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Abstract

First-order optimization methods comprise
two important primitives: i) the computation
of gradient information and ii) the compu-
tation of the update that leads to the next
iterate. In practice there is often a wide
mismatch between the time required for the
two steps, leading to underutilization of re-
sources. In this work, we propose a new
framework, Approx Composite Minimization
(ACM) that uses approximate update steps
to ensure balance between the two opera-
tions. The accuracy is adaptively chosen in
an online fashion to take advantage of chang-
ing conditions. Our unified analysis for ap-
proximate composite minimization general-
izes and extends previous work to new set-
tings. Numerical experiments on Lasso re-
gression and SVMs demonstrate the effective-
ness of the novel scheme.

1 Introduction
In the last decade, first-order methods and espe-
cially stochastic first-order methods have proven to
be the superior choice to solve problems of very large
size that arise in modern machine learning applica-
tions (cf. [27]). The state of the art comprises i)
stochastic sub-gradient methods [28], ii) variance re-
duced stochastic gradient methods [2, 8, 12, 15, 20],
iii) coordinate methods (e.g. dual ascent) such as
[9, 11, 18, 19, 24, 29, 30].

In a different line of research, distributed algorithm
variants have been developed for larger datasets which
exceed the capacity of a single machine or device. Here
the state-of-the-art algorithms are [16, 31] based on a
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primal-dual structure of the problem and [10, 13, 22]
which work in the primal alone.

All of these methods are iterative algorithms that
can be described in the following framework: in
each iteration t, the algorithm i) constructs a model
mt(x) : Rd → R of the objective function (mt is an
approximation of the objective function) and then
ii) computes an update step by minimizing this model.
The model is typically constructed from gradient infor-
mation (full gradient, a subset of its coordinates, or a
stochastic approximation) and accounting for smooth-
ness assumptions and the structure of the regularizers.

In this work, we are studying the cases when there is
a mismatch between the time required to compute the
gradient information and the time required to compute
the update step (i.e. the optimization of the model).
We will assume that the cost of the steps involved in
computing the gradient information is fixed (i.e. fol-
lowing from the specification of the optimization prob-
lem) and outside of our control. However, a parameter
that is in our control is the time we spend optimizing
the model in each iteration. That is, we will show that
it is not required to solve the model exactly, but it is
enough to compute an approximate solution in each it-
eration. By making the accuracy a tunable parameter,
we ensure that we do not spend too much time com-
puting the update. Therefore, we optimally balance
the two steps.

Whilst the idea of using approximations to speed up
the computation is not new (cf. e.g. [7, 26, 33]), the
idea of exploiting this for balancing the computational
cost is novel. We also extend the framework of [33] to
several new settings (Table 1).

Paper outline and contributions. In Section 2
we specify the problem setting and present two moti-
vating examples that exemplify the need of sufficiently
complex models—we propose to use models that take
global geometry (curvature) into account. Section 3
outlines the proposed unified ACM framework and its
convergence analysis is given in Section 4. Section 5
extends the framework to the empirical risk minimiza-
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Table 1: Summary of the settings where our framework is applicable.

Method Approximate
subproblems

Composite
functions

Strongly
convex

General
convex

Dual
version

Parallel block-
coordinate updates

PCDM [24] 7 3 3 3 7 3
Inexact [33] 3 3 3 3 7 7
SDNA [21] 7 3 3 7 3 7
PSNM [17] 7 7 3 7 7 3

ACM §3, (Def 3) 3 §4 (Thm 1) §4 (Thm 2) §5 (Thms 3,4) §6 (Lem 4 with
Thms 1,2,3, and 4)

tion setting where we prove primal-dual guarantees. In
Section 6 we demonstrate the generality of the ACM
framework by exemplary considering specific solvers
for the subproblems and we show how the convergence
guarantees of these algorithms easily follow from our
analysis. ACM specifically supports changing accura-
cies for different iterations. In Section 7 we capitalize
this property by designing mechanisms that adaptively
control the subproblem accuracy, always balancing the
computation times. In Section 8 we present experi-
mental results that show the numerical advantage our
schemes and conclude in Section 9. All missing proofs
and figures can be found in the appendix.

2 Setup and Motivation
We address optimization problems of the form

min
x∈Rd

[
F (x) def= f(x) + g(x)

]
, (1)

where f : Rd → R is a smooth convex function and
g : Rd → R∪{+∞} is an arbitrary extended-valued
convex function. x? ∈ Rd denotes an optimal solution,
and for ε > 0, a point y ∈ Rd with F (y) − F (x?) ≤ ε
is an ε-approximate solution.

2.1 Imbalance in the computations
In this section we illustrate the main problem we tackle
in this paper—inefficiencies caused by mismatches in
the computation times of different steps in the opti-
mization algorithm. First-order methods typically op-
timize an over-approximation U : Rn → R of the ob-
jective (1), with

U(∆x) def= u(x + ∆x) + g(x + ∆x) ≥ F (x + ∆x) (2)

where u(x + ∆x) def= f(x) + 〈∇f(x),∆x〉 + L
2 ‖∆x‖22

and L is the smoothness parameter of f .
We will now discuss two key examples of a significant
imbalance in the gradient computation vs. the opti-
mization of the model (2).

Case A: Gradient computation is slower. Con-
sider the coordinate descent algorithm on the L1-
regularized logistic regression problem. Given an n×d

data matrix A, let Ai refer to its i-th column and de-
note the residual as v def= Ax. Then the logistic loss
can be written as F (x) =

∑n
i=1 log(1+evi)+‖x‖1 and

the i-th coordinate of the gradient ∇f(x) is ∇if(x) =
〈Ai,∇llog(v)〉, where

∇llog(v) =
( 1

1+e−v1 , . . . ,
1

1+e−vn
)
.

Assuming that v is already stored in active memory,
computing the i-th gradient requires i) fetching Ai
from memory, ii) performing n exponentiations and
divisions, iii) one dot product, and iv) possibly com-
municating back the update steps to facilitate the next
gradient computation. The coordinate update step on
the other hand is

[
xi− 1

L∇if(x)
]
λ/L where [c]γ is the

shrinkage operator. If ∆xi is the update made to co-
ordinate i, v can be updated as v − ∆xiAi. In total
for minimizing the model we only make i) one coor-
dinate update and ii) one vector addition, in contrast
with the more involved gradient coordinate computa-
tion. Thus, cache misses, complex operations, as well
as communication overhead all lead to the gradient
computation being much slower than the update step.
Increasing the number of coordinates being updated
i.e. block-coordinate updates can alleviate overhead
to some extent due to cache misses, though it is inef-
fective against the other sources of delay.

Case B: Model minimization is slower. When
the data is not extremely high dimensional and the
loss function f is simple, it is quite fast to compute
the gradient. For example, a very common task in
image processing is to reconstruct the original im-
age given a corrupted linear measurement y. For
such applications, the commonly used loss function is
F (x) = 1

2 ‖Ax− b‖22 + λ ‖x‖TV [5]. Even though f is
just a quadratic, there is no closed form solution for
minimizing U(∆x) because of g(x) = ‖x‖TV . In this
case a lot of time is spent in minimizing the model
U(∆x) whereas the gradient computation is fast.

2.2 A solution: curvature models
When the model is too “simple”, i.e. computationally
cheap to minimize compared to the expensive gradi-
ent information, then traditional methods will waste
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significant resources for just the gradient information.
Hence, the model should be sufficiently sophisticated
in order to be able to extract the maximum progress
using a single gradient computation. In other words,
we would prefer that exact minimization of the model
takes more time than computing the gradient infor-
mation. In this case, we can minimize the model ap-
proximately to a tunable degree of accuracy to ensure
that the two essential parts are balanced in terms of
computational cost. The model, of course, cannot be
arbitrarily hard to optimize either. In particular, it
should be at least possible to make non-zero progress
on minimizing the model in time less than it takes to
compute the gradient information.

One way to create good models is to capture some
second-order information of the objective, i.e. the
global geometry (curvature) using a d×d matrixM as
for instance in [21, 33]. This means that we replace u
in (2) with
uM (x + ∆x) def= f(x) + 〈∇f(x),∆x〉+ 1

2∆x>M∆x .

For example, in the L1-regularized logistic regression
discussed before, we can use M def= 1

4A
>A.

Related literature. There are a number of al-
gorithms which incorporate curvature information.
These include methods based on using the diagonal of
the Hessian information to compute the sample proba-
bilities as well as the step size [3, 18, 19, 24]. Recently,
a more direct approach to incorporating the Hessian
information through preconditioning has become more
popular [17, 32, 33]. However, such preconditioning
means that the computational effort involved in solv-
ing the subproblem is significant. To overcome this,
one resorts to approximate solutions [32, 33]. The idea
of preconditioning has also been extended to dual as-
cent algorithms as in [21]. However, there exact solu-
tions to the subproblems were required.

2.3 Notation and Definitions
For a fixed positive semi-definite matrix M (M < 0),
we use ‖x‖2M

def= x>Mx. With this semi-norm, the
regularity assumptions on f can be written as follows.
Definition 1 (M -smoothness). A differentiable func-
tion h : Rd → R is M -smooth with respect to a fixed
matrix M < 0 if for all x,y ∈ Rn

h(y) ≤ h(x) + 〈∇h(x),y− x〉+ 1
2 ‖y− x‖2M .

Definition 2 (λ-strong convexity). A differentiable
function h : Rd → R is λ-strongly convex w.r.t. M < 0
and λ > 0 if for all x,y ∈ Rn

h(y) ≥ h(x) + 〈∇h(x),y− x〉+ λ

2 ‖y− x‖2M .

Note that an M -smooth function can only be λ-
strongly convex w.r.t. M for λ ∈ (0, 1].

3 Approx Composite Minimization
In this section we describe the general method as out-
lined in Algorithm 1. At each time step t, an approx-
imation mt(∆x;M) ≥ F (xt + ∆x) − F (xt) is con-
structed as follows:

mt(∆x; xt,M) def= 〈∇f(xt),∆x〉+ 1
2 ‖∆x‖2M

+g(xt + ∆x)− g(xt) .
(3)

When obvious from context, we drop M and xt and
simply refer it as mt(∆x). Let mt(∆x?t )

def= m?
t be the

minimum of the subproblem obtained at ∆x?t .
Definition 3. We denote by Θt ∈ (0, 1] the rela-
tive accuracy to which the subproblem (3) is solved at
step t, i.e., we compute ∆xt such that

mt(∆xt)−m?
t ≤ (1−Θt)(mt(0)−m?

t ) .

Here Θt = 1 means that we solve the problem exactly.
We then update the iterate as xt+1 := xt + ∆xt. Note
that Θt can adaptively change with each step.

Algorithm 1: Approx Composite Minimization
(ACM)
Input: M , x0
for t = 0, . . . do

Let mt(∆x) def=
〈∇f(xt),∆x〉+ 1

2 ‖∆x‖2M+g(xt+∆x)−g(xt)
Minimize subproblem: Find ∆xt such that
mt(∆xt)−m?

t ≤ (1−Θt)(mt(0)−m?
t )

xt+1 ← xt + ∆xt
end

4 Covergence Analysis
We will examine the cases when F is strongly convex
(Def. 2 is satisfied for λ > 0) and the general convex
case separately (when λ = 0) and generalize the results
in [33] to account for varying approximation factors.
Theorem 1. Given that f is M -smooth (1), and
that f and g are λf and λg strongly convex respec-
tively (2) for λf + λg > 0, then running Algorithm 1
gives linear convergence, i.e. F (xT )− F (x?) ≤ ε for

T ≥ 1 + λg

(λf + λg)Θ̃T

log
(
F (x0)− F (x?)

ε

)
,

where Θ̃T = 1
T

∑T
t=1 Θt is the average accuracy.

Remark 1. The convergence rate from Theorem 1
shows that the rate critically depends on not just λf
but also λg. Thus M must be chosen to not just ap-
proximate f but also g, i.e. M must be chosen to ap-
proximate the curvature of F as closely as possible.
This is an important observation since f and g typi-
cally have very different curvatures.
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Our proof hinges on this very useful lemma proved in
the appendix.
Lemma 2. Assuming g is λg-strongly convex, for any
vector v and λ ∈ (0, 1], then

min
∆x

m(∆x; v,M) ≤ λ+ λg
1 + λg

·min
∆x

m(∆x; v, λM) .

In the general convex case, we obtain a convergence
rate of O(1/T ) which matches the rate of standard
proximal-gradient algorithms. We again leave the
proof of the theorem for the appendix.
Theorem 2. Given that f is M -smooth (1), running
Algorithm 1 such that at every step mt(∆xt) ≤ 0 and
Θt > 0 ensures

F (xT )− F (x?) ≤ ε for T >
2D
Θ̃T ε

,

where D is at most the diameter of the initial level set
of F and Θ̃T is the average accuracy:

D
def= max

y|F (y)≤F (x0)
‖y− x?‖2M and Θ̃T

def= 1
T

T∑
t=0

Θt .

5 Primal-Dual Guarantees
Suppose our objective function comes with the follow-
ing additional structure, ubiquitous in machine learn-
ing and signal processing models:

min
w

n∑
i=1

li(w>Ai) + ψ(w) .

Let A be a d×n data matrix. Here li is the loss defined
for each data-point Ai ∈ Rd and ψ is a regularizer. We
can define the dual objective in terms of the Fenchel
conjugate of {li}i and ψ, {l∗i }i and ψ∗ respectively [9]:

max
α

n∑
i=1
−l∗i (−αi)− ψ∗(Aα) .

These can be more compactly written as

OA(α) def= f(Aα) + g(α) ,

OB(w) def= f∗(w) + g∗(−A>w) .
(4)

Our objective to minimize the duality gap defined
as OB(w) + OA(α). We assume that f(Aα) is M -
smooth. Depending on the problem, it may be more
convenient and efficient either to cast the problem
as OA(α), or map it to OB(w) and solve the dual.
We can do this since primal-dual algorithms minimize
both OB(w) and OA(α) simultaneously. For more de-
tails about the setting and applications, we refer to
the discussion in [9].

Algorithm 2: Approximate Dual Ascent (ADA)
Input: M , x0
Initialize: α0 ← 0 ∈ Rn, v0 ← 0 ∈ Rd
for t = 1, . . . do

Let mt(∆α) def= 〈∇f(vt), A∆α〉+
1
2 ‖∆α‖2M + g(αt + ∆α)− g(αt)

Minimize subproblem: Find ∆αt such that
mt(∆αt)−m?

t ≤ (1−Θt)(mt(0)−m?
t )

Update steps:
αt+1 ← αt + ∆αt

vt+1 ← vt +A∆αt

end

Just as in the Section 4, we can state two theorems—
one for the case when the objective is strongly convex
and one for the general convex case. The proofs of
these theorems follow along the lines of [16, 31] with
some simplifications.
Theorem 3. For an objective of the form (4), let us
assume that that f(Aα) is M -smooth (1), and that
f(Aα) and g(α) are λf and λg strongly convex re-
spectively (2). Then running Algorithm 2 gives linear
convergence i.e. for λ = λg+λf

1+λg and Θ̃T = 1
T

∑T
t=0 Θt,

OB(∇f(vt)) +OA(αt) ≤ ε for

T ≥ 1
λΘ̃T

log
(

(1 + λg)(OA(0)−OA(α?))
λgΘT ε

)
.

Theorem 4. Given that f is M -smooth (1), running
Algorithm 2 ensures convergence at a rate of O( 1

T ) i.e.
OB(w(v̄t)) +OA(ᾱt) ≤ ε for

T ≥ t0 + max
[

4D
ε
,

1
Θ̂t

]
, t0 ≥

4D
Θ̃t0ε

,

where ᾱt
def= 1

t−t0
∑t
i=t0+1 αi, v̄t

def= 1
t−t0

∑t
i=t0+1 vi,

and w(v̄t)
def= ∇f(v̄t). D is the diameter of the level

set of OA(α), Q def= {α | OA(α) ≤ OA(0)}. D
def=

maxa,b∈Q ‖a − b‖2M . Further Θ̃t
def= 1

t

∑t
t′=0 Θt′ and

Θ̂t
def= mint′∈[t] Θt′ .

Remark 3. We obtain sharper bounds than in [16, 31]
in both settings. In particular, we show that strong
convexity constant λf of f is also useful for faster
convergence. The rate in [31] is equivalent to setting
λf = 0. Similarly, in the general convex setting, our
rate is again simpler and has better constants.

6 Extension to Coordinate Updates
Thus far in our discussion we have largely restricted
ourselves to the case where the model was constructed
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using the full gradient. However, when the function
g(x) =

∑d
j=1 gj(xj) is coordinate-wise separable, a

popular strategy is to update just a single coordinate
in each iteration. This approach leads to state of the
art algorithms for several problems [11, 18, 19, 24, 29,
30]. Coordinate methods have been widely success-
ful not just due to their faster convergence, but also
because they are less resource intensive and provide
faster update times [35]. However, the imbalance be-
tween the time for gradient information computation
and the time for update computation is often exac-
erbated in coordinate descent methods. This is be-
cause the time to compute one directional derivative
of the gradient scales in general linearly with the di-
mension, whereas computing the one-dimensional up-
date only requires constant time. Updating multiple
coordinates simultaneously might reduce some of the
overhead—such as the delay due to memory accesses
or communication costs—but cannot completely settle
this imbalance.

In this section we see how we can extend our ideas from
Sections 3 and 5 seamlessly to this scenario and achieve
a better balance between the gradient and update com-
putation times. It is clear, that one single step of coor-
dinate descent can be seen as an approximate solution
to the full dimensional problem (3). Thus, the conver-
gence results can be directly recovered from the theo-
rems derived in the previous sections. However, there
is a small caveat: the model (3) depends on the full
gradient, whereas in coordinate descent methods it is
sufficient to compute just the directional derivatives of
gradient along the descent directions. To capture this
more precisely, we will now refine our notation.

Typically, the number of coordinates being updated
at each iteration is fixed by external factors—for e.g.
when the data is distributed by columns amongst mul-
tiple machines, the coordinates being updated are con-
strained by data available on each machine, or in the
single machine case it is constrained by the number
of columns which fit in a cache block. For this rea-
son we assume that the number of coordinates being
updated is fixed. Further, we will not only support se-
quential updates, but also updates to multiple blocks
of coordinates in parallel. This setting is useful when
i) the data is distributed over multiple machines which
can update a different block of coordinates in parallel,
or ii) when there are multiple threads (in a multipro-
cessor) each with a separate cache. Examples of this
setting can be found in [17, 31].

Suppose at iteration t, we have κ machines such that
machine k ∈ [κ] can compute the coordinates πk ⊆ [d]
of the gradient i.e. it can compute

∇πkf(x) def=
∑
j∈πk

∇jf(x)ej .

Here the sets πk need not necessarily need to form a
complete partition of [d]. Note that this notation also
captures the case of sequential updates on one single
machine: in this case π1 just denotes the set of coor-
dinates that are updated in this iteration. We further
assume that machine k has access to the principal sub-
matrix of M corresponding to the coordinates πk,

Mπk
def=
∑
i,j∈πk

Mi,jeie>j .

Then we can form a set of κ subproblems such that
each machine k ∈ [κ] can solve mσ

t (∆x;πk) defined as

mσ
t (∆x;πk) def= 〈∇πkf(x),∆x〉+ σ

2 ‖∆x‖2Mπk

+
∑
j∈πk

gj(xj + ∆xj)− gj(xj) .

Here σ ∈ [1, κ] is a parameter which measures the
separability of the matrix M . Crucially, the problems
mσ
t (∆x;πk) for k ∈ {1, . . . , κ} can be solved in paral-

lel. The solutions from these subproblems can then be
combined as

xt+1 = xt +
κ∑
k=1

[∆x]πk ,

where [∆x]πk is a Θt-approximate solution to
mσ
t (∆x;πk) as in Definition 3. In this manner we

can use global geometry (curvature) information en-
coded in M to better utilize the gradient information
we computed even in the block coordinate setting.

We can relate the Θt progress on the coordinate mod-
els mσ

t (∆x;πk) to the progress on the global model
mt(∆x). Recall that mt(∆x) was our shorthand for
mt(∆x; xt,M) defined in (3). A more formal study
with additional technical details and definitions is rel-
egated to Section A.1.
Lemma 4. Suppose that [∆x]πk is an Θt-approximate
solution to mσ

t (∆x;πk) for k ∈ [κ] and ∆xt =∑κ
k=1[∆x]πk . Then under the conditions specified in

Lemma 8 in Section A.1,

E[mt(∆xt) −m?
t ] ≤

(
1− κΘt

mσν

)
(mt(0) −m?

t ) ,

where the expectation is over the random selection of
the sets {π1, . . . , πκ}, and m ∈ [1, d] and ν ≥ 1 are pa-
rameters depending on the sampling (see Definitions 4
and 6 in Section A.1).

Thus, using just the block-coordinate models, we can
make progress on the global problem mt(∆xt; xt,M).
We can then combine Lemma 4 with with Theorems 1,
2, 3, and 4 to derive the corresponding parallel-block
coordinate versions of the algorithm.
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7 Adaptive Accuracy
Requiring only approximate solutions means that we
can use iterative methods for the sub-problems which
can be much faster and cheaper than exact solvers [33].
More importantly, using iterative algorithms enables
us to adaptively control the number of iterations run
on each of the subproblem. This allows us to tune the
time spent on computing the update, and thus better
balance against the time spent on computing gradient
information. Intuitively, the more expensive is the cost
of computing the gradient information, the more time
we should spend trying to utilize it better. The time
for the former can however be orders of magnitude dif-
ferent in different real world systems [16]. Moreover,
as we will argue later in the section, the ‘right’ amount
of time to be spent computing the update under iden-
tical system conditions also varies during the duration
of the algorithm. Due to these reasons we propose to
use simple strategies to automatically and adaptively
choose the number of iterations, and hence tune the
time spent computing the update.

Let us assume that each iteration of the solver takes
one unit of time. From the proofs of Theorems 1,2,3,
and 4, we know that the progress we make at each step
is

F (xt+1) ≤ F (xt) + Θtm
?
t .

Suppose we spent r iterations i.e. r units of times on
this subproblem. Since we want to design strategies
which control r, let us parameterize the above equation
in terms of r. Since m?

t ≤ 0, we denote the progress
made as

Θtm
?
t

def= −pt(r) .
Further let ct be the ratio between the time spent in
computing the gradient information and the time re-
quired to perform one iteration of the sub-solver. This
includes all fixed costs such as communication time,
etc. Our objective should to be to pick an r which
makes the maximum progress possible per unit of time
spent:

r?t
def= arg maxr

pt(r)
r + ct

. (5)

7.1 Fixed strategies for picking rt

It is reasonable to assume that i) pt(r) is increasing
meaning that running the sub-solver for more itera-
tions leads to improved accuracy, and ii) pt(r) is sub-
linear and concave function meaning that doubling the
number of iterations results in at most double the ac-
curacy (refer Fig 1). Based on this knowledge, two
fixed rules can be formulated to pick a fixed rt.

One step. The simplest strategy is to just perform
one inner step per round. If ct = 0, pt(r)r is a decreasing
function (Fig 1, left). Thus when the gradient compu-
tation cost is low, the one step strategy is optimal.

Figure 1: The progress p(r) (in blue) is bounded, increas-
ing, and concave; attaining its maxima at r =∞. Progress
per unit time ( p(r)

r+c
) shown in red is i) a decreasing func-

tion if c = 0 (left) or ii) increases first and then decreases
if c > 0 (right).

Figure 2: The slope of p2(r) (in blue, right) is always lesser
than that of p1(r) (in blue, left) and the optimum number
or rounds is lesser for p2 than for p1.

However, this is no more true when ct is significant
(Fig 1, right).

Comparable steps. ‘Best practice’ dictates that we
should spend roughly equal time performing the up-
date as we take for gradient computation [16]. So this
strategy tries to pick rt = ct. While being a good
guiding principle, this strategy fails to take advantage
of the trade-offs present in more realistic regimes. For
example it ignores the fact that if the local solver is
bad or the particular subproblem is especially hard,
there might not be much to gain running for ct steps
and it might make sense to terminate early.

7.2 Adaptive strategies for picking rt

Consider two functions p1 and p2 with the correspond-
ing optimum number of iterations being r?1 and r?2 as
per (5). If the slope of p2(r) is always smaller than
that of p1(r), then the optimum number of rounds
typically (but not always) reduces and r?2 < r?1 (re-
fer Fig 2). Since p(r) denotes the progress made on
the subproblem, this means that the optimal number
of rounds depends on the ease of minimizing the sub-
problem. During the course of our algorithm, the na-
ture of pt(r) may change substantially and hence the
optimum number of rounds also changes. Thus it is
imperative to use strategies which are adaptive to the
hardness of pt(r).

Optimal. If we could access the entire function
pt(r), and ct beforehand, it is possible to pick the op-
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timal r?t at every step. However, knowing pt(r) for
all r requires expensive computations. Using an upper
bound on pt(r) obtained from convergence rates is also
impractical since it requires knowledge of parameters
which are often inaccessible.

Gradient based strategies. At each step, we can
assume access to the total time spent (rt + ct), pt(rt),
and p′t(rt) as feedback. This is because pt(rt) and
p′t(rt) are just the value of the subproblem −mt(∆xt)
and the rate at which it decreases, measured at the
end. Using this feedback, we can compute the gradi-
ent gt of pt(r)r+ct at rt:

gt = p′t(rt)(rt + ct)− pt(rt)
(rt + ct)2 .

We can use the gradient gt as an indicator about the
direction we need to change rt.

1. Additive change. If gt > 0, increase rt+1 ← rt + 1
else rt+1 ← rt − 1.

2. Multiplicative-additive change. If gt > 0, increase
rt+1 ← 2rt else rt+1 ← rt − 1. This is inspired by
the TCP protocols used to determine the rate at
which to send packets to make maximum use of
network capacity [6].

3. Gradient change. Increment with gradient rt+1 ←
rt + gt.

We only focus on very simple strategies to compute r
here—many more sophisticated methods based on
hyper-parameter optimization or bandit optimization
are possible [14].

8 Empirical Evaluation
In this section we present empirical results for our
framework, demonstrating the insights gained. Re-
call from Section 7 that ct is the ratio between the
time taken for computing the gradient and the time
taken by the local solver to perform one iteration. In
practice, the value of ct can vary by orders of magni-
tudes [31]. We artificially set ct to take values from 0.5
to 1024 in powers of 2 and observe its effect on the dif-
ferent algorithms. This way we can simulate a wide
range of real world conditions in our experiments.

8.1 Experimental Setting
We focus on two important tasks in our experiments—
Lasso and SVM. We vary the value of ct and measure
the total time it takes to reach a predetermined sub-
optimality value. The total time is the sum of the
measured update time as well as the simulated gradi-
ent computation time. The gradient computation time
is calculated as tuct

rt
where tu is the measured time for

update and rt is the number of iterations performed
by the solver.

Figure 3: Time taken relative to one in percentage,
to reach sub optimality (duality gap for SVM) of 1e−4.
Here ct is the ratio between time for gradient and 1 step of
subsolver. Adaptive rules nearly always outperform fixed
rules one and comp.

Lasso. For Lasso, our objective function is F (x) =
f(x) + g(x) where g(x) = λ ‖x‖1 and f(x) =
1

2n ‖Ax− b‖22. Here λ is an regularization parameter
chosen to be 1

n as is standard [25]. We run this on the
gisette and news20 datasets.1 For each value of ct,
we measure the total time it takes for each algorithm
to reach an sub-optimality of 1e−4. The minimum
value is calculated by letting the algorithm run for 1k
effective passes over the data.

SVM. Here we require primal-dual convergence for
the hinge loss OB(w) = 1

n

∑n
i=1 l(w>Ai, yi)+ λ

2 ‖w‖
2,

c.f. [9]. The regularization parameter λ is again chosen
to be 1

n . We run this on rcv1 and ijcnn1 datasets till
we reach a duality gap of 1e−4.

Subproblem solver. To simplify the comparison,
we use random coordinate descent as a solver for all
the subproblems. Further we create smaller subprob-
lems of dimension 100 using the algorithm from Sec-
tion 6 (see also Sec. A.1). Hence, one iteration of the
subproblem solver consists of 100 random coordinate
updates. To estimate the gradient p′t(rt), we use the
average progress made in the last 10 steps of the solver.

Strategies for rt. To demonstrate our discussion
form the previous section, we compare the different
strategies which perform 100rt CD iterations at each
step: i) one where rt = 1, ii) comp where rt =
ct, iii) add where rt is computed using the additive
change rule, iv) mult where rt is computed using the
multiplicative-additive rule, and v) grad where rt is
computed using the gradient rule.

1All datasets are available from https://www.csie.
ntu.edu.tw/~cjlin/libsvmtools/datasets/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 4: Average value of r chosen by different strate-
gies. It remains relatively constant as ct increases across
problems and strategies.

8.2 Discussion

As seen in Fig 3, the adaptive rules based on the gra-
dient consistently scale better for increasing values for
the ratio ct. In almost all the cases the simple mult
rule performs better than both the standard one rule
as well the comp rule.

For small values of ct (≤ 2) in the rcv1 SVM exper-
iment as well as in the gisette Lasso example using
the one rule and setting rt = 1 is effective. However,
as ct increases, the one rule becomes much less com-
petitive. This is because for small values of ct, the
function pt(r)

r+ct attains its maxima close to 1.

We also plot the average values of rt over the period of
optimization for the ijcnn1 and the news20 cases (cf.
Fig 4). The plots from the other two datasets were
similar. The average values of rt are pretty identical
in both the cases. It also remains close to 1–2, and
is mostly independent of ct for the mult and the add
rule. Thus the improvements we see in Fig 3 for these
rules must have been because of the use of adaptivity.

To understand how adaptivity affects our algorithms,
we look at how rt varies over time for ijcnn1 with the
mult rule with ct = 64 in (Fig 5, left). The strikingly
clear downward trend in rt can be explained via our
discussion Section 7.2 about changing hardness of sub-
problems. The sub-problems in ijcnn1 are increasing
in their difficulty (Fig 5, right), pushing for lower val-
ues of rt.

For news20 dataset, the value of rt remain relatively
constant (Appendix Section C). This explains why
fixed rules such as comp perform comparably to the
adaptive ones in news20. The variation of rt in rcv1
is similar to that of ijcnn1 and so they have simi-
lar results. The growing gap between adaptive rules
and the fixed rules in rcv1 and ijcnn1 clearly demon-
strates the effectiveness of adaptive rules in taking ad-
vantage of changing conditions. Refer to the Appendix
Section C for additional figures and discussion.

Another aspect to notice in Fig 3 is that the add and
mult rules perform quite similarly. This is because

Figure 5: (Left) Time varying rt for mult with c = 64 for
ijcnn1. ((Right) The number of rounds required to solve
the subproblem to an accuracy of 0.1. The hardness of the
subproblems increase with t and in response, rt chosen by
mult decreases. A moving average with window of size 100
is used to aid visualization.

during the majority of the runtime, rt is close to 1.
When rt = 1, both the rules are identical. Chang-
ing the multiplicative constant could alleviate this is-
sue. Similarly in the grad algorithm, due to the highly
noisy nature of the gradient signal, we noticed large
oscillations. Using step-sizes or a running average in-
stead could stabilize the algorithm. We believe that
such fine tuning of parameters would lead to better
algorithms and even more gains.

9 Concluding Remarks

We present ACM, a single framework that provides a
unified analysis for first-order optimization algorithms
for composite problems. The framework allows to
incorporate curvature information and only requires
the computation of weak approximate solutions to the
subproblems in a stochastic sense—hence, it specif-
ically also covers randomized methods such as block-
coordinate descent and also parallel algorithms. More-
over, the accuracy parameters are allowed to change
over time. This combines and improves upon the re-
sults of [16, 17, 21, 33].

We leverage our framework to provide speedups when
the gradient computation and the update computation
times are unbalanced. In particular, we give a simple
adaptive procedure to adaptively tune the accuracy
that is required in for the optimization of the model
in each iteration. This procedure ensures optimal bal-
ance between of the two computations.

The effectiveness of the adaptive scheme is exemplary
demonstrated on a set of numerical experiments for
Lasso (gisette and news20 dataset) and SVM (rcv1,
ijcnn1) with randomized coordinate descent as sub-
problem solver. The experiments shows that simply
tuning a static accuracy parameter will in general not
obtain optimal rate. In contrast, the parameters of our
adaptive scheme vary as the optimization progresses,
and achieve significant speedups.
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A Subproblem Solvers
The ACM framework described in Algorithm 1 employs an arbitrary subproblem solver, delivering ∆xt of a
relative accuracy measured by Definition 3. As noted in [33], the biggest advantage of requiring only approximate
solutions to sub-problems means that we can use iterative solvers. Apart from direct specialized algorithms for
solving the subproblems, we discuss two notable cases: i) when g is separable, we can use coordinate descent
algorithms and ii) when M is accessible as a sum of outer products, we can even employ stochastic gradient
methods.

A.1 Parallel Block-Coordinate Updates
Coordinate methods have been widely successful for not just their faster convergence, but also because they are
less resource intensive and provide faster update times [35]. To take advantage of this, when g is separable, we
can sample a block of coordinates and create smaller subproblems. This is the setting considered in [17, 21, 33].

Coordinate notation. Let [v]i or simply vi denote the i-th component of vector v. Similarly Mi,j or M(i, j)
denotes the (i, j)-th component of matrix M . For a set of indices I = (i1, . . . , it) ⊆ [d], [v]I or vI denotes the
t-dimensional vector (vi1 , . . . , vit). The matrix equivalent MI is a t× t principal submatrix of M whose (t, l)-th
entry is MI(t, l) = M(it, il).

If we want to denote the d dimensional vector, we use ~vi to mean viei and ~vI =
∑
i∈I viei where (e1, . . . , ed) is

the standard coordinate basis of Rd.

Defining Subproblems. We define a κ-block unbiased sampling as a sample where we select κ blocks of
coordinates to update in parallel at each step.
Definition 4 (κ-block unbiased sampling). Let 1 ≤ κ ≤ d. A κ-block unbiased sampling with parameter m
chooses a set I of κ blocks of coordinates, I = {π1, . . . , πκ} at random such that for any vector v ∈ Rd,

E

∑
k∈[κ]

~vπk

 = κ

m
v .

Remark 5. A κ-block unbiased sampling can also be realized as follows: Consider not only one partition of
the coordinates, but a collection of partitions P = {P1, . . . , Ph}, where each Pj ∈ P does partition the full [d]
coordinates into at least κ blocks. Given Pj, the blocks are therefore disjoint. By i) first sampling a partition
Pj ∈ P uniformly at random, and ii) picking κ blocks I = {π1, . . . , πκ} ⊆ Pj again uniformly at random, one
obtains a κ-block unbiased sampling.
Remark 6. A κ-block unbiased sampling need not be confined to choosing from a fixed set of blocks as was [24, 33]
(which corresponds to using a single partition only). Thus we can gain speedups by breaking locality [34].

We also need to quantify how separable the matrix M is using a parameter σ. This dictates how much we gain
by performing κ number of block-coordinate updates in parallel.
Definition 5 (σ-separable). Let I = {π1, . . . , πκ} ⊆ Pj be a κ-block unbiased sample of coordinates. Then M is
said to be σ-separable if

σ ≥ σmax
def= max

v6=0

EI
∥∥∥∑k∈[κ] ~vπk

∥∥∥2

M

EI
∑
k∈[κ] ‖~vπk‖

2
M

.

Lemma 7. M < 0 is κ-separable. I.e. for any κ-block unbiased sampling

σmax ≤ κ .

Lemma 7 gives a bound on how non-separable a problem can be and shows that even in the worst case, adding
parallelism will never make the rate worse.

Finally, we need to define a constant ν which relates the expected matrix EI [MI ] to the full matrix M .
Definition 6 (ν). Let ν ≥ 1 such that

M 4 EI
[m
νκ
MI

]
.
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Parallel updates. Suppose we have a κ-block unbiased sampling I = {π1, . . . , πκ} ⊆ Pj and M is σ sepa-
rable. Then we create κ subproblems which we solve in parallel. For each πk ∈ I, we create the subproblem
mσ
t (∆x;πk,xt,M):

mσ
t (∆x;πk,xt,M) def= 〈∇πkf(x), (∆x)πk〉+ σ

2 ‖∆xπk‖
2
Mπk

+ gπk(xπk + (∆x)πk)− gπk(xπk) ,

and the total subproblem solved at each iteration is

mσ
t (∆x; I,xt,M) =

∑
k∈[κ]

mσ
t (∆x;πk,xt,M) .

We can relate Θt progress on the coordinate model mσ
t (∆x; I,xt,M) to the progress on the global model

mt(∆x; xt,M). Denote (mσ
t )? = min∆x m

σ
t (∆x; I,xt,M) and m?

t = min∆x mt(∆x; xt,M).
Lemma 8. Assuming that M is σ-separable, let ∆xt be such that

mσ
t (∆xt; I,xt,M)− (mσ

t )? ≤ (1−Θt)(mσ
t (0; I,xt,M)− (mσ

t )?) .

Then
E[mt(∆xt; xt,M)−m?

t ] ≤ (1− κΘt

mσν
)(mt(0; xt,M)−m?

t ) .

We can combine Lemma 8 with Theorems 1,2,3, and 4 to obtain the equivalent parallelized block coordinate
versions. This gives a parallel, approximate block coordinate algorithm with primal-dual guarantees. If σ � κ,
we gain significant speed-ups due to parallel updates as noted in [17]. In fact, a more careful analysis is possible
which requires the constant ν (Definition 6) only in Theorems 1 and 3 (cf. [34]). We however ignore this point
to simplify the presentation of our results.

A.2 Stochastic Gradients
The subproblem mt(∆x; xt,M) can often be decomed as a sum of n functions where each function is very simple.
For example, let us assume thatM = 1

nA
>A for some n×d matrix A with row Ai: and that f(x) = 1

n

∑n
i=1 fi(x).

Then

mt(∆x) = 1
n

n∑
i=1

[
〈∇fi(x),∆x〉+ 〈Ai:,∆x〉2 + g(x)

]
.

Then a stochastic estimate of the gradient ∇mt(∆x) can be very cheaply computed as ∇fi(x) + (〈Ai:,∆x〉)Ai:.
Then any variance-reduced stochastic algorithm such as [8, 12, 20] can be applied to minimize mt(∆x; xt,M) to
an accuracy of Θ. In this way, second order information M can be efficiently introduced into stochastic gradient
algorithms. A similar idea was used in [1] to efficiently perform Newton-like updates in the smooth case.

B Additional Proofs

B.1 Convergence of F (x)
Lemma 9. Let h and V be two convex functions defined over Q such that the following assumption holds:

0 ∈ Q and h(0) = V (0) = 0 .

For any β ∈ (0, 1], define the following function

ζ(x, β) def= h(x) + 1
β
V 2(x) .

Then, ζ has the following properties:

1. V 2(x)
β is jointly convex in (β,x).

2. ζ(x, β) defined over Q× (0, 1] is jointly convex over its domain.
3. minx∈Q ζ(x, β) ≤ βminx∈Q ζ(x, 1).
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Proof. 1: For any x1, x2 in Q and β1, β2 ∈ (0, 1],

((1− α)β1 + αβ2)
(
V 2(x1)1− α

β1
+ V 2(x2) α

β2

)
= V 2(x1)(1− α)2 + V 2(x2)α2 + α(1− α)

(
V 2(x1)β2

β1
+ V 2(x2)β1

β2

)
≥ V 2(x1)(1− α)2 + V 2(x2)α2 + 2α(1− α)V (x1)V (x2)
= ((1− α)V (x1) + αV (x2))2

≥ V 2((1− α)x1 + αx2) .

In the first inequality, we used the AM-GM inequality, whereas for the second we used that V (x) is a convex
function. Thus we have shown that

1
(1− α)β1 + αβ2

V 2((1− α)x1 + αx2) ≤ V 2(x1)1− α
β1

+ V 2(x2) α
β2
.

2: For any x1, x2 in Q and β1, β2 ∈ (0, 1],

ζ((1− α)x1 + αx2, (1− α)β1 + αβ2) = h((1− α)x1 + αx2) + V 2((1− α)x1 + αx2)
(1− α)β1 + αβ2

≤ h(1− α)(x1) + αh(x2) + V 2((1− α)x1 + αx2)
(1− α)β1 + αβ2

≤ h(1− α)(x1) + αh(x2) + (1− α)V
2(x1)
β1

+ α
V 2(x2)
β2

.

In the first inequality, we used the convexity of h and in the second inequality we used that V (x)
β is jointly convex.

3: Then notice that as we tend β to zero, since V 2(x) ≥ 0, the term V 2(x)
β goes to ∞ unless V 2(x) = 0. Thus

limβ→0 minx ζ(x, β) = minx | V 2(x)=0 h(x) ≤ h(0) = 0. Let χ(β) = minx ζ(x, β). Since ζ(x, β) is jointly convex
over its parameters, χ(β) is also convex [4]. We can then extend the domain of χ(β) from (0, 1] to [0, 1] by taking
the limit point i.e. χ(0) def= limβ→0 χ(β). The function χ(β) remains convex over the extended domain [4]. Thus

χ(β(1) + (1− β)0) ≤ βχ(1) + (1− β)χ(0) ≤ βχ(1) .

Proof of Lemma 2

Proof. Let β = λ+λg
1+λg , h(∆x) = 〈∇f(v),∆x〉+ g(∆x + v)− g(v)− λg ‖∆x‖2M and V 2(∆x) = λ+λg

2 ‖∆x‖2M and
Q = {χ− v}. Observe the following:

1. h is convex in ∆x since g is λg-strongly convex. V is also convex since ‖∆x‖M is a convex function.
2. Since v ∈ χ, 0 ∈ {χ− v}.
3. h(0) = V (0) = 0.

We apply Lemma 9 to prove the required result.

Proof of Theorem 1

Et[F (xt+1)]
(1)
≤ Et

[
f(xt) + 〈∇f(xt),xt+1 − xt〉+ 1

2‖xt+1 − xt‖M
2 + g(xt+1)

]
= F (xt) + Et[mt(∆xt)]
= F (xt) + Et[mt(∆xt)−m?

t ] +m?
t

≤ F (xt) + (1−Θt)[mt(0)︸ ︷︷ ︸
=0

−m?
t ] +m?

t

= F (xt) + Θt min
∆x∈χ−xt

m(∆x; xt,M) .
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Using Lemma 2, we can relate progress made on m(∆x; xt,M) to the progress made with m(∆x; xt, λM).

Et[F (xt+1)] ≤ F (xt) + Θtλ min
∆x∈χ−xt

m(∆x; xt, λM)

≤ (1−Θtλ)F (xt) + Θtλ [F (xt) +m(x? − xt; xt, λM)]
(2)
≤ (1−Θtλ)F (xt) + Θtλ(F (x?)) .

Subtracting F (x?) on both sides gives

E[F (xT )− F (x?)] = E[Et[F (xT )− F (x?)]]
≤ (1−ΘTλ)E[F (xT−1)− F (x?)]

≤
T∏
t=0

(1−Θtλ)E[F (x0)− F (x?)]

≤ exp
(
−

T∑
t=0

Θtλ

)
E[F (x0)− F (x?)] .

Thus for T Θ̃Tλ ≥ log
(
F (x0)−F (x?)

ε

)
, E[F (xt+1)− F (x?)] ≤ ε.

Proof of Theorem 2. We assumed that mt(∆xt) ≤ 0 for all steps. Using smoothness, F (xt+1) ≤ F (xt) +
mt(∆xt) ≤ F (xt). Thus for all t, F (xt) ≤ F (x0) and xt ∈ {y | F (y) ≤ F (x0)}.

Et[F (xt+1)]
(1)
≤ Et

[
f(xt) + 〈∇f(xt),xt+1 − xt〉+ 1

2‖xt+1 − xt‖M
2 + g(xt+1)

]
= F (xt) + Et[mt(∆xt)]
= F (xt) + Et[mt(∆xt)−m?

t ] +m?
t

≤ F (xt) + (1−Θt)[mt(0)︸ ︷︷ ︸
=0

−m?
t ] +m?

t

≤ (1−Θt)F (xt) + Θt min
α∈[0,1]

[F (xt) +m(α(x? − xt); xt,M)]

= (1−Θt)F (xt) + Θt min
α∈[0,1]

[f(xt) + α〈∇f(xt),x? − xt〉

+ α2

2 ‖x
? − xt‖M

2 + g(αx? + (1− α)xt)]

≤ (1−Θt)F (xt) + Θt min
α∈[0,1]

[
F (xt + (1− α)x?) + α2D

2

]
≤ (1−Θt)F (xt) + Θt min

α∈[0,1]

[
(1− α)F (xt) + αF (x?) + α2D

2

]
.

Let δt
def= E[F (xt) − F (x?)] denote the suboptimality of F at t-th step. Substituting α = 0 in the previous

equation gives that E[F (xt+1)] ≤ F (xt) i.e. δt is a non-increasing sequence. Subtracting F (x?) in the same
equation,

δt+1 ≤ min
α∈[0,1]

(1−Θtα)δt + α2D

2

= δt −
Θt

2Dδ
2
t

≤ δt −
Θt

2Dδtδt+1 .

The last step used that δt is a non-increasing sequence. Let us assume that δt 6= 0 (since otherwise we are done).
Dividing both sides of the equation with δtδt+1,

1
δt+1

≥ 1
δt

+ Θt

2D ≥
1
δ0

+
∑t
i=0 Θi

2D ≥ tΘ̃t

2D .
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Recall the definition of Θ̃t from the statement of Theorem 2:

tΘ̃t
def=

t∑
i=0

Θi .

B.2 Primal-dual convergence proofs
Instead of using the SDCA lemma as [21] uses, we will use Lemma 7 from the CoCoA analysis [31]. This allows
us to generalize for the non-strongly convex case, as well as deal with approximate solutions to the subproblem.
Lemma 10 ([31, Lemma 7]). Let g be λg-strongly convex with respect to norm ‖·‖M . Then at each iteration if
Definition 3 is satisfied, then for any s ∈ [0, 1] it holds that

E[OA(αt)−OA(αt+1)] ≥ Θt

(
sG(αt)−

s2

2 Rt
)
,

where
Rt

def=
(

1− λg(1− s)
s

)
‖ut −αt‖2M

for vt = Aαt, ut ∈ ∂g∗(−A>∇f(vt)) and G(αt)
def= OB(∇f(vt)) +OA(αt).

Proof of Theorem 3. By our assumption f(Aα) is M smooth and λf strongly convex. Further g(α) is λg
strongly convex. This means that we can apply Theorem 1 to OA(α) and so for λ = λf+λg

1+λg ,

E[OA(αt)−OA(α?)] ≤ exp
(
−tΘ̃tλ

)
(OA(α0)−OA(α?)) .

Also Lemma 10 is valid for any s ∈ [0, 1]. We will pick s such that Rt = 0. For this s = λg
1+λg suffices. Putting

these together with the fact that α0 = 0,
λg

1 + λg
E[G(αt)] ≤

1
Θt

E[OA(αt)−OA(αt+1)]

≤ 1
Θt

E[OA(αt)−OA(α?)]

≤ 1
Θt

exp
(
−tΘ̃tλ

)
(OA(0)−OA(α?)) .

For T ≥ 1
λΘ̃T

log
(

((1+λg)(OA(0)−OA(α?)
λgΘtε

)
, E[G(αt)] ≤ ε.

Lemma 11. For all t, assuming the conditions in Theorem 4, Rt ≤ 4D.

Proof. As we saw in the proof of Theorem 2, the assumption that at every step mt(∆αt) ≤ mt(0) means that
the iterates αt produced by our algorithm are bounded in the domain Q def= {α | OA(α) ≤ OA(0)} with squared
diameter D = maxa,b∈Q ‖a− b‖2M . Thus we can use the Lipschitzing trick on g∗(−A>w) similar to [31, Lemma 8]
or [9, Theorem 6] and restrict the domain of g(α) to Q.

Proof of Theorem 4. By our assumption that f(Aα) is M smooth, we can apply Theorem 2 to OA(α) i.e.
for D′ = maxy∈Q ‖y− x?‖2M ≤ D, so

E[OA(αt)−OA(α?)] ≤ 2D
Θ̃tt

.

Substituting Lemma 11 in Lemma 10, and combining with the above statement,

E[G(αt)] ≤
1
sΘt

E[OA(αt)−OA(αt+1)] + Θts

2 Rt

≤ 1
sΘt

E[OA(αt)−OA(α?)] + 2ΘtsD

≤ 2D
sΘtΘ̃tt

+ 2ΘtsD .
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Since the above statement holds for any s ∈ [0, 1] and t > 0, for t ≥ 1
Θ2
t Θ̃t

, we can use s = 1
Θt
√

Θ̃tt
and obtain a

convergence rate
G(αt) ≤

4D√
Θ̃tt

.

The above statement gives us the convergence proportional to 1√
t
for the last iterate αt without averaging. While

this is a very useful result in itself, if we are willing to take an average iterate α̃t, we can show a convergence
proportional to 1

t . Let Θ̂t = minti=0 Θi,

E[G(α̃t)] = E

[
G

(
1

t− t0

t−1∑
i=t0

αi

)]
≤ 1
t− t0

E

[
t−1∑
i=t0

G(αi)
]

≤ 1
sΘ̂t(t− t0)

t−1∑
i=t0

E [OA(αi)−OA(αi+1)] + 2Θ̂tsD

≤ 1
sΘ̂t(t− t0)

E [OA(αt0)−OA(α?)] + 2Θ̂tsD

≤ 2D
sΘ̃t0Θ̂t(t− t0)t0

+ 2Θ̂tsD .

For t ≥ t0 + 1
Θ̂t

, set s = 1
(t−t0)Θ̂t

≤ 1. Then the above equation becomes

E[G(α̃t)] ≤
2D

Θ̃t0t0
+ 2D
t− t0

.

Taking T ≥ t0 + max
[

4D
ε ,

1
Θ̂t

]
and t0 ≥ 4D

Θ̃t0ε
ensures that E[G(α̃t)] ≤ ε.

B.3 Parallel block coordinate updates
Proof of Lemma 7. Recall the definition of σmax.

σmax
def= max

v6=0

EI
∥∥∥∑k∈[κ] ~vπk

∥∥∥2

M

EI
∑
k∈[κ] ‖~vπk‖

2
M

.

This follows because for any vector v 6= 0, using the convexity of ‖·‖M and Jensen’s inequality,∥∥∥∥∥∥
∑
k∈[κ]

~vπk

∥∥∥∥∥∥
2

M

≤ κ
∑
k∈[κ]

‖~vπk‖
2
M .

Proof of Lemma 8. This lemma follows from the notion of expected separability over-approximation (ESO)
[23, 24] using which we can bound the over-approximation.

Using the definition of σ-separable on the matrix M , for any partition Pj ∈ P

EI ‖∆xt‖2M = EI

∥∥∥∥∥∥
∑
k∈[κ]

(
~∆xt
)
πk

∥∥∥∥∥∥
2

M

≤ σ EI
∑
k∈[κ]

∥∥∥∥( ~∆xt
)
πk

∥∥∥∥2

M

.

Recall the definition of the subproblems mσ
t (∆x;πk,xt,M),

mσ
t (∆x; I,xt,M) def=

∑
k∈κ

〈∇πkf(x), (∆x)πk〉+ σ

2 ‖∆xπk‖
2
Mπk

+ gπk(xπk + (∆x)πk)− gπk(xπk) .
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The only difference between E[mσ
t (∆x; I,xt,M)] and mt(∆xt) is the quadratic term. However this is taken care

by our previous inequality involving σ. Hence we have,

EI [mt(∆xt)] ≤ E

〈∇f(xt),∆xt〉+ σ

2
∑
k∈[κ]

∥∥∥ ~∆xtπk
∥∥∥2

M
+ g(xt + ∆xt)− g(xt)


= EI

∑
k∈[κ]

mσ
t (∆xt;πk,xt,M)


≤ ΘEI

min
∆x

∑
k∈[κ]

mσ
t (∆x;πk,xt,M)

 .

The last inequality followed from the assumption that the subproblem was solved to Θ accuracy.

Now since min is a concave function, using Jensen’s inequality we can exchange the min and the expectation.
Then we apply Lemma 9 to change the constant from σ to 1.

EI [mt(∆xt)] ≤ ΘEI

min
∆x

∑
k∈[κ]

mσ
t (∆x;πk,xt,M)


≤ Θ min

∆x
EI

∑
k∈[κ]

mσ
t (∆x;πk,xt,M)


= Θ min

∆x
EI

∑
k∈[κ]

(
〈∇πkf(x), (∆x)πk〉+ σ

2 ‖∆xπk‖
2
Mπk

+ gπk(xπk + (∆x)πk)− gπk(xπk)
)

= κΘ
mσ

min
∆x

[
〈∇f(xt),∆x〉+ g(xt + ∆x)− g(xt) + 1

2(∆x)> EI
[m
κ
MI

]
(∆x)

]
≤ κΘ
mνσ

min
∆x

[
〈∇f(xt),∆x〉+ g(xt + ∆x)− g(xt) + 1

2(∆x)>M(∆x)
]

= κΘ
mνσ

min
∆x

mt(∆x) .

In the last inequality we used the definition of ν and to obtain the equality before that, we used the assumption
that the sampling scheme was unbiased.
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C Additional Experiments

(a) Actual time to reach ε accuracy in seconds.

(b) Average values of rt for varying values of ct by different strategies.

Figure 6: Figures missed from the main paper of which only a subset were displayed.
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(a) Time varying rt values for ct = 64 for strategy mult.

(b) Time varying rt values for ct = 128 for strategy mult.

(c) Time varying rt values for ct = 64 for strategy grad.

(d) Time varying rt values for ct = 64 for strategy add.

Figure 7: Plots showing uniform behavior of strategies across values of ct, and depending only on the dataset.
This strengthens our claim that the adaptive behavior of rt is predominantly influenced by the dataset aka the
hardness of the subproblem.


