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1 Appendix

1.1 Lipschitz Continuity

Lemma 1. The moment matching mapping fasas is
Lipschitz continuous for controls defined over a compact
set U.

Proof: Lipschitz continuity requires that the gradient
Ofrrar/O0uy is bounded. The gradient is
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We first show that the derivative Opy 1 /0w, is bounded.
Defining 3, := (K4 + J?dI)_lyd, from [I], we obtain

for all state dimensions d =1,...,D
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where N is the size of the training set of the dynamics

GP and @; the ith training input. The corresponding
gradient w.r.t. u; is given by the last I’ elements of
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Let us examine the individual terms in the sum on
the rhs in (6): For a given trained GP [|B4]| < oo is
constant. The definition of g4, in contains an expo-
nentiated negative quadratic term, which is bounded
between [0, 1]. Since I + L', is positive definite, the
inverse determinant is defined and bounded. Finally,
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a?d < 0o, which makes ¢4, < co. The remaining term
in @ is a vector-matrix product. The matrix is regular
and its inverse exists and is bounded (and constant as
a function of w;. Since u; € U where U is compact,
we can also conclude that the vector difference in @
is finite, which overall proves that fyras is (locally)
Lipschitz continuous and Lemma [T}

1.2 Sequential Quadratic Programming

We can use SQP for solving non-linear optimization
problems (NLP) of the form,

min  f(z)
st. b(x) >0
c(xz)=0.

The Lagrangian £ associated with the NLP is

L(x, N\ o)=f(x)— a'Tb(a:) — )\Tc(a:) (7)

where, A and o are Lagrange multipliers. Sequen-
tial Quadratic Programming (SQP) forms a quadratic
(Taylor) approximation of the objective and linear ap-
proximation of constraints at each iteration k

mdin flxy) + V(zp)Td+ 3dTV2 L(z, X, 0)d

st. b(xg) + Vb(zk)Td >0
c(wk) + VC((Bk)Td =0.
(8)

The Lagrange multipliers X\ associated with the equality
constraint are same as the ones defined in the control
Hamiltonian H ??. The Hessian matrix V2 can be
computed by exploiting the block diagonal structure
introduced by the Hamiltonian [? 7 ].
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1.3 Moment Matching Approximation [I]

Following the law of iterated expectations, for target
dimensions a = 1, ..., D, we obtain the predictive mean

ny =Bz, [Ef, [fo(@i—1)|@:-1]]
= /mfa(iitfl)/\/(itfl |ﬂt71,§~3t71)d53t71

= BCLTQaa (9)
Ba = (Ko + Uzzua)_lya (10)

= Eit—l [mfa (ijtfl)]

with g4 = [¢ay,---+qa, ]’ The entries of g, € R" are
computed using standard results from multiplying and
integrating over Gaussians and are given by

o, = / a0y 1IN (Fe1 | o1, S ) Ay
(11)
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where we define

v = (&; — fiy—1) (12)
is the difference between the training input &; and the

mean of the test input distribution p(x:—1, us—1).

Computing the predictive covariance matriz 3; €
RP*P requires us to distinguish between diagonal el-
ements and off-diagonal elements: Using the law of

total (co-)variance, we obtain for target dimensions
a,b=1,....D
Oaa=Ba,_, [vary[2f|@e1]] + Ep .z, [(xf)*] = (uf)?,
(13)
b_]Efwt 1[mt$t] Ntﬂt» a#b, (14)
respectively, where pf is known from @ The off-

diagonal terms do not contain the additional term
Ez, ,[covs[zd, xb|®,_1]] because of the conditional in-
dependence assumption of the GP models. Different
target dimensions do not covary for given @&; 1.

We start the computation of the covariance matrix
with the terms that are common to both the diag-
onal and the off-diagonal entries: With p(&;—1) =
N(;it,l | (i1, f)t,l) and the law of iterated expecta-
tions, we obtain

Efz, [z}, 2)] = Ba, , [Ef[zf|@_1] Ef[z]]| 1]

= [ @) mf @ p@)dE (19

because of the conditional independence of ¢ and ¥
given ;1. Using the definition of the mean function,

we obtain
Eya, [2{z]] = BLQBs, (16)
Q= / (@1, X) T kp(Zo—1, X)p(Tp—1)dEs—1 -
(17)

Using standard results from Gaussian multiplications
and integration, we obtain the entries @Q;; of @ € R™*"

ko (@i, fre—1)ko(E5, frr—1)
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where we define
R=3%,_ (A" + A+,
zij = A;lyi + Ab_luj ,

) with v; taken from . Hence, the off-diagonal entries

of 3 are fully determined by (9)-(12), (14), (16), (17),
and .
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