) = © (n'/?P). Also, we will set
e€n = O ((logn)~/*) and thus Cr = O (logn). Hence,
the time complexity is polynomial in n.

4 Convergence Analysis

In this section, we analyze convergence rates of the M-SDE
and the V-SDE. Moreover, for the M-SDE, we also show its
minimax optimality and the effect of hyperparameter se-
lection. All the proofs are deferred to the supplementary
material.

We evaluate the convergence rate of the estimator f €
{M, FV} by the L-loss

IF* = fll-

This is because the L*-loss is related to the total variation
distance for probability distribution functions. Let I’ and
F’ be probability distribution functions on a measurable
space (IP, A). Then, the total variation distance between
F and F’ is defined as
|F — F'||ltv := sup |F(A) — F'(A)].
AcA

Furthermore, let f and f’ be the density functions obtained
through the Radon-Nikodym derivatives of F' and F”, re-
spectively. Then, the total variation distance is equivalently
written as

IF=Flay =5 [, 1) = f@lde = 515 = £

by using Scheffe’s theorem (Lemma 2.1 in [37]).

We impose the following two conditions on the true density
function f*.

Assumption 1. The following conditions hold.

1. The density function is defined as the Radon-Nikodym
derivative, that is, f* = dF*/d)\, where F* is a prob-
ability measure on the measurable space (I”, A).

2. f* is a bounded function on IP.

The first condition is a standard regularity condition on
probability density functions. We note that the second
boundedness condition is quite weaker than other condi-
tions such as continuity and differentiability.

4.1 Convergence Rate of the M-SDE

In this section, we evaluate the convergence rate of the M-
SDE.

First, we show that, with high probability, we can construct
a Szemerédi partition from the set of random intervals R =
{Rm}mem) introduced in Section 3.1:

Lemma 1. Suppose Assumption 1 holds. Let R =
{ Ry }mem) be the set of random intervals introduced in
Section 3.1. Then with probability 1 — O(1/M?), there ex-
ists a set of partitions {Pa}ac|p) obtained by combining
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sets in R such that the partition S = S(M, . ..
IP satisfies

7MD) Of

sup
{TaCl}acip)

kL%M%U—kmwzo(ﬂﬁ%M>

The proof of Lemma 1 is based on the sampling lemma for
graphons (see Section 10 in [24]). As we set M = z K with
a positive integer z, the approximation error is bounded by

O(1/+/DlogK).
Then, we have the following convergence rate.

Theorem 1. Consider the estimator (5). Then for any K >
1 and sufficiently large n, we have

-~ . KPlogn 1
WM—fm=0( : )

Vn + vDlog K
with probability at least 1 — O(1/(nM)?).

The first term of this bound is the estimation error. In
particular, the first term bounds the distance || f — f%||;
where f£ is a step function generated from the true density
f*. As the estimation error is measured on eachcell S € S,
the error is increased with the number of cells. When K

is constant, the estimation error attains the parametric rate
O(n=1/?).

The second term represents the approximation error || f§ —
f*||1. This error is evaluated through the weak regularity
lemma (see, e.g., [24]) and is bounded by O(1/+/log K).

Now we take K as a function of n to balance the estima-
tion and approximation errors. Specifically, we consider
an increasing sequence { K, },cz satisfying the following

condition:
KP1 1
S ) — )
vn VDlog K,,
Then we have K,, = O(n!/2P (logn)~3/2P). By substi-
tuting this to Theorem 1, we obtain the following corollary.

Corollary 1. For each n, by choosing K = K, =
O(n'/?P(logn)~—3/2P) in the M-SDE, the estimator (5)
satisfies

. ~ 1
M *
- =0
17 = 71 =0 (=)
with probability larger than 1 — O(1/(nM)?).

Corollary 1 states that the statistical efficiency of the M-
SDE is O (1/\/log n) which is independent of D. Al-
though this speed of convergence is slow, we will discuss
its optimality and rationale in Sections 4.4 and 4.5.

4.2 Selection of the Partition Size

We propose a method that selects a suitable K to achieve
the convergence rate in Corollary 1 by exploiting the con-
dition (8) that K should satisfy.

We use the decomposition of the L!-loss of the M-SDE
as seen in Theorem 1. The loss is decomposed into the
estimation error and the approximation error. Hence, we
evaluate those errors empirically and choose K to balance
them. Our approach employs Lepski’s method [23] and can
achieve the optimal convergence rate as in Corollary 1.

For clarity of the discussion, we let M.(K) be the M-SDE
with a partition of size K. Let K.« be a large integer.
Then, the estimator is defined as

R, = min{K € [Kmax] | V> K, € € [Kumax),
”J?M,(K) _ J?M.,(z)”l < rn~ /2D log 1 }’ 9)

where 7 > 4 is an arbitrary constant. The threshold
term, i.e., 7n~'/2¢P log n in (9), is derived from the condi-
tion (8). If the set in (9) is empty, then we set K, = Kpax-
The following theorem shows that the M-SDE with the se-

lection method above can achieve the minimax optimal rate
derived in Corollary 1.

Theorem 2. Suppose that Assumption 1 holds and we
choose the size of the partition as in (9). Then, we have

o ~ 1
M(Rn) _ 5l — O
IIf [l ( logn>’
with probability 1 — O(1/(nM)?) for sufficiently large n.

Theorem 2 shows that we can achieve the convergence rate
in Corollary 1.

4.3 Convergence Rate of the V-SDE

Next, we evaluate the convergence of the V-SDE. Applying
Lemma 1, we obtain the following.

Theorem 3. Consider the estimator (7) with K, =
O(n'/?P(logn)~—3/?P) and €, = d(logn)~Y* for § €
(0,1). Suppose Assumption 1 holds. Then, there exists
Cy = Cy (D) > 0 such that

ng _— Cvy
17 = 11 =0 (o)

holds with probability 1 — O(85/(nM)?) for sufficiently
large n.

The convergence rate provided in Theorem 3 is slower than
that of Corollary 1, in exchange for computational effi-
ciency of the Voronoi approximation.

4.4 Minimax Optimality

We investigate a minimax lower bound on the density esti-
mation problem. To this end, we consider a proper subclass
of density functions and derive a lower bound on the con-
vergence rate of the estimator for this subclass.
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We introduce a coefficient gg € R and a binary variable
fs for each cell S'in S. Let

]‘F: = {f : ID — R+ ‘ f(x) = Z 1(m65)95957
Ses

Co
35" € 8,95 = ———— ¢,
98 = /Dlog K, }
for some constant Co > 0. Intuitively, each density func-
tion in F is a step function with respect to S with each cell
S € S having the value gg except gg/ for some S’ € S
having a specific value.

The following theorem provides the minimax lower bound
for density estimators.

Theorem 4. Suppose that Assumption 1 holds. Then, we
have

_ Co

lim inf inf sup P <||f3 — flh > ) > 0,
nooo o reF vDlog K,,

where f s runs over step function estimators with respect to
the partition S.

Substituting K,, = ©(n'/?P (logn)~3/2P) yields that the
lower rate in Theorem 4 is ©(1/+/log n). This result shows
that the convergence rates in Corollary 1 is minimax opti-
mal.

4.5 Discussions

The convergence rate of the M-SDE attains the minimax
optimality, and also we can conduct the parameter selection
preserving the convergence rate. One can criticize that the
convergence rate of O ((log n)~Y 2) is slower than those
of estimators for smooth densities, which are polynomial in
n. However, recalling that the class of non-smooth density
functions is quite larger than that of smooth ones, it is natu-
ral to have an exponentially weaker rate. We also mention a
study for estimating non-smooth functional [4], which clar-
ifies that the optimal convergence rate is O ((log n)~%/2).

The V-SDE yields the convergence rate of O((logn)~/%),
which is O((logn)3/8) times slower than the M-SDE.
However, the time complexity of the V-SDE is polynomial
in n, which is exponentially faster than that of the M-SDE.

5 Comparison with Related Work

We clarify the differences between our density estimators
and other density estimators.

Various studies have investigated histogram-based density
estimators. The simplest one exploits the histogram with
fixed cells generated from a partition {[t;,%;11)} e[k in to
K cells, where t; < t;4 for all j € [K]. The consistency
of this estimator is shown in several situations: [6] and [26]

showed the consistency with the L'-norm and [42] showed
the consistency with the L”-norm. The convergence speed
is also a concern for this histogram estimator. By assum-
ing the differentiability of density functions with a scalar
input setting, [9] and [12] showed that the convergence rate
for the differentiable density functions is O(n~1/3). Some
studies [29, 30] showed the convergence rate can be im-
proved to O(n~2/%) by modifying the arrangement of the
cells. However, the convergence rate without the differen-
tiability assumption remains elusive.

Other studies investigated a histogram estimator with
data-adaptive cells, known as a variable partition his-
togram [41]. This estimator constructs cells from the ob-
servations. For example, let {X(1), X(2),..., X(n)} be
a set of ordered observations (i.e., X(;) < X(;41) for
all 7), then the j-th cell (out of K cells) is defined as
(X(jn/K)7X(jn/K)] for j € [K] [17,19,21,27] showed
the consistency of this estimator with respect to various
norms under various conditions. Moreover, assuming the
differentiability of density functions, the convergence rate
of this estimator was clarified in [18]. However, as with the
estimator based on a histogram with fixed cells, the con-
vergence rate is not obtained without the differentiability
assumption.

Recently, density estimation methods using functional
components have been intensively studied, e.g., the ker-
nel density estimator, orthogonal series estimator, and
Gaussian process estimator. The kernel density estima-
tor [2, 8, 15, 36] estimates density functions by using a
kernel function. It is shown that the kernel density esti-
mator has a convergence rate of O(nil/ 3) when the true
density is differentiable and the kernel function is properly
selected. Similar results were obtained for the orthogonal
series estimator [7,11,39] and the Gaussian process estima-
tor [22,38]. We stress again that these methods assume that
the true density is differentiable several times. In contrast,
SDEs only assume that the density function is measurable
and bounded.

The aforementioned comparison is summarized in Table 1.

6 Experiments

We conduct numerical experiments to validate the theoret-
ical results on SDEs.

6.1 Density Estimation

The goal of this section is to confirm that our methods well
approximate density functions. To show this, we generated
10, 000 observations from three types of density functions;
(A) the Gaussian type, (b) the cylinder type, and (C) the
pyramid type, and estimated these density functions by us-
ing the M-SDE. The size K of a partition was selected so as
to minimize the generalization error, and we set the number
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CONTINUOUS, BUT
DIFFERENTIABLE ~ NON-DIFFERENTIABLE ~ DISCONTINUOUS
ESTIMATOR DENSITY DENSITY DENSITY

HISTOGRAM (FIXED CELL) v (CONSISTENCY) (CONSISTENCY)
HISTOGRAM (ADAPTIVE CELL) 4
KERNEL Vv
ORTHONORMAL SERIES vV
GAUSSIAN PROCESS Vv

SZEMEREDI (M-SDE & V-SDE) V4 v V4

Table 1: Statistical efficiency of each estimator on each class of density functions. “y/” means that a statistical efficiency
can be derived. All estimators have provable statistical efficiencies for differentiable densities whereas only SDEs have
provable statistical efficiencies for non-differentiable or discontinuous densities.

of random variables M as M = 3K. To solve the mini-
mization problem (4), we employed a greedy algorithm by
swapping. This algorithm starts with an arbitrary partition
and then keep swapping two intervals in different sets in
the partition until the objective function converges.

For each setting, we plot the true density function and its
approximation by the M-SDE. For the cell plots, blue and
denote small and large values, respectively.

Gaussian-type Density We consider a Gaussian-type
density function on [0, 1]? visualized in Figure 1. This den-
sity function is a two-variate Gaussian restricted to [0, 1]%.
The selected size of the partition was K = 4, which is rel-
atively small due to the smoothness of the Gaussian-type
density. As can be seen in Figure 1, the cells can capture
the shape of the Gaussian-type density, that is, the cells
close to the edges of [0, 1]? are narrow whereas the cells
around the center of [0, 1]? are close to squares.

Figure 1: Gaussian-type density function (left), and its
approximation by the M-SDE (right). K was set to 4.

Cylinder-type Density We consider a cylinder-type den-
sity function on [0, 1]? visualized in Figure 2. The density
function takes a positive value inside a circle in [0, 1]* and
takes zero elsewhere. Its approximation by the M-SDE is
also shown in Figure 2. The selected size of the partition
was K = 10 due to the discontinuous structure of the den-
sity function. We also can see that the cells constructed by
the algorithm express the round shape of the true density.
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Figure 2: Cylinder-type density function (left), and its
approximation by the M-SDE (right). K was set to 10.

Pyramid-type Density We consider a pyramid-type den-
sity function on [0, 1)? visualized in Figure 3. The density
function is constituted by four sharp pyramids. Its approx-
imation by the M-SDE is also shown in Figure 3. Since the
pyramid-type density is highly non-smooth, the selected
size of the partition was K = 13, which is larger than the
other two cases.

Figure 3: Pyramid-type density function (left), and its ap-
proximation by the M-SDE (right). K was set to 13.

6.2 Comparison with Other Estimators

We compare the performance of our estimators with that of
other estimators. For each n € {1000, 2000, ...,10000},
we generated n independent observations from a true den-
sity function f*, which is one of the three density functions
used above, and estimated f* with the following density
estimators. All hyperparameters were selected to minimize
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the generalization error.

Kernel density estimator: We employed the Gaussian
kernel kp,(x) o exp(—xz2/2h?) (Kernel(gauss)) and the
square kernel &y, (z) o< 1,5y (Kernel(square)) for esti-
mation. The bandwidth h of the kernel functions was se-
lected from {0.001, 0.005, 0.01,0.02,...,0.1}.

Histogram estimator (Histogram) with equal-sized cells:
We used the partition {[0,1/K),[1/K,2/K),...[(K —
1)/K,1]}%, where K > 2 is an integer, resulting in K>
cells. K was selected from {1,2,...,20}. We do not con-
sider the variable partition histogram method since it can
be simulated by Kernel(square).

Orthogonal Series density estimator (Series): We
employed the Fourier basis function for this estimator.
This estimator represents a density function as f(z) =
>_jwj¢j(z), where ¢;(x) is the Fourier basis functions
and w; is a weight for each j. The estimator computes
the weight w; by loss minimization. The number of basis
functions was selected from {5, ..., 20}.

Figure 4 shows generalization errors as expected L' losses
of the estimators on each density function. For the
Gaussian-type case, the kernel density estimators showed
significantly large losses, and other methods can estimate
the smooth Gaussian function accurately. For the cylinder-
type case, all the methods showed similar performances.
For the pyramid-type case, the M-SDE, the V-SDE, and
the kernel method with the square kernel can well estimate
the sharp poles in the density function.

Observations obtained from those results are in order. (i)
For each case, the M-SDE and the V-SDE seem to be con-
sistent. Some of the other estimators seem biased, espe-
cially when estimating the pyramid-type density. In con-
trast, the losses of the M-SDE and the V-SDE always de-
crease as n increases. (ii) The numerical convergence
speeds of the estimators are similar although only the M-
SDE and the V-SDE have theoretical guarantees. (iii) The
V-SDE has a similar numerical performance to the M-SDE
although the theoretical efficiency of the V-SDE is worse
than that of the M-SDE.

7 Conclusion

Estimation of density functions is a significant topic in
statistics and machine learning, and it has been intensively
investigated. Nevertheless, statistically efficient estimation
of non-smooth density functions has been elusive. Filling
this gap is important since statistical efficiency is a critical
factor in advanced inferences such as tests or confidence
analysis.

To derive a statistically efficient estimation of non-smooth
density functions, we propose the minimized Szemerédi
density estimator (M-SDE) and the Voronoi Szemerédi den-

Gaussian Cylinder
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n n
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Figure 4: Logarithm of expected L' losses against n for the
Gaussian case (upper left), the cylinder case (upper right),
and the pyramid case (lower left).

sity estimator (V-SDE). The convergence rate of the M-
SDE attains the minimax optimal rate. We also proved that
the selection method for the hyperparameter of the M-SDE
does not deteriorate the convergence rate. Although the
M-SDE is computationally expensive, the V-SDE which
is computationally efficient at the cost of a relatively slow
convergence rate. The experimental results validate the the-
oretical analysis of the M-SDE and the V-SDE.

Our work will facilitate statistical analysis on non-smooth
density functions. Developing such statistical analysis is
left for future work. A construction of a minimax optimal
estimator with polynomial time in a sample size is an open
question.

Acknowledgements

M. L is supported by Grant-in-Aid for JSPS Research Fel-
low (17J03208) from the JSPS. T. M. is supported by JSPS
KAKENHI Grant Number 16K16011. Y. Y. is supported
by JSPS KAKENHI Grant Number JP17H04676 and JST
ERATO Grant Number JPMJER 1305, Japan.

References

[1] Richard E Barlow, David J Bartholomew, JM Bremner, and
H Daniel Brunk, Statistical inference under order restric-
tions: The theory and application of isotonic regression, Wi-
ley New York, 1972.

[2] Zdravko I Botev, Joseph F Grotowski, and Dirk P Kroese,
Kernel density estimation via diffusion, The Annals of
Statistics 38 (2010), no. 5, 2916-2957.



Masaaki Imaizumi, Takanori Maehara, Yuichi Yoshida

(3]

(4]

(3]

(6]

(7]

(8]

(91

[10]

(11]

[12]

[13]

(14]

(15]

(16]

[17]

(18]

(19]

T Bouezmarni, M Mesfioui, and JM Rolin, LI-rate of con-
vergence of smoothed histogram, Statistics & probability let-
ters 77 (2007), no. 14, 1497-1504.

T Tony Cai and Mark G Low, Testing composite hypotheses,
hermite polynomials and optimal estimation of a nonsmooth
functional, The Annals of Statistics 39 (2011), no. 2, 1012—
1041.

Siu On Chan, Ilias Diakonikolas, Rocco A Servedio, and Xi-
aorui Sun, Near-optimal density estimation in near-linear
time using variable-width histograms, Advances in neural
information processing systems, 2014, pp. 1844-1852.

XR Chen and LC Zhao, Almost sure | 1-norm convergence
for data-based histogram density estimates, Journal of mul-
tivariate analysis 21 (1987), no. 1, 179-188.

NN Chentsov, Evaluation of an unknown distribution den-
sity from observations, Doklady Akademii Nauk SSSR 147
(1962), no. 1, 45.

Luc Devroye, The equivalence of weak, strong and complete
convergence in l_1 for kernel density estimates, The Annals
of Statistics 11 (1983), no. 3, 896-904.

Luc Devroye and Laszlo Gyorfi, Nonparametric density es-
timation: the 1 view, Vol. 119, John Wiley & Sons Incorpo-
rated, 1985.

Luc Devroye and Gabor Lugosi, Combinatorial methods
in density estimation, Springer Science & Business Media,
2012.

Sam Efromovich, Adaptive estimation of and oracle in-
equalities for probability densities and characteristic func-
tions, The Annals of Statistics 36 (2008), no. 3, 1127-1155.

David Freedman and Persi Diaconis, On the maximum de-
viation between the histogram and the underlying density,
Probability Theory and Related Fields 58 (1981), no. 2, 139—
167.

Alan Frieze and Ravi Kannan, A simple algorithm for con-
structing szemerédis regularity partition, the electronic jour-
nal of combinatorics 6 (1999), no. R17, 2.

James E Gentle, 308,

Springer, 2009.

Computational statistics, Vol.

Alexander Goldenshluger and Oleg Lepski, Bandwidth se-
lection in kernel density estimation: Oracle inequalities and
adaptive minimax optimality, The Annals of Statistics 39
(2011), no. 3, 1608-1632.

W Timothy Gowers, Hypergraph regularity and the multidi-
mensional szemerédi theorem, Annals of Mathematics 166
(2007), no. 3, 897-946.

Yuichiro Kanazawa, An optimal variable cell histogram,
Communications in Statistics—Theory and Methods 17
(1988), no. 5, 1401-1422.

, An optimal variable cell histogram based on the
sample spacings, The Annals of Statistics 20 (1992), no. 1,
291-304.

Atsuyuki Kogure, Asymptotically optimal cells for a histor-
gram, The Annals of Statistics 15 (1987), no. 3, 1023-1030.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

(37]

(38]

(39]

Janos Komlés and Miklds Simonovits, Szemerédi’s regular-
ity lemma and its applications in graph theory (1996).

Jean-Pierre Lecoutre, ML Puri, JP Vilaplana, and W Wertz,
The histogram with random partition, New Perspectives in
Theoretical and Applied Statistics (1986), 265-276.

Tom Leonard, Density estimation, stochastic processes and
prior information, Journal of the Royal Statistical Society.
Series B (Methodological) (1978), 113-146.

Oleg V Lepskii, On a problem of adaptive estimation in
gaussian white noise, Theory of Probability and its Appli-
cations 35 (1990), 454-466.

Laszl6 Lovasz, Large networks and graph limits, Vol. 60,
American Mathematical Society Providence, 2012.

Laszl6 Lovasz and Baldzs Szegedy, Szemerédis lemma for
the analyst, GAFA Geometric And Functional Analysis 17
(2007), no. 1, 252-270.

Gébor Lugosi and Andrew Nobel, Consistency of data-
driven histogram methods for density estimation and clas-
sification, The Annals of Statistics 24 (1996), no. 2, 687—
706.

BLS Prakasa Rao, Nonparametric functional estimation,
Academic press, 2014.

David W Scott, On optimal and data-based histograms,
Biometrika 66 (1979), no. 3, 605-610.

, Averaged shifted histograms: Effective nonpara-
metric density estimators in several dimensions, The Annals
of Statistics 13 (1985), no. 3, 1024-1040.

, Frequency polygons: theory and application, Jour-
nal of the American Statistical Association 80 (1985),
no. 390, 348-354.

, Multivariate density estimation: theory, practice,
and visualization, John Wiley & Sons, 2015.

Bernard W Silverman, Density estimation for statistics and
data analysis, Vol. 26, CRC press, 1986.

Endre Szemerédi, Regular partitions of graphs, DTIC Doc-
ument, 1975.

Terence Tao, Szemer’edi’s regularity lemma revisited, Con-
tributions to Discrete Mathematics 1 (2006), no. 1.

, Epsilon of room, two: pages from year three of
a mathematical blog, Vol. 1, American Mathematical Soc.,
2011.

George R Terrell and David W Scott, Variable kernel density
estimation, The Annals of Statistics 20 (1992), no. 3, 1236-
1265.

Alexandre B Tsybakov, Introduction to nonparametric es-
timation, Springer Series in Statistics. Springer, New York,
2003.

AW van der Vaart and JH van Zanten, Rates of contraction
of posterior distributions based on gaussian process priors,
The Annals of Statistics 36 (2008), no. 3, 1435-1463.

Gilbert G Walter, Properties of hermite series estimation of
probability density, The Annals of Statistics § (1977), no. 6,
1258-1264.



Statistically Efficient Estimation for Non-Smooth Probability Densities

[40] Larry Wasserman, All of nonparametric statistics, 2005.

[41] Edward J Wegman, Maximum likelihood estimation of a uni-
modal density function, The Annals of Mathematical Statis-
tics 41 (1970), no. 2, 457-471.

[42] Lin Cheng Zhao, Paruchuri R Krishnaiah, and Xi Ru Chen,
Almost sure [_r-norm convergence for data-based histogram

density estimates, Theory of Probability & Its Applications
35 (1991), no. 2, 396-403.



	Introduction
	Preliminaries
	Notations
	Density Estimation Problem
	Szemerédi Partitions

	Szemerédi Density Estimators
	Minimized Szemerédi Density Estimator (M-SDE)
	Voronoi Szemerédi Density Estimator (V-SDE)

	Convergence Analysis
	Convergence Rate of the M-SDE
	Selection of the Partition Size
	Convergence Rate of the V-SDE
	Minimax Optimality
	Discussions

	Comparison with Related Work
	Experiments
	Density Estimation
	Comparison with Other Estimators

	Conclusion
	Proof of Theorem 1
	Proof of Theorem 4
	Proof of Lemma 1
	Proof of Theorem 3
	Proof of Theorem 2
	Lemmas

