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1 Appendix

1.1 Lipschitz Continuity

Lemma 1. The moment matching mapping fMM is
Lipschitz continuous for controls defined over a compact
set U .

Proof: Lipschitz continuity requires that the gradient
∂fMM/∂ut is bounded. The gradient is

∂fMM

∂ut
=
∂zt+1

∂ut
=

[
∂µt+1

∂ut
,
∂Σt+1

∂ut

]
. (1)

The derivatives
[
∂µt+1

∂ut
, ∂Σt+1

∂ut

]
can be computed ana-

lytically [1].

We first show that the derivative ∂µt+1/∂ut is bounded.
Defining βd := (Kd + σ2

fd
I)−1yd, from [1], we obtain

for all state dimensions d = 1, . . . , D

µd
t+1 =

∑N

i=1
βdi

qdi
, (2)

qdi = σ2
fd
|I +L−1

d Σ̃t|−
1
2 × (3)

exp
(
− 1

2 (x̃i − µ̃t)
T (Ld + Σ̃t)

−1(x̃i − µ̃t)
)
,
(4)

where N is the size of the training set of the dynamics
GP and x̃i the ith training input. The corresponding
gradient w.r.t. ut is given by the last F elements of

∂µd
t+1

∂µ̃t
=
∑N

i=1
βdi

∂qdi

∂µ̃t
(5)

=
∑N

i=1
βdiqdi(x̃i − µ̃t)

T (Σ̃t +Ld)
−1 ∈ R1×(D+F )

(6)

Let us examine the individual terms in the sum on
the rhs in (6): For a given trained GP ‖βd‖ < ∞ is
constant. The definition of qdi

in (4) contains an expo-
nentiated negative quadratic term, which is bounded
between [0, 1]. Since I+L−1

d Σ̃t is positive definite, the
inverse determinant is defined and bounded. Finally,

σ2
fd
<∞, which makes qdi

<∞. The remaining term
in (6) is a vector-matrix product. The matrix is regular
and its inverse exists and is bounded (and constant as
a function of ut. Since ut ∈ U where U is compact,
we can also conclude that the vector difference in (6)
is finite, which overall proves that fMM is (locally)
Lipschitz continuous and Lemma 1.

1.2 Sequential Quadratic Programming

We can use SQP for solving non-linear optimization
problems (NLP) of the form,

min
u

f(x)

s.t. b(x) ≥ 0
c(x) = 0.

The Lagrangian L associated with the NLP is

L(x,λ,σ) = f(x)− σT b(x)− λT c(x) (7)

where, λ and σ are Lagrange multipliers. Sequen-
tial Quadratic Programming (SQP) forms a quadratic
(Taylor) approximation of the objective and linear ap-
proximation of constraints at each iteration k

min
d

f(xk) +∇f(xk)
Td+ 1

2d
T∇2

xxL(x,λ,σ)d
s.t. b(xk) +∇b(xk)

Td ≥ 0
c(xk) +∇c(xk)

Td = 0.

(8)

The Lagrange multipliers λ associated with the equality
constraint are same as the ones defined in the control
Hamiltonian H ??. The Hessian matrix ∇2

xx can be
computed by exploiting the block diagonal structure
introduced by the Hamiltonian [? ? ].
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1.3 Moment Matching Approximation [1]

Following the law of iterated expectations, for target
dimensions a = 1, . . . , D, we obtain the predictive mean

µa
t = Ex̃t−1 [Efa [fa(x̃t−1)|x̃t−1]] = Ex̃t−1 [mfa(x̃t−1)]

=

∫
mfa(x̃t−1)N

(
x̃t−1 | µ̃t−1, Σ̃t−1

)
dx̃t−1

= βT
a qa , (9)

βa = (Ka + σ2
wa

)−1ya (10)

with qa = [qa1 , . . . , qan ]
T . The entries of qa ∈ Rn are

computed using standard results from multiplying and
integrating over Gaussians and are given by

qai =

∫
ka(x̃i, x̃t−1)N

(
x̃t−1 | µ̃t−1, Σ̃t−1

)
dx̃t−1

(11)

= σ2
fa |Σ̃t−1Λ

−1
a + I|− 1

2 exp
(
− 1

2ν
T
i (Σ̃t−1 +Λa)

−1νi
)
,

where we define

νi := (x̃i − µ̃t−1) (12)

is the difference between the training input x̃i and the
mean of the test input distribution p(xt−1,ut−1).

Computing the predictive covariance matrix Σt ∈
RD×D requires us to distinguish between diagonal el-
ements and off-diagonal elements: Using the law of
total (co-)variance, we obtain for target dimensions
a, b = 1, . . . , D

σ2
aa=Ex̃t−1

[
varf [x

a
t |x̃t−1]

]
+Ef,x̃t−1 [(x

a
t )

2]−(µa
t )

2 ,
(13)

σ2
ab=Ef,x̃t−1

[xat x
b
t ]−µa

t µ
b
t , a 6= b , (14)

respectively, where µa
t is known from (9). The off-

diagonal terms do not contain the additional term
Ex̃t−1

[covf [x
a
t , x

b
t |x̃t−1]] because of the conditional in-

dependence assumption of the GP models. Different
target dimensions do not covary for given x̃t−1.

We start the computation of the covariance matrix
with the terms that are common to both the diag-
onal and the off-diagonal entries: With p(x̃t−1) =
N
(
x̃t−1 | µ̃t−1, Σ̃t−1

)
and the law of iterated expecta-

tions, we obtain

Ef,x̃t−1 [x
a
t , x

b
t ] = Ex̃t−1

[
Ef [x

a
t |x̃t−1]Ef [x

b
t |x̃t−1]

]
=

∫
ma

f (x̃t−1)m
b
f (x̃t−1)p(x̃t−1)dx̃t−1 (15)

because of the conditional independence of xat and xbt
given x̃t−1. Using the definition of the mean function,

we obtain

Ef,x̃t−1
[xat x

b
t ] = β

T
aQβb , (16)

Q :=

∫
ka(x̃t−1,X)T kb(x̃t−1,X)p(x̃t−1)dx̃t−1 .

(17)

Using standard results from Gaussian multiplications
and integration, we obtain the entries Qij of Q ∈ Rn×n

Qij =
ka(x̃i, µ̃t−1)kb(x̃j , µ̃t−1)√

|R|
exp

(
1
2z

T
ijT

−1zij
)
(18)

where we define

R := Σ̃t−1(Λ
−1
a +Λ−1

b ) + I , T := Λ−1
a +Λ−1

b + Σ̃−1
t−1 ,

zij := Λ−1
a νi +Λ−1

b νj ,

with νi taken from (12). Hence, the off-diagonal entries
of Σt are fully determined by (9)–(12), (14), (16), (17),
and (18).
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