
Parallelised Bayesian Optimisation via Thompson Sampling

Kirthevasan Kandasamy Akshay Krishnamurthy Jeff Schneider, Barnabás Póczos
Carnegie Mellon University
kandasamy@cs.cmu.edu

University of Massachusetts, Amherst
akshay@cs.umass.edu

Carnegie Mellon University
{schneide, bapoczos}@cs.cmu.edu

Abstract
We design and analyse variations of the classical
Thompson sampling (TS) procedure for Bayesian
optimisation (BO) in settings where function eval-
uations are expensive but can be performed in
parallel. Our theoretical analysis shows that a
direct application of the sequential Thompson
sampling algorithm in either synchronous or asyn-
chronous parallel settings yields a surprisingly
powerful result: making n evaluations distributed
among M workers is essentially equivalent to
performing n evaluations in sequence. Further,
by modelling the time taken to complete a func-
tion evaluation, we show that, under a time con-
straint, asynchronous parallel TS achieves asymp-
totically lower regret than both the synchronous
and sequential versions. These results are com-
plemented by an experimental analysis, showing
that asynchronous TS outperforms a suite of exist-
ing parallel BO algorithms in simulations and in
an application involving tuning hyper-parameters
of a convolutional neural network. In addition
to these, the proposed procedure is conceptually
much simpler than existing work for parallel BO.

1 Introduction

Many real world problems require maximising an expensive
unknown function f from noisy evaluations. As evalua-
tions are typically expensive in such applications, we would
like to optimise the function with a minimal number of
evaluations. For example, consider the task of tuning the
hyper-parameters of a machine learning model, which can
be framed as a black-box optimisation problem where an
evaluation to f at x trains the model on the hyper-parameters
x, and returns the cross validation accuracy f(x) on the vali-
dation set. The evaluation of f(x) is noisy due to sources of
randomness in the training procedure and is typically expen-
sive, especially with large models. In drug discovery, each

Proceedings of the 21st International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2018, Lanzarote, Spain. PMLR:
Volume 84. Copyright 2018 by the author(s).

x characterises a candidate drug and f(x) measures various
qualities such as the potency, specificity, and solubility of
the drug via an expensive in vitro or in vivo test. Bayesian
optimisation (BO) refers to a suite of methods for black-
box optimisation under Bayesian assumptions on f that has
been successfully applied in hyper-parameter tuning, drug
discovery and other applications in policy search, online ad-
vertising, and scientific experimentation [12, 17, 30, 32, 40].

In this paper, we develop new algorithms for parallel
Bayesian optimisation. For example, in hyper-parameter
tuning, with modern computing infrastructures, we have
the ability to evaluate several hundred hyper-parameters in
parallel. The training time for each hyper-parameter is in-
fluenced by a myriad of factors, including contention on
shared compute resources and the actual hyper-parameter
choices, so it typically exhibits significant variability. Our
goal is to find a set of hyper-parameters that achieve low
validation error, in a short amount of time. Similarly, in
drug discovery, high throughput screening equipment can
test several thousand candidate drugs at the same time.

Addressing this problem in the above and several other ap-
plications with parallel function evaluations, we design and
analyse new algorithms for parallel Bayesian optimisation.
Our algorithms are synchronous and asynchronous parallel
versions of Thompson Sampling (TS), which we call synTS
and asyTS, respectively. These algorithms are conceptually
simple, easy to implement, and also scale to large number
of parallel evaluations. In a departure from prior work on
parallel BO, we explicitly model evaluation times and study
the relationship between optimisation performance and time,
in addition to the more standard relationship between opti-
misation and the number of function evaluations. Our main
contributions are:
1. A theoretical analysis demonstrating that both synTS

and asyTS making n evaluations distributed among M
workers is almost as good as if the n evaluations were
made in sequence.

2. We introduce and analyse simple regret with time as a re-
source in parallel settings. Under this definition, asyTS
outperforms the synchronous and sequential versions up
to constant factors.

3. Empirically, we demonstrate that TS significantly

Parallelised Bayesian Optimisation via Thompson Sampling

outperforms existing methods for parallel BO in
both the synchronous and asynchronous settings
on several synthetic problems and a hyperparam-
eter tuning task. A python implementation of
our algorithm and experiments is available at
github.com/kirthevasank/gp-parallel-ts.

Related Work
Bayesian optimisation methods start with a prior belief dis-
tribution for f and incorporate function evaluations into
updated beliefs in the form of a posterior. Popular algo-
rithms choose points to evaluate f via deterministic query
rules such as expected improvement (EI) [21] or upper con-
fidence bounds (UCB) [41]. We however, will focus on a
randomised selection procedure known as Thompson sam-
pling [42], which selects a point by maximising a random
sample from the posterior. TS has been explored for se-
quential BO [4, 39] and some recent theoretical advances
have characterised the performance of TS in sequential set-
tings [3, 7, 27, 35, 36].

There has been a flurry of recent activity in parallelising
BO [8, 9, 11, 13, 19, 26, 38, 43–46]. In comparison to
this prior work, our approach enjoys one or more of the
following advantages.

1. Asynchronicity: The majority of work on parallel BO
are in the synchronous (batch) setting. To our knowl-
edge, only [11, 19, 43] can handle asynchronous paral-
lelisation.

2. Theoretical underpinnings: Most methods for parallel
BO do not come with theoretical guarantees, with the
exception of some work using UCB techniques [8, 9, 26].
Crucially, to the best of our knowledge, no theoretical
guarantees are available for asynchronous methods.

3. Conceptual simplicity: All of the above methods ei-
ther introduce additional hyper-parameters and/or an-
cillary computational subroutines. Some methods be-
come computationally prohibitive when there are a
large number of workers and must resort to approxi-
mations [19, 38, 43, 46]. In contrast, our approach is
conceptually simple – a direct adaptation of the sequen-
tial TS algorithm to the parallel setting. Hence, it is
robust in practice, especially with a large number of
workers. Further, unlike existing methods, its compu-
tationally complexity does not increase with M and is
exactly the same as the sequential version.

We mention that parallelised versions of TS have been ex-
plored to varying degrees in some applied domains of bandit
and reinforcement learning research [15, 18, 31]. However,
to our knowledge, we are the first to theoretically anal-
yse parallel TS. More importantly, we are also the first
to develop and study TS in an asynchronous parallel set-
ting. Besides BO, there has been a line of work on online
learning with delayed feedback (as we have in the parallel

setting) [22, 33]. In addition, Jun et al. [23] study a best-arm
identification problem when queries are issued in batches.
But these papers only consider finite decision sets and do
not model evaluation times to study trade-offs when time is
viewed as the primary resource.

2 Preliminaries
We wish to maximise an unknown function f : X → R
defined on a compact domainX ⊂ Rd, by repeatedly obtain-
ing noisy evaluations of f ; when we evaluate f at x ∈ X ,
we observe y = f(x)+εwhere the noise ε satisfies E[ε] = 0.
We work in the Bayesian paradigm, modeling f itself as a
random quantity. Following the plurality of Bayesian op-
timisation literature, we assume that f is a sample from a
Gaussian process [34] and that the noise, ε ∼ N (0, η2), is
i.i.d normal. A Gaussian process (GP) is characterised by
a mean function µ : X → R and prior (covariance) kernel
κ : X 2 → R. If f ∼ GP(µ, κ), then f(x) is distributed
normally as N (µ(x), κ(x, x)) for all x ∈ X . Addition-
ally, given n observations A = {(xi, yi)}ni=1 from this GP,
where xi ∈ X , yi = f(xi) + εi ∈ R, the posterior for f is
also a GP with mean µA and covariance κA given by,

µA(x) = k>(K + η2In)−1Y,

κA(x, x̃) = κ(x, x̃)− k>(K + η2In)−1k̃. (1)

Here Y ∈ Rn such that Yi = yi, and k, k̃ ∈ Rn are such
that ki = κ(x, xi), k̃i = κ(x̃, xi). The Gram matrix K ∈
Rn×n is given by Ki,j = κ(xi, xj), and In ∈ Rn×n is the
identity matrix. Some common choices for the kernel are
the squared exponential (SE) kernel and the Matérn kernel.
We refer the reader to Rasmussen and Williams [34] for
more background on GPs.

Our goal is to find the maximiser x? = argmaxx∈X f(x)
of f through repeated evaluations. In the BO literature, this
is typically framed as minimising the simple regret, which is
the difference between the optimal value f(x?) and the best
evaluation of the algorithm. Since f is a random quantity,
so is its optimal value and hence the simple regret. This
motivates studying the Bayes simple regret, which is the
expectation of the simple regret. Formally, we define the
simple regret, SR(n), and Bayes simple regret, BSR(n), of
an algorithm after n evaluations as,

SR(n) = f(x?)− max
j=1,...,n

f(xj),

BSR(n) = E[SR(n)]. (2)

The expectation in BSR(n) is with respect to the prior f ∼
GP(0, κ), the noise in the observations εj ∼ N (0, η2), and
any randomness of the algorithm. We focus on simple regret
here mostly to simplify exposition; our proof also applies
for cumulative regret, which may be more familiar.

In many applications of BO, including hyperparameter tun-
ing, the time required to evaluate the function is the dom-
inant cost, and we are most interested in maximising f in

https://github.com/kirthevasank/gp-parallel-ts

Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, Barnabás Póczos

Figure 1: An illustration of the synchronous (left) and asynchronous (right) settings using M = 3 workers. The short vertical lines
indicate when a worker finished its last evaluation. In the synchronous setting the grey shaded regions indicate idle time after a worker
finishes its job. The horizontal location of a number indicates when the worker started its next evaluation while the number itself denotes
the order in which the evaluation was dispatched by the algorithm.

a short period of time. Moreover, there is often consider-
able variability in the time required for different evaluations,
caused by inherent differences between points in the do-
main, randomness of the environment, or other factors. For
example, in the hyperparameter tuning application, unpre-
dictable factors such as resource contention, initialisation,
etc., may induce significant variability in evaluation times.

To adequately capture these settings, we model the time to
complete an evaluation as a random variable, and measure
performance in terms of the simple regret within a time
budget, T . Specifically, letting N = N(T) denote the
(random) number of evaluations performed by an algorithm
within time T , we define the simple regret SR′(T) and the
Bayes simple regret BSR′(T) as

SR′(T) =

{
f(x?)−maxj≤N f(xj) if N ≥ 1

maxx∈X |f(x?)− f(x)| otherwise
,

BSR′(T) = E[SR′(T)]. (3)

This definition is similar to (2), except, when an algorithm
has not completed an evaluation yet, its simple regret is the
worst possible value. In BSR′(T), the expectation now also
includes the randomness in the evaluation times in addition
to the three sources of randomness in BSR(n). In this work,
we will model evaluation times as random variables indepen-
dent from f ; specifically we consider uniform, half-normal,
or exponential random variables. While the model does not
precisely capture all aspects of evaluation times observed in
practice, we prefer it because (a) it is fairly general, (b) it
leads to a clean algorithm and analysis, and (c) the resulting
algorithm has good performance on real applications, as we
demonstrate in Section 4. Studying other models for the
evaluation time is an intriguing question for future work and
is discussed further in Section 5.

To our knowledge, all prior theoretical work for parallel
BO [8, 9, 26], measures regret in terms of the total number
of evaluations, i.e. SR(n),BSR(n). However, explicitly
modeling evaluation times and treating time as the main
resource in the definition of regret is a better fit for applica-
tions and leads to new conclusions in the parallel setting.

Parallel BO: We are interested in parallel approaches for
BO, where the algorithm has access to M workers that can
evaluate f at different points in parallel. In this setup, we

wish to differentiate between the synchronous and asyn-
chronous settings, illustrated in Fig. 1. In the former, the
algorithm issues a batch of M queries simultaneously, one
per worker, and waits for all M evaluations to be com-
pleted before issuing the next batch. In contrast, in the
asynchronous setting, a new evaluation may be issued as
soon as a worker finishes its last job and becomes available.
In the parallel setting, N in (3) will refer to the number of
evaluations completed by all M workers.

One of our goals in the theoretical analysis will be to quan-
tify the trade-offs between information accumulation and
worker utilisation in the sequential, synchronous parallel
and asynchronous parallel settings. When comparing the
three settings purely in terms of the number of evaluations,
i.e. BSR(n), the parallel settings are naturally at a disadvan-
tage: the sequential algorithm makes use of feedback from
all its previous evaluations when issuing a query, whereas a
parallel algorithm could be missing up toM−1 of them. As
we will see however, for our TS algorithms, this difference is
fairly small - the bounds for the parallel algorithms are only
slightly worse than for sequential variants. The advantage in
the parallel setting however, is that we will be able to com-
plete more evaluations than a sequential version within an
allotted time. One can make a similar argument to compare
the synchronous and asynchronous settings. When issu-
ing queries, a synchronous algorithm has more information
about f , since all previous evaluations complete before a
batch is selected, whereas asynchronous algorithms always
issue queries with M − 1 missing evaluations. For example,
in Fig. 1, when dispatching the fourth job, the synchronous
version uses results from the first three evaluations whereas
the asynchronous version uses just the result of the first
evaluation. However, in the synchronous setting, workers
may sit idle for some time waiting for the other workers to
finish. Foreshadowing our results in Theorem 5, when there
is significant variability in evaluation times, worker utilisa-
tion is more important than information accumulation, and
hence the asynchronous setting will enable better bounds on
BSR′(T). Next, we present our algorithms.

3 Thompson Sampling for Parallel BO

A review of sequential TS: Thompson sampling [42] is
a randomised strategy for sequential decision making un-

Parallelised Bayesian Optimisation via Thompson Sampling

der uncertainty. At step j, TS samples xj according to
the posterior probability that it is the optimum. That is,
xj is drawn from the posterior density px?(·|Dj) where
Dj = {(xi, yi)}j−1

i=1 is the history of query-observation
pairs up to step j. For GPs, this allows for a very sim-
ple and elegant algorithm. Observe that we can write
px?(x|Dj) =

∫
px?(x|g) p(g|Dj)dg, and that px?(·|g) puts

all its mass at the maximiser argmaxx g(x) of g. There-
fore, at step j, we draw a sample g from the posterior for
f conditioned on Dj and set xj = argmaxx g(x) to be the
maximiser of g. We then evaluate f at xj . The resulting
procedure, called seqTS, is displayed in Algorithm 1.

Algorithm 1: seqTS Thompson [42]

Require: Prior GP GP(0, κ).
1: D1 ← ∅, GP1 ← GP(0, κ).
2: for j = 1, 2, . . . do
3: Sample g ∼ GPj .
4: xj ← argmaxx∈X g(x).
5: yj ← Query f at xj .
6: Dj+1 ← Dj ∪ {(xj , yj)}.
7: Compute posterior GPj+1 = GP(µDj+1 , κDj+1)

conditioned on Dj+1. See (1).
8: end for

Asynchronous Parallel TS: For the asynchronously paral-
lel setting, we propose a natural adaptation of the above
algorithm. Precisely, when a worker finishes an evaluation,
we update the posterior with the query-feedback pair, sample
g from the posterior, and re-deploy the worker with an evalu-
ation at xj = argmaxx g(x). The procedure, called asyTS,
is displayed in Algorithm 2. In the first M steps, when at
least one of the workers have not been assigned a job yet,
the algorithm skips lines 3–5 and samples g from the prior
GP, GP1, in line 6.

Algorithm 2: asyTS
Require: Prior GP GP(0, κ).

1: D1 ← ∅, GP1 ← GP(0, κ).
2: for j = 1, 2, . . . do
3: Wait for a worker to finish.
4: Dj ← Dj−1 ∪ {(x′, y′)} where (x′, y′) are the

worker’s previous query/observation.
5: Compute posterior GPj = GP(µDj , κDj).
6: Sample g ∼ GPj , xj ← argmax g(x).
7: Re-deploy worker to evaluate f at xj .
8: end for

Synchronous Parallel TS: To illustrate comparisons, we
also introduce a synchronous parallel version, synTS, which
makes the following changes to Algorithm 2. In line 3
we wait for all M workers to finish and compute the GP
posterior with all M evaluations in lines 4–5. In line 6 we

draw M samples and re-deploy all workers with evaluations
at their maxima in line 7.

We wish to highlight the main methodological differences
of our algorithms with prior work for parallel BO. Since
existing methods select points using deterministic criteria
such as UCB or EI, they need to explicitly enforce diversity
of query points so as to prevent the algorithm from picking
the same or similar points for all M workers. Consequently,
such methods introduce additional hyperparameters and/or
potentially expensive computational routines. In contrast,
asyTS and synTS are essentially the same as their sequen-
tial counterpart and their computational complexity does not
increase with M . In addition to this computational advan-
tage, this conceptual simplicity results in robust empirical
performance in practice. Our theoretical analysis shows that
a straightforward application of TS works because its in-
herent randomness is sufficient to avoid redundant function
evaluations when managing M workers in parallel. This
phenomenon is confirmed by our experiments in Section 4,
where we see that explicitly encouraging diversity does not
improve the performance of asyTS. We demonstrate this em-
pirically by constructing a variant asyHTS of asyTS which
employs one such diversity scheme found in the literature.
asyHTS performs either about the same as or slightly worse
than asyTS in the many experiments we study in Section 4.

3.1 Theoretical Results

We now present our theoretical contributions. We analyse
the performance of parallelised TS both with the number
of evaluations n and the time budget T as the resource.
In particular, we study how these rates change with the
number of workers M and demonstrate that as M increases,
while BSR(n) worsens slightly for the parallel settings when
compared to the sequential setting, BSR′(T) can improve
dramatically. We provide theorem statements here to con-
vey key intuitions, with all formal statements and proofs
deferred to Appendices A and B. We use �,. to denote
equality/inequality up to constant factors that are common
across all theorem statements.

Maximum Information Gain (MIG): As in prior work,
our regret bounds involve the MIG [41], which captures the
statistical difficulty of the BO problem. It quantifies the
maximum information a set of n observations provide about
f . To define the MIG, and for subsequent convenience, we
introduce one notational convention. For a finite subset
A ⊂ X , we use yA = {(x, f(x) + ε) | x ∈ A} to de-
note the query-observation pairs corresponding to the set A.
The MIG is then defined as Ψn = maxA⊂X ,|A|=n I(f ; yA)
where I denotes the Shannon Mutual Information. Srini-
vas et al. [41] show that Ψn is sublinear in n for different
classes of kernels; e.g. for the SE kernel, Ψn ∝ log(n)d+1

and for the Matérn kernel with smoothness parameter ν,
Ψn ∝ n1− ν

2ν+d(d+1) .

Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, Barnabás Póczos

Our first goal is to compare the simple regret BSR(n) after
n evaluations for synTS and asyTS with that of seqTS. To
this end, we prove the following theorem for seqTS which
is a straightforward extension of a result in [35].

Theorem 1 (Informal. BSR(n) for seqTS). Let f ∼
GP(0, κ). Then, for seqTS, BSR(n) .

√
Ψn log(n)/n.

The first theoretical result of this paper, presented below in
Theorem 2, bounds BSR(n) for synTS.

Theorem 2 (Informal. BSR(n) for synTS). Let f ∼
GP(0, κ). Then, for synTS,

BSR(n) .
M
√

log(M)

n
+

√
Ψn log(n+M)

n
.

A comparison of the bounds in Theorems 1 and 2 reveals
that, for reasons explained before in Section 2, seqTS out-
performs synTS purely in terms of the number of evalua-
tions n. However, for large n, the first term in the bound for
synTS vanishes faster than the latter, and the dependence on
M in the latter term is insignificant when n�M . Hence,
the difference between the sequential and synchronous par-
allel algorithms is small and negligible for large n. We also
note that the leading constant for the second term is the same
as that in Theorem 1. This implies a powerful conclusion:
synTS with M parallel workers is almost as good as the
sequential version with as many evaluations.

To present the results for the asynchronous setting, we intro-
duce the following quantity ξM , which bounds the informa-
tion we can gain about f from the evaluations in progress.
Assume that we have completed n evaluations to f at the
points in Dn and that there are q evaluations in process
at points in Aq. That is Dn, Aq ⊂ X , |Dn| = n and
|Aq| = q < M . Then ξM > 0 satisfies the following
for all n ≥ 1,

max
Aq⊂X ,|Aq|<M

I(f ; yAq |yDn) ≤ 1

2
log(ξM). (4)

Our next result is a bound on BSR(n) for asyTS.

Theorem 3 (Informal. BSR(n) for asyTS). Let f ∼
GP(0, κ). Then, for asyTS,

BSR(n) .

√
ξMΨn log(n)

n
.

Unfortunately, this bound depends on ξM which can be quite
large under general conditions. However, ξM is a well stud-
ied quantity in the GP literature; precisely, Desautels et al.
[9], Krause et al. [28] show that ξM can be bounded by a ker-
nel dependent constant Cκ by initially querying f using an
uncertainty sampling procedure for γM samples. This sam-
pling procedure, which iteratively samples the points with
the largest variance in the GP, is asynchronously parallelis-
able. Desautels et al. [9] shows that for the Matérn kernel,

with γM � poly(M), this procedure guarantees Cκ ≤ ee,
and for the SE kernel, with γM �Mpolylog(M), we can
achieve any constant Cκ > 1, depending on the order of the
polylog term. These values for Cκ, γM are not absolute –
by picking a larger γM we can achieve smaller Cκ. In all
cases however, γM is at most polynomial inM and does not
depend on n. We provide more details on the initialisation
scheme in Appendix A.4. By initialising asyTS with this
sampling scheme, we obtain the bound below.

Corollary 4 (Informal. BSR(n) for asyTS after initialisa-
tion). Let f ∼ GP(0, κ). By first initialising asyTS with
an uncertainty sampling scheme [9, 28], we have,

BSR(n) .
γM
n

+

√
CκΨn log(n)

n
.

Despite the dependence on the initialisation scheme and
the constant term Cκ, Corollary 4 is encouraging: since the
first term in the bound vanishes faster than the latter, up to
constant factors, asyTS with M parallel workers is almost
as good as seqTS.

That said, we believe that bounds similar to Theorem 2
should be obtainable for asyTS without the additional con-
stant Cκ and without the initialisation scheme. For instance,
asyTS performs very well in our experiments even though
we do not use this initialisation scheme. We leave it to future
work to resolve this gap.

Now that we have bounds on the regret as a function of the
number of evaluations, we can turn to bounding BSR′(T),
the simple regret with time as the main resource. For this,
we consider three different random distribution models for
the time to complete a function evaluation: uniform, half-
normal, and exponential. We choose these three distribu-
tions since they exhibit three different notions of tail decay,
namely bounded, sub-Gaussian, and sub-exponential1. Ta-
ble 1 describes these distributions and states the expected
number of evaluations nseq, nsyn, nasy for seqTS, synTS,
asyTS respectively with M workers in time T . The final
theoretical result of this paper, presented below, bounds
BSR′(T) for the Thompson sampling variants.

Theorem 5 (Informal, Simple regret with time for TS). Let
f ∼ GP(0, κ) and assume that for asyTS, ξM is bounded
by Cκ after suitable initialisation. Assume that the times
taken for an evaluation are i.i.d random variables with
either uniform, half-normal or exponential distributions.
Let nseq, nsyn, nasy be as given in Table 1. Then nseq ≤
nsyn ≤ nasy and BSR′(T) can be upper bounded by the
following terms for seqTS, synTS, and asyTS.

seqTS:

√
Ψnseq log(nseq)

nseq
,

1While we study uniform, half-normal and exponential, anal-
ogous results for other distributions with similar tail behaviour
are possible with the appropriate concentration inequalities. See
Appendix B.

Parallelised Bayesian Optimisation via Thompson Sampling

Distribution pdf p(x) seqTS synTS asyTS

Unif(a, b) 1
b−a for x ∈ (a, b) nseq = 2T

b+a nsyn = M T (M+1)
a+bM nasy = Mnseq (> nsyn)

HN (ζ2)
√

2
ζ
√
π
e
− x2

2ζ2 for x > 0 nseq = T
√
π

ζ
√

2
nsyn � Mnseq√

log(M)
nasy = Mnseq

Exp(λ) λe−λx for x > 0 nseq = λT nsyn � Mnseq

log(M) nasy = Mnseq

Table 1: The second column shows the probability density functions p(x) for the uniform Unif(a, b), half-normalHN (ζ2),
and exponential Exp(λ) distributions. The subsequent columns show the expected number of evaluations nseq, nsyn, nasy for
seqTS, synTS, and asyTS respectively with M workers. synTS always completes fewer evaluations than asyTS; e.g., in the
exponential case, the difference could be a log(M) factor.

synTS:
M
√

log(M)

nsyn
+

√
Ψnsyn log(nsyn +M)

nsyn
,

asyTS:
poly(M)

nasy
+

√
CκΨnasy log(nasy)

nasy
.

As the above bounds are decreasing with the number of
evaluations and since nseq < nsyn < nasy, the bound for
BSR′(T) shows the opposite trend to BSR(n): asyTS is
better than synTS which is better than seqTS. While the
difference between synTS and asyTS is only a constant
factor for the uniform distribution, it grows with the number
of workers M for heavier tailed distributions;

√
log(M)

for the half-normal and log(M) for the exponential. Hence,
as the number of workers M increases, asyTS becomes
increasingly attractive when compared to synTS. Intuitively,
when there is more variability in evaluations, workers may
sit idle for longer in the synchronous setting and hence
synTS will complete fewer evaluations than asyTS.

Synopsis: The take-aways of our theoretical analysis can
be summarised as follows. Theorems 2 and 3 show that
since the synchronous setting has more information than
the asynchronous setting, it achieves a better bound for
BSR(n). Therefore, if function evaluations deterministi-
cally take the same amount of time, the synchronous algo-
rithm may be preferred. Further, in some applications, we
are necessarily in the synchronous setting. For example,
in pre-clinical drug discovery, high throughput screening
equipment can test a few thousand compounds in parallel,
but only in batches [16]. However, Theorem 5 contends that
if there is significant variability in evaluation times, then it is
prudent to be asynchronous despite the lack of information
when compared to the synchronous setting.

A note on the proofs: To lift the sequential TS proof
of Russo and Van Roy [35] to the synchronous case we
exploit several properties of TS in this setting; for exam-
ple, the distribution of xj |Dj is the same as x?|Dj , all jobs
in one batch are completed before the next, and that con-
ditioned on the randomness of the algorithm, the jobs in
one batch are deterministic. These properties, along with a
careful decomposition of terms in the instantaneous regret
yields the bound. Unfortunately these properties do not

hold in the asynchronous case, and we resort to techniques
from Desautels et al. [9] to bound the MIG via uncertainty
sampling. For Theorem 5, we establish concentration results
for sums of random variables and sums of their maxima.
The proofs of the uniform and half-normal cases uses stan-
dard sub-Gaussianity arguments whereas the proof for the
exponential distribution uses a logarithmic Sobolev inequal-
ity and Herbst’s argument [6].

4 Experiments

We compare parallelised TS with a comprehensive suite
of parallel BO methods from the literature on a series of
synthetic experiments and a hyper-parameter tuning task on
the CIFAR-10 dataset.

Methods: Synchronous Methods: synRAND: synchronous
random sampling, synTS: synchronous TS, synBUCB
from [9], synUCBPE from [8]. Aynchronous Methods:
asyRAND: asynchronous random sampling, asyHUCB:
an asynchronous version of UCB with hallucinated ob-
servations [9, 11], asyUCB: asynchronous upper con-
fidence bound [41], asyEI: asynchronous expected im-
provement [21], asyTS: asynchronous TS, asyHTS: asyn-
chronous TS with hallucinated observations to explicitly
encourage diversity. This last method is based on asyTS
but bases the posterior on Dj ∪{(x, µDj (x))}x∈Fj in line 5
of Algorithm 2, where Fj are the points in evaluation by
other workers at step j and µDj is the posterior mean con-
ditioned on just Dj ; this preserves the mean of the GP, but
shrinks the variance around the points in Fj . This method is
inspired by [9, 11], who use such hallucinations for UCB/EI-
type strategies so as to discourage picking points close to
those that are already in evaluation. asyUCB and asyEI
directly use the sequential UCB and EI criteria, since the
asynchronous versions do not repeatedly pick the same point
for all workers. asyHUCB adds hallucinated observations
to encourage diversity and is similar to [11] (who use EI
instead) and is also an asynchronous version of [9]. While
there are other methods for parallel BO, many of them are
either computationally quite expensive and/or require tuning
several hyperparameters which might affect performance;
They are not straightforward to implement and their imple-
mentations are not publicly available. Appendix C describes

Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, Barnabás Póczos

Number of evaluations (n)
0 20 40 60 80 100 120

S
R
(n
)

10 0

Park1, d = 4, M = 10, halfnormal

seqTS

synTS

asyTS

Simulated time units (T)
0 10 20 30 40

S
R

′
(T

)

10
-2

10
-1

Branin, d = 2, M = 4, uniform

Simulated time units (T)
0 5 10 15 20 25

S
R

′
(T

)

10 -1

10 0

Park2, d = 4, M = 10, halfnormal

synRAND

synHUCB

synUCBPE

synTS

asyRAND

asyUCB

asyHUCB

asyEI

asyHTS

asyTS

Simulated time units (T)
0 5 10 15 20 25 30

S
R

′
(T

)

10
-1

10
0

Hartmann6, d = 6, M = 12, exponential

Simulated time units (T)
0 5 10 15 20 25 30

S
R

′
(T

)

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Hartmann18, d = 18, M = 25, halfnormal

Simulated time units (T)
0 5 10 15 20

S
R

′
(T

)

10

15

20

25

CurrinExp-14, d = 14, M = 35, pareto(k=3)

Figure 2: Results on the synthetic experiments. The title states the function used, its dimensionality d, the number of workers M and
the distribution used for the time. All distributions were constructed so that the expected time for one evaluation was one time unit. The
dotted lines depict synchronous methods while the solid lines are for asynchronous methods. The error bars indicate one standard error.
All figures were averaged over at least 15 experiments.

implementation details for all methods.

Synthetic Experiments: We first present some results on a
suite of benchmarks for global optimisation. To better align
with our theoretical analysis, we add Gaussian noise to the
function value when querying. This makes the problem
more challenging than standard global optimisation where
evaluations are not noisy. In our first experiment, we cor-
roborate the claims in Theorems 1, 2, and 3 by comparing
the performance of seqTS, synTS, and asyTS in terms of
the number of evaluations n on the Park1 function. The
results, displayed in the first panel of Fig. 2, confirm that
when comparing solely in terms of n, the sequential version
outperforms the parallel versions while synchronous does
marginally better than asynchronous.

Next, we present results on a series of global optimisation
benchmarks with different values for the number of parallel
workers M . We model the evaluation “time” as a random
variable that is drawn from either a uniform, half-normal,
exponential, or Pareto2 distribution. Each time a worker
makes an evaluation, we also draw a sample from this time
distribution and maintain a queue to simulate the different
start and finish times for each evaluation. The results are
presented in Fig. 2 where we plot the simple regret SR′(T)
against (simulated) time T . In the Park2 experiment, all
asynchronous methods perform roughly the same and out-
perform the synchronous methods. On all other the other
problems, asyTS performs best among the asynchronous
methods and synTS among the synchronous methods. asy-

2A Pareto distribution with parameter k has a pdf which decays
p(x) ∝ x−(k+1).

HTS, which also uses hallucinated observations, performs
about the same or slightly worse than asyTS, demonstrating
that there is no need to explicitly encourage diversity in TS.
It is worth emphasizing that the improvement of TS over
other methods become larger asM increases (e.g. M > 20).
We believe that the ability to scale robustly with the number
of workers is primarily due to the conceptual simplicity of
our approach. Appendix C provides more details on these
functions and additional synthetic experiments.

Image Classification on Cifar-10: We experiment with
tuning hyperparameters of a 6 layer convolutional neural
network on an image classification task on the Cifar-10
dataset [29]. We tune the number of filters/neurons at each
layer in the range (16, 256). Here, each function evaluation
trains the model on 10K images for 20 epochs and computes
the validation accuracy on a validation set of 10K images.
Our implementation uses Tensorflow [1] and we use a paral-
lel set up of M = 4 Titan X GPUs. The number of filters
influences the training time which varied between ∼ 4 to
∼ 16 minutes depending on the size of the model. Note that
this deviates from our theoretical analysis which treats func-
tion evaluation times as independent random variables, but
it still introduces variability to evaluation times and demon-
strates the robustness of our approach. Each method is given
a budget of 2 hours to find the best model by optimising
accuracy on a validation set. These evaluations are noisy
since the result of each training procedure depends on the
initial parameters of the network and other stochasticity in
the training procedure. Since the true value of this func-
tion is unknown, we simply report the best validation error
achieved by each method. Due to the expensive nature of

Parallelised Bayesian Optimisation via Thompson Sampling

Time (s)
1000 2000 3000 4000 5000 6000 7000

V
al
id
at
io
n
E
rr
or

0.285

0.29

0.295

0.3

0.305

0.31

0.315

0.32

0.325

Cifar10, d = 6, M = 4, real-time

synHUCB

synTS

asyRAND

asyHUCB

asyEI

asyTS

synBUCB synTS asyRAND
25.63± 0.002 22.83± 1.01 23.93± 1.78

asyEI asyHUCB asyTS
19.49± 0.21 22.14± 1.12 19.53± 0.11

Figure 3: Results on the Cifar-10 experiment. Left: The best validation
set error vs time for each method (lower is better). Top: Test set error after
training the best model chosen by each method for 80 epochs. The results
presented are averaged over 9 experiments.

this experiment we only compare 6 of the above methods.
The results are presented in Fig. 3. asyTS performs best
on the validation error. The following are ranges for the
number of evaluations for each method over 9 experiments;
synchronous: synBUCB: 56 - 68, synTS: 56 - 68. asyn-
chronous: asyRAND: 93 - 105, asyEI: 83 - 92, asyHUCB:
85 - 92, asyTS: 80 - 88.

While 20 epochs is insufficient to completely train a model,
the validation error gives a good indication of how well the
model would perform after sufficient training. In Fig. 3, we
also give the error on a test set of 10K images after training
the best model chosen by each algorithm to completion,
i.e. for 80 epochs. asyTS and asyEI are able to recover
the best models which achieve an accuracy of about 80%.
While this falls short of state of the art results on Cifar-10
(for e.g. [14]), it is worth noting that we use only a small
subset of the Cifar-10 dataset and a relatively small model.
Nonetheless, it demonstrates the superiority of our approach
over other baselines.

5 Conclusion

We study parallelised versions of TS for synchronous and
asynchronous BO. Theoretically, we demonstrate that the
algorithms synTS and asyTS perform as well as their purely
sequential counterpart in terms of number of evaluations.
However, when we factor in time, asyTS outperforms the
other two versions. Practically, the main advantage of the
proposed methods over prior approaches are conceptual sim-
plicity and straightforward implementation, which enables
us to scale robustly to a large number of workers.

We close with some avenues for future research. One chal-
lenge that we have already mentioned, is bounding the regret
for asyTS without the initialisation procedure. Second, we
are interested in other models for evaluation times, for ex-
ample to capture correlations between the evaluation time
and the query point xj ∈ X that arise in practice, such as
in our CNN experiment. We believe that in such problems,
even sequential algorithms might be different from the con-
ventional BO methods. One could also consider models

where some workers are slower than the rest. Third, in the
asynchronous setting, there might be instances where the
algorithm might choose to kill an evaluation in progress
based on the result of a completed job. The algorithm might
also choose to wait for another evaluation to finish without
immediately deploying a free worker, so as to incorporate
additional information. Finally, an open challenge for TS
in GPs is maximising the sample g (step 4, Algorithm 1)
which can be computationally challenging as g is a random
quantity (See Appendix C). We look forward to pursuing
these directions.

Acknowledgements
This research is partly funded by DOE grant DESC0011114,
NSF grant IIS1563887, the Darpa D3M program, and AFRL.
KK is supported by a Facebook fellowship and a Siebel
scholarship.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mane, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viegas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv:1603.04467,
2016.

[2] Robert J Adler. An Introduction to Continuity, Extrema,
and Related Topics for General Gaussian Processes.
IMS, 1990.

[3] Shipra Agrawal and Navin Goyal. Analysis of thomp-
son sampling for the multi-armed bandit problem. In
Conference on Learning Theory (COLT), 2012.

Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, Barnabás Póczos

[4] Hildo Bijl, Thomas B Schön, Jan-Willem van Winger-
den, and Michel Verhaegen. A Sequential Monte Carlo
approach to Thompson sampling for Bayesian opti-
mization. arXiv preprint arXiv:1604.00169, 2016.

[5] Stéphane Boucheron and Maud Thomas. Concentra-
tion inequalities for order statistics. Electronic Com-
munications in Probability, 2012.

[6] Stéphane Boucheron, Gábor Lugosi, and Pascal Mas-
sart. Concentration inequalities: A nonasymptotic the-
ory of independence. Oxford University Press, 2013.

[7] Sayak Ray Chowdhury and Aditya Gopalan. On ker-
nelized multi-armed bandits. arXiv:1704.00445, 2017.

[8] Emile Contal, David Buffoni, Alexandre Robicquet,
and Nicolas Vayatis. Parallel Gaussian process opti-
mization with upper confidence bound and pure explo-
ration. In European Conference on Machine Learning
(ECML/PKDD), 2013.

[9] Thomas Desautels, Andreas Krause, and Joel W Bur-
dick. Parallelizing exploration-exploitation tradeoffs
in Gaussian process bandit optimization. Journal of
Machine Learning Research (JMLR), 2014.

[10] Subhashis Ghosal and Anindya Roy. Posterior con-
sistency of Gaussian process prior for nonparametric
binary regression". Annals of Statistics, 2006.

[11] David Ginsbourger, Janis Janusevskis, and Rodolphe
Le Riche. Dealing with asynchronicity in parallel gaus-
sian process based global optimization. In Conference
of the ERCIM WG on Computing and Statistics, 2011.

[12] Javier Gonzalez, Joseph Longworth, David James, and
Neil Lawrence. Bayesian Optimization for Synthetic
Gene Design. In NIPS Workshop on Bayesian Opti-
mization in Academia and Industry, 2014.

[13] Javier González, Zhenwen Dai, Philipp Hennig, and
Neil D Lawrence. Batch Bayesian Optimization via
Local Penalization. arXiv:1505.08052, 2015.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[15] José Miguel Hernández-Lobato, James Requeima, Ed-
ward O Pyzer-Knapp, and Alán Aspuru-Guzik. Par-
allel and distributed thompson sampling for large-
scale accelerated exploration of chemical space. arXiv
preprint arXiv:1706.01825, 2017.

[16] James P Hughes, Stephen Rees, S Barrett Kalindjian,
and Karen L Philpott. Principles of early drug discov-
ery. British journal of pharmacology, 162(6):1239–
1249, 2011.

[17] Frank Hutter, Holger H Hoos, and Kevin Leyton-
Brown. Sequential model-based optimization for gen-
eral algorithm configuration. In LION, 2011.

[18] Brett W Israelsen, Nisar R Ahmed, Kenneth Cen-
ter, Roderick Green, and Winston Bennett. Towards
adaptive training of agent-based sparring partners for
fighter pilots. In AIAA Information Systems-AIAA In-
fotech@ Aerospace, page 0343, 2017.

[19] Janis Janusevskis, Rodolphe Le Riche, David Gins-
bourger, and Ramunas Girdziusas. Expected Improve-
ments for the Asynchronous Parallel Global Optimiza-
tion of Expensive Functions: Potentials and Chal-
lenges. In Learning and Intelligent Optimization,
2012.

[20] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lip-
schitzian Optimization Without the Lipschitz Constant.
J. Optim. Theory Appl., 1993.

[21] Donald R. Jones, Matthias Schonlau, and William J.
Welch. Efficient global optimization of expensive
black-box functions. J. of Global Optimization, 1998.

[22] Pooria Joulani, Andras Gyorgy, and Csaba Szepesvári.
Online learning under delayed feedback. In Inter-
national Conference on Machine Learning (ICML),
2013.

[23] Kwang-Sung Jun, Kevin Jamieson, Robert Nowak, and
Xiaojin Zhu. Top arm identification in multi-armed
bandits with batch arm pulls. In Artificial Intelligence
and Statistics (AISTATS), 2016.

[24] Kirthevasan Kandasamy, Jeff Schenider, and Barnabás
Póczos. High Dimensional Bayesian Optimisation
and Bandits via Additive Models. In International
Conference on Machine Learning, 2015.

[25] Kirthevasan Kandasamy, Gautam Dasarathy, Junier
Oliva, Jeff Schenider, and Barnabás Póczos. Gaussian
Process Bandit Optimisation with Multi-fidelity Evalu-
ations. In Advances in Neural Information Processing
Systems (NIPS), 2016.

[26] Tarun Kathuria, Amit Deshpande, and Pushmeet Kohli.
Batched gaussian process bandit optimization via de-
terminantal point processes. In Advances in Neural
Information Processing Systems (NIPS), 2016.

[27] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos.
Thompson sampling: An asymptotically optimal finite-
time analysis. In ALT, volume 12, pages 199–213.
Springer, 2012.

[28] Andreas Krause, Ajit Singh, and Carlos Guestrin.
Near-optimal sensor placements in gaussian processes:
Theory, efficient algorithms and empirical studies.
Journal of Machine Learning Research, 9(Feb):235–
284, 2008.

[29] Alex Krizhevsky and Geoffrey Hinton. Learning mul-
tiple layers of features from tiny images, 2009.

[30] R. Martinez-Cantin, N. de Freitas, A. Doucet, and
J. Castellanos. Active Policy Learning for Robot Plan-

Parallelised Bayesian Optimisation via Thompson Sampling

ning and Exploration under Uncertainty. In Proceed-
ings of Robotics: Science and Systems, 2007.

[31] Ian Osband, Charles Blundell, Alexander Pritzel, and
Benjamin Van Roy. Deep exploration via bootstrapped
dqn. In Advances in Neural Information Processing
Systems (NIPS), 2016.

[32] David Parkinson, Pia Mukherjee, and Andrew R Lid-
dle. A Bayesian model selection analysis of WMAP3.
Physical Review, 2006.

[33] Kent Quanrud and Daniel Khashabi. Online learn-
ing with adversarial delays. In Advances in Neural
Information Processing Systems (NIPS), 2015.

[34] C.E. Rasmussen and C.K.I. Williams. Gaussian Pro-
cesses for Machine Learning. Adaptative computation
and machine learning series. University Press Group
Limited, 2006.

[35] Daniel Russo and Benjamin Van Roy. Learning to
optimize via posterior sampling. Mathematics of Op-
erations Research, 39(4):1221–1243, 2014.

[36] Daniel Russo and Benjamin Van Roy. An Information-
theoretic analysis of Thompson sampling. Journal of
Machine Learning Research (JMLR), 2016.

[37] MW. Seeger, SM. Kakade, and DP. Foster. Informa-
tion Consistency of Nonparametric Gaussian Process
Methods. IEEE Transactions on Information Theory,
2008.

[38] Amar Shah and Zoubin Ghahramani. Parallel predic-
tive entropy search for batch global optimization of
expensive objective functions. In Advances in Neural
Information Processing Systems (NIPS), 2015.

[39] Bobak Shahriari, Ziyu Wang, Matthew W Hoffman,
Alexandre Bouchard-Côté, and Nando de Freitas. An
Entropy Search Portfolio for bayesian Optimization.
arXiv preprint arXiv:1406.4625, 2014.

[40] Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
Practical Bayesian Optimization of Machine Learn-
ing Algorithms. In Advances in Neural Information
Processing Systems, 2012.

[41] Niranjan Srinivas, Andreas Krause, Sham Kakade, and
Matthias Seeger. Gaussian Process Optimization in the
Bandit Setting: No Regret and Experimental Design.
In ICML, 2010.

[42] W. R. Thompson. On the Likelihood that one Un-
known Probability Exceeds Another in View of the
Evidence of Two Samples. Biometrika, 1933.

[43] Jialei Wang, Scott C Clark, Eric Liu, and Peter I Fra-
zier. Parallel Bayesian Global Optimization of Expen-
sive Functions. arXiv:1602.05149, 2016.

[44] Zi Wang, Chengtao Li, Stefanie Jegelka, and Pushmeet
Kohli. Batched high-dimensional bayesian optimiza-
tion via structural kernel learning. arXiv:1703.01973,
2017.

[45] Zi Wang, Clement Gehring, Pushmeet Kohli, and Ste-
fanie Jegelka. Batched large-scale bayesian optimiza-
tion in high-dimensional spaces. In AISTATS, 2018.

[46] Jian Wu and Peter Frazier. The parallel knowledge
gradient method for batch bayesian optimization. In
Advances In Neural Information Processing Systems,
2016.

