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Abstract

We consider the task of collaborative pref-
erence completion: given a pool of items, a
pool of users and a partially observed item-
user rating matrix, the goal is to recover the
personalized ranking of each user over all of
the items. Our approach is nonparametric:
we assume that each item i and each user u
have unobserved features xi and yu, and that
the associated rating is given by gupfpxi, yuqq
where f is Lipschitz and gu is a monotonic
transformation that depends on the user. We
propose a k-nearest neighbors-like algorithm
and prove that it is consistent. To the best
of our knowledge, this is the first consistency
result for the collaborative preference com-
pletion problem in a nonparametric setting.
Finally, we demonstrate the performance of
our algorithm with experiments on the Net-
flix and Movielens datasets.

1 Introduction

In the preference completion problem, there is a pool
of items and a pool of users. Each user rates a subset
of the items and the goal is to recover the personalized
ranking of each user over all of the items. This prob-
lem is fundamental to recommender systems, arising in
tasks such as movie recommendation and news person-
alization. A common approach is to first estimate the
ratings through either a matrix factorization method
or a neighborhood-based method and to output per-
sonalized rankings from the estimated ratings (Koren
et al., 2009; Zhou et al., 2008; Ning et al., 2011; Breese
et al., 1998). Recent research has observed a num-
ber of shortcomings of this approach (Weimer et al.,
2007; Liu and Yang, 2008); for example, many ratings-
oriented algorithms minimize the RMSE, which does
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not necessarily produce a good ranking (Cremonesi
et al., 2010). This observation has sparked a num-
ber of proposals of algorithms that aim to directly
recover the rankings (Weimer et al., 2007; Liu and
Yang, 2008; Lu and Negahban, 2014; Park et al., 2015;
Oh et al., 2015; Gunasekar et al., 2016). Although
these ranking-oriented algorithms have strong empiri-
cal performance, there are few theoretical guarantees
to date and they all make specific distributional as-
sumptions (discussed in more detail below). In ad-
dition, these results have focused on low-rank meth-
ods, while ranking-oriented neighborhood-based meth-
ods have received little theoretical attention.

In this paper, we consider a statistical framework for
nonparametric preference completion. We assume that
each item i and each user u have unobserved features
xi and yu, respectively, and that the associated rating
is given by gupfpxi, yuqq where f is Lipschitz and gu
is a monotonic transformation that depends on the
user. We make the following contributions. (i) We
propose a simple k-nearest neighbors-like algorithm,
(ii) we provide, to the best of our knowledge, the first
consistency result for ranking-oriented algorithms in a
nonparametric setting, and (iii) we provide a necessary
and sufficient condition for the optimality of a solution
(defined below) to the preference completion problem.

2 Related Work

The two main approaches to preference completion are
matrix factorization methods (e.g., low-rank approxi-
mation) and neighborhood-based methods. Recently,
there has been a surge of research with many theo-
retical advances in low-rank approximation for collab-
orative filtering, e.g., (Recht, 2011; Keshavan et al.,
2010). These methods tend to focus on minimizing the
RMSE even though applications usually use ranking
measures to evaluate performance. While recent work
has developed ranking-oriented algorithms that out-
perform ratings-oriented algorithms (Gunasekar et al.,
2016; Liu and Yang, 2008; Rendle et al., 2009; Pes-
siot et al., 2007; Cremonesi et al., 2010; Weimer et al.,
2007), many of these proposals lack basic theoretical
guarantees such as consistency. A recent line of work
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has begun to fill this gap by establishing theoretical
results under specific generative models. Lu and Ne-
gahban (2014) and Park et al. (2015) provided consis-
tency guarantees using a low-rank approach and the
Bradley-Terry-Luce model. Similarly, Oh et al. (2015)
established a consistency guarantee using a low rank
approach and the MultiNomial Logit model. By con-
trast, our approach forgoes such strong parametric as-
sumptions.

Neighborhood-based algorithms are popular methods,
e.g. (Das et al., 2007), because they are straightfor-
ward to implement, do not require expensive model-
training, and generate interpretable recommendations
(Ning et al., 2011). There is an extensive experimental
literature on neighborhood-based collaborative filter-
ing methods. The most common approach is the user-
based model; it is based on the intuition that if two
users give similar ratings to items in the observed data,
then their unobserved ratings are likely to be similar.
This approach employs variants of k nearest-neighbors.
Popular similarity measures include the Pearson Cor-
relation coefficient and cosine similarity. There are a
large number of schemes for predicting the unobserved
ratings using the k nearest neighbors, including tak-
ing a weighted average of the ratings of the users and
majority vote of the users (Ning et al., 2011).

Recently, researchers have sought to develop
neighborhood-based collaborative filtering algo-
rithms that aim to learn a personalized ranking for
each user instead of each user’s ratings (Liu and Yang,
2008; Wang et al., 2014, 2016). Eigenrank, proposed
by Liu and Yang (2008), is structurally similar to
our algorithm. It measures the similarity between
users with the Kendall rank correlation coefficient, a
measure of the similarity of two rankings. Then, it
computes a utility function ψ : rn1s ˆ rn1s ÝÑ R for
each user that estimates his pairwise preferences over
the items. From the estimated pairwise preferences,
it constructs a personalized ranking for each user
by either using a greedy algorithm or random walk
model. In contrast, our algorithm uses the average
number of agreements on pairs of items to measure
similarity between users and a majority vote approach
to predict pairwise preferences.

Neighborhood-based collaborative filtering has not re-
ceived much theoretical attention. Kleinberg and San-
dler (2003, 2004) model neighborhood-based collabo-
rative filtering as a latent mixture model and prove
consistency results in this specific generative setting.
Recently, Lee et al. (2016), who inspired the frame-
work in the current paper, studied rating-oriented
neighborhood-based collaborative filtering in a more
general nonparametric setting. Their approach as-
sumes that each item i and each user u have unob-

served features xi and yu, respectively, and that the
associated rating is given by fpxi, yuq where f is Lip-
schitz, whereas we assume that the associated rating
is given by gupfpxi, yuqq where gu is a user-specific
monotonic transformation. As we demonstrate in our
experiments, their algorithm is not robust to mono-
tonic transformations of the columns, but this robust-
ness is critical for many applications. For example,
consider the following implicit feedback problem (Hu
et al., 2008). A recommender system for news articles
measures how long users read articles as a proxy for
item-user ratings. Because reading speeds and atten-
tion spans vary dramatically, two users may actually
have very similar preferences despite substantial dif-
ferences in reading times.

Even though our method is robust to user-specific
monotonic transformations, we do not require observ-
ing many more entries of the item-user matrix than Lee
et al. (2016) in the regime where there are many more
users than items (e.g., the Netflix dataset). If there are
n1 items and n2 users, Lee et al. (2016) requires that
there exists 1

2 ą α ą 0 such that the probability of ob-

serving an entry is greater than maxpn
´ 1

2`α
1 , n´1`α

2 q,
whereas we require that this probability is greater than

maxpn
´ 1

2`α
1 , n

´ 1
2`α

2 q.

Our work is also related to the problem of Monotonic
Matrix Completion (MMC) where a single monotonic
Lipschitz function is applied to a low rank matrix
and the goal is rating estimation (Ganti et al., 2015).
In contrast, we allow for distinct monotonic, possibly
non-Lipschitz functions for every user and pursue the
weaker goal of preference completion.

To the best of our knowledge, there is no theoretically
supported, nonparametric method for preference com-
pletion. Our work seeks to address this issue.

3 Setup

Notation: Define rns “ t1, . . . , nu. Let Ω Ă rn1s ˆ

rn2s. If X P Rn1ˆn2 , let PΩpXq P pR Y t?uqn1ˆn2 be

defined as rPΩpXqsi,j “

"

Xi,j if pi, jq P Ω
? if pi, jq R Ω

. If f

is some function and U a finite collection of objects

belonging to the domain of f , let max
plq
uPUfpuq denote

the lth largest value of f over U . Let Bernppq denote
a realization of a Bernoulli random variable with pa-
rameter p. For a metric space M with metric dM, let
Bεpzq “ tz

1 P M : dMpz, z
1q ă εu. We use bold type

to indicate random variables. For example, z denotes
a random variable and z a realization of z.

Nonparametric Model: Suppose that there are n1

items and n2 users. Furthermore,
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1. The items are associated with unobserved features
x1, . . . ,xn1 P X , and the users are associated with
unobserved features y1, . . . ,yn2

P Y where X and
Y are compact metric spaces with metrics dX and
dY , respectively.

2. x1, . . . ,xn1 ,y1, . . . ,yn2 are independent random

variables such that x1, . . . ,xn1

i.i.d.
„ PX and

y1, . . . ,yn2

i.i.d.
„ PY where PX and PY denote

Borel probability measures over X and Y, respec-
tively. We assume that for all ε ą 0 and y P Y,
PYpBεpyqq ą 0.

3. The complete ratings matrix is H –

rhupxi, yuqsiPrn1s,uPrn2s where hu “ gu ˝ f , f :
X ˆ Y ÝÑ R is a Lipschitz function with respect
to the induced metric dXˆYppx1, y1q, px2, y2qq –

maxpdX px1, x2q, dYpy1, y2qq with Lips-
chitz constant 1,1 i.e., @y1, y2 P Y and
@x1, x2 P X , |fpx1, y1q ´ fpx2, y2q| ď

maxpdX px1, x2q, dYpy1, y2qq, and gu is a non-
decreasing function. Note that each hu need not
be Lipschitz.

4. Each entry of the matrix H is observed indepen-
dently with probability p. Let Ω Ă rn1s ˆ rn2s

be a random variable denoting the indices of the
observed ratings.

Whereas Lee et al. (2016) considers the task
of completing a partially observed matrix F –

rfpxi, yuqsiPrn1s,uPrn2s when txiuiPrn1s and tyuuuPrn2s

are unobserved, we aim to recover the ordering of the
elements in each column of H when txiuiPrn1s and
tyuuuPrn2s are unobserved. In our setup, we view F
as an ideal preference matrix representing how much
users like items and H as how those preferences are
expressed based on user-specific traits (see the news
recommender system example in Section 2).

This framework subsumes various parametric models.
For example, consider a matrix factorization model
that assumes that there is a matrix H P Rn1ˆn2 of
rank d ď minpn1, n2q such that user u prefers item i
to item j if and only if Hi,u ą Hj,u. Then, we can
factorize H such that Hi,u “ xtiyu where xi, yu P Rd
for all i P rn1s and u P rn2s. In our setup, we have
fpxi, yuq “ xtiyu and gupzq “ z.

Task: Let Sn1 “ tσ : σ : rn1s ÝÑ

rn1s, σ is a permutationu denote the set of permuta-
tions on n1 objects. We call σ P Sn1 a ranking.
Let Sn1ˆn2 “ pSn1qn2 . That is, σ P Sn1ˆn2 if
σ : rn1s ˆ rn2s ÝÑ rn1s and for fixed u P rn2s, σp¨, uq

1We could develop our framework with an arbitrary Lip-
schitz constant L, but for ease of presentation, we fix L “ 1.

is a permutation on rn1s. We call σ P Sn1ˆn2 a col-
lection of rankings. Let ε ą 0. Our goal is to learn
σ P Sn1ˆn2 that minimizes the number of pairwise
ranking disagreements per user with some slack, i.e.,

disεpσ,Hq “
n2
ÿ

u“1

ÿ

iăj

1t|fpxi, yuq ´ fpxj , yuq| ą εu

ˆ1tphupxi, yuq ´ hupxj , yuqq

ˆpσpi, uq ´ σpj, uqq ă 0u.

4 Algorithm

Our algorithm, Multi-Rank (Algorithm 1), has two
stages: first it estimates the pairwise preferences of
each user and, second, it constructs a full rank-
ing for each user from its estimated pairwise pref-
erences. In the first stage, Multi-Rank computes
A P t0, 1un2ˆn1ˆn1 where Au,i,j “ 1 denotes that user
u prefers item i to item j and Au,i,j “ 0 denotes that
user u prefers item j to item i. If a user has provided
distinct ratings for a pair of items, Multi-Rank fills in
the corresponding entries of A. Otherwise, Multi-Rank
uses a subroutine called Pairwise-Rank that we will de-
scribe shortly. Once Multi-Rank has constructed A, it
applies the Copeland ranking procedure to the pair-
wise preferences of each user (discussed at the end of
the section).

Algorithm 1 Multi-Rank

1: Input: PΩpHq, β ě 2, k ą 0
2: for u P rn2s, i, j P rn1s, i ă j do
3: if pi, uq P Ω, pj, uq P Ω and Hi,u ‰ Hj,u then
4: Set Au,i,j “ 1tHi,u ą Hj,uu

5: Set Au,j,i “ 1´Au,i,j
6: else
7: Set Au,i,j “ Pairwise-Rankpu, i, j, β, kq
8: Set Au,j,i “ 1´Au,i,j
9: end if

10: end for
11: for u P rn2s do
12: pσu “ CopelandpAu,:,:q
13: end for
14: return pσ – ppσ1, . . . , pσn2

q

The Pairwise-Rank algorithm predicts whether a user
u prefers item i to item j or vice versa. It is similar
to k-nearest neighbors where we use the forthcoming
ranking measure as our distance measure. Let Npuq
denote the set of items that user u has rated, i.e.,

Npuq “ tl : pl, uq P Ωu,

andNpu, vq “ NpuqXNpvq denote the set of items that
users u and v have both rated. Viewing Npu, vq as an
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ordered array where Npu, vqr`s denotes the p` ` 1qth
element, let

Ipu, vq “ tps, tq : s “ Npu, vqr`s, t “ Npu, vqr`` 1s

for some ` P t2k : k P NY t0uuu.

In words, Ipu, vq is formed by sorting the indices of
Npu, vq and selecting nonoverlapping pairs in the given
order. Note that there is no overlap between the in-
dices in the pairs in Ipu, vq.2 Fix yu, yv P Y. If
Ipu, vq “ H, define Ru,v “ 0 and if Ipu, vq ‰ H, let
Ru,v –

1

|Ipu, vq|

ÿ

ps,tqPIpu,vq

1tphupxs, yuq ´ hupxt, yuqq

ˆphvpxs, yvq ´ hvpxt, yvqq ě 0u

denote the fraction of times that users u and v agree
on the relative ordering of item pairs belonging to
Ipu, vq. In practice, one can simply compute this
statistic over all pairs of commonly rated items. Ob-
serve that ρpyu, yvq –

ErRu,v|Ipu, vq ‰ H,yu “ yu,yv “ yvs

“ Prxs,xt„PX prhupxs, yuq ´ hupxt, yuqs

ˆrhvpxs, yvq ´ hvpxt, yvqs ě 0q

i.e., ρpyu, yvq is the probability that users u and v with
features yu and yv order two random items in the same
way.

We apply Pairwise-Rank (Algorithm 2) to a user u
and a pair of items pi, jq if the user has not pro-
vided distinct ratings for items i and j. Pairwise-
Rank(u, i, j, β, k) finds users that have rated items i
and j, and have rated at least β items in common
with u. If there are no such users, Pairwise-Rank flips
a coin to predict the relative preference ordering. If
there are such users, then it sorts the users in decreas-
ing order of Ru,v and takes a majority vote over the
first k users about whether item i or item j is pre-
ferred. If the vote results in a tie, Pairwise-Rank flips
a coin to predict the relative preference ordering.

Next, Multi-Rank converts the pairwise preference
predictions of each user into a full estimated ranking
for each user. It applies the Copeland ranking proce-
dure (Algorithm 3)–an algorithm for the feedback arc
set problem in tournaments (Copeland, 1951; Copper-
smith et al., 2006) to each user-specific set of pairwise
preferences. The Copeland ranking procedure simply
orders the items by the number of times an item is pre-
ferred to another item. It is possible to use other ap-
proximation algorithms for the feedback arc set prob-
lem such as Fas-Pivot from Ailon et al. (2008).

2We select nonoverlapping pairs to preserve indepen-
dence in the estimates for the forthcoming analysis.

Algorithm 2 Pairwise-Rank

1: Input: u P rn2s, i P rn1s, j P rn1s, β ě 2, k P N
2: W i,j

u pβq “ tv P rn2s : |Npu, vq| ě β, pi, vq, pj, vq P
Ωu

3: Sort W i,j
u pβq in decreasing order of Ru,v and let V

be the first k elements.
4: if V “ H then
5: return Bernp 1

2 q

6: end if
7: @v P V , set Pv “ 1thvpxi, yvq ą hvpxj , yvqu ´

1thvpxi, yvq ă hvpxj , yvqu
8: if

ř

vPV Pv ą 0 then
9: return 1

10: else if
ř

vPV Pv ă 0 then
11: return 0
12: else
13: return Bernp 1

2 q

14: end if

Algorithm 3 Copeland

1: Input: A P t0, 1un1ˆn1

2: for j P rn1s do
3: Ij “

řn1

i“1,i‰j Aj,i
4: end for
5: return σ P Sn1 that orders items in decreasing

order of Ij

5 Analysis of Algorithm

The main idea behind our algorithm is to use pairwise
agreements about items to infer whether two users are
close to each other in the feature space. However, this
is not possible in the absence of further distributional
assumptions. The Lipschitz condition on f only re-
quires that if users u and v are close to each other,
then maxz |fpz, yuq ´ fpz, yvq| is small. Proposition
1 shows that there exist functions arbitrarily close to
each other that disagree about the relative ordering of
almost every pair of points.

Proposition 1. Let X “ r0, 1s and PX be the
Lebesgue measure over X . For every ε ą 0, there exist
functions f, g : X ÝÑ R such that maxxPr0,1s |fpxq ´
gpxq| “ }f ´ g}8 ď ε and for almost every pair of
points px, x1q P r0, 1s2, fpxq ą fpx1q iff gpxq ă gpx1q.

Thus, we make the following mild distributional as-
sumption.

Definition 1. Fix y P Y and let fypxq – fpx, yq. Let
r be a positive nondecreasing function. We say y is r-
discerning if @ε ą 0, Prx1,x2„PX p|fypx1q ´ fypx2q| ď

2εq ă rpεq.

This assumption says that the probability that fypx1q

and fypx2q are within ε of each other decays at some
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rate given by r. In a sense, it means that users perceive
some difference between most randomly selected items
with different features, although the difference might
be masked by the transformation gu.

We also assume that if two users are not close to each
other in the latent space, then they must have some
disagreements. Definition 2 requires that the nonpara-
metric model is economical (i.e., not redundant) in the
sense that different parts of the feature space corre-
spond to different preferences.

Definition 2. Fix y P Y. Let ε, δ ą 0. We say
that y is pε, δq-discriminative if z P Bεpyq

c implies that
ρpy, zq ă 1´ δ.

These assumptions are satisfied under many paramet-
ric models. Proposition 2 provides two illustrative ex-
amples under a matrix factorization model. We briefly
note that, as we show in the supplementary material,
fpx, yq “ xty and fpx, yq “ }x´ y}2 are equivalent
models by adding a dimension.

Proposition 2. Consider pRd, }¨}2q. Let fpx, yq “
}x´ y}2 and gup¨q be strictly increasing @u P rn2s.

1. Let X “ Y “ tx P Rd : }x}2 ď 1u, PX be
the uniform distribution and for all y P Y define
rypεq “ supzPr0,2s PX pBzpyqzBz´4εpyqq. Then, for
all y P Y, y is ry-discerning. Further, define
for all ε ą 0, δε “ infvPY 2PX pB ε

2
pvqq2. Then,

for all yu P Y and for all ε ą 0, yu is pε, δεq-
discriminative.

2. Let X Ă Rd be a finite collection of points, PX
be uniform over X , and for all y P Y define

rypεq “
|tpx,x1qPXˆX :|}y´x}´}y´x1}|ď2εu|

|X |2 . Then, for

all y P Y, y is ry-discerning. Next, suppose Y is
a finite collection of points and every pair of dis-
tinct y, y1 P Y disagree about at least C pairs of
items. Let δ “ C

|X |2 . For all yu P Y and for all

ε ą 0, yu is pε, δq-discriminative.

Our analysis uses two functions to express problem-
specific constants. First, let τ : R`` ÝÑ p0, 1s be
defined as τpεq “ infy0PY Pry„PY pdYpy0,yq ď εq. Sec-
ond, let κ : R`` ÝÑ p0, 1s be such that κpεq “
infy0PY Pry„PY pdYpy0,yq ą εq. Our assumption that
for all δ ą 0 and y P Y, PYpBδpyqq ą 0 ensures
that τp¨q ą 0 and κp¨q ă 1 (see Lemma D.3). If
PY is uniform over the unit cube in pRd, }¨}8q, then
τpεq “ minp1, εqd and if Y is a finite collection of
points, then τpεq “ minyPY PYpyq (Lee et al., 2016).

Our model captures the intrinsic difficulty of a prob-
lem instance as follows. rp¨q and τp¨q together control
the probability of sampling nearby users with simi-
lar preferences. pε, δq-discriminative captures how of-
ten users u and v must agree in order to infer that

yu and yv are close in the latent space and, thus,
maxz |fpz, yuq ´ fpz, yvq| ď ε.

5.1 Continuous Ratings Setting

Our analysis deals with the case of continuous ratings
and the case of discrete ratings separately. In this
section, we prove theorems dealing with the contin-
uous case and in the next section we give analogous
results with similar proofs for the discrete case. Theo-
rem 1 establishes that with probability tending to 1 as
n2 ÝÑ 8, Multi-Rank outputs pσ P Sn1ˆn2 such that
dis2εppσ,Hq “ 0.

Theorem 1. Suppose @u P rn2s, gupzq is strictly in-
creasing. Let ε, δ ą 0, η P p0, ε2 q. Suppose that almost
every y P Y is p ε2 , δq-discriminative. Let r be a positive
nondecreasing function such that rp ε2 q ě δ and rpηq ă
δ
2 . Suppose that almost every y P Y is r-discerning.

Let 0 ă α ă 1
2 . If p ě maxpn

´ 1
2`α

1 , n
´ 1

2`α
2 q, n1p

2 ě

16, and n2 is sufficiently large, then Multi-Rank with

k “ 1 and β “ p2n1

2 outputs pσ P Sn1ˆn2 such that

Prtxiu,tyuu,Ωpdis2εppσ,Hq ą 0q

ďn2

ˆ

n1

2

˙

r2 expp´
pn2 ´ 1qp2

12
q ` pn2 ´ 1q expp´

n1p
2

8
q

` expp´p
pn2 ´ 1qp2

2
qτpηqq

`3pn2 ´ 1qp2 expp´
δ2n1p

2

20
qs.

A couple of remarks are in order. First, if ε and δ are
small, then η must be correspondingly small. η repre-
sents how close a user yv must be to a user yu in the
feature space to guarantee that the ratings of yv can
be used to make inferences about the ranking of user

yu. Second, whereas we require that p ě n
´ 1

2`α
2 , Lee

et al. (2016) require that p ě n´1`α
2 . We conjecture

that this stronger requirement is fundamental to our
algorithm since v P W i,j

u pβq only if v has rated both
items i and j, which v does with probability p2. How-
ever, there may be another algorithm that circumvents
this issue. Theorem 1 implies the following Corollary.

Corollary 1. Assume the setting of Theorem 1. If

n2 ÝÑ 8, p ě maxpn
´ 1

2`α
1 , n

´ 1
2`α

2 q, and nC1
2 ě

n1 ě C2 logpn2q
1
2α for any constant C1 ą 0

and some constant C2 ą 0 depending on α, then
Prtxiu,tyuu,Ωpdis2εppσ,Hq ą 0q ÝÑ 0 as n2 ÝÑ 8.

Note that the growth rates of n1, n2 and p imply that
the average number of rated items by each user pn1

must grow as C logpn2q
1
2`

1
4α for some universal con-

stant C ą 0.

Next, we sketch the proof. The main part of the anal-
ysis deals with establishing a probability bound of a
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mistake by Pairwise-Rank for a specific user u and a
pair of items i and j when |fpxi,yuq ´ fpxj ,yuq| ą ε.
First, we establish that w.h.p. |W i,j

u pβq| is large, i.e.,
there are many users that have rated i and j and many
other items in common with u. Second, using stan-
dard concentration bounds, it is shown that for every
v P W i,j

u pβq, Ru,v concentrates around ρpu, vq. Since
β ÝÑ 8, this estimate converges to ρpu, vq. Third, we
show that eventually we sample a point from Bηpyuq.
Further, if yv P Bηpyuq and yw P B ε

2
pyuq

c (note
η ď ε

2 ), then since yu is p ε2 , δq-discriminative w.p. 1,

by our choice of η, ρpyu,yvq ą ρpyu,ywq `
δ
2 . Thus,

by concentration bounds, Ru,v ą Ru,w. Therefore,
Pairwise-Rank with k “ 1 uses the preference order-
ing of a user in B ε

2
pyuq on items i and j to make the

prediction. The Lipschitzness of f and our assumption
that gv is strictly increasing imply that this prediction
is correct. It is possible to extend this argument to
handle the case when k ą 1.

5.2 Discrete Ratings Setting

Let N ą 0 and suppose that |fpx, yq| ď N @x P X ,
@y P Y. Suppose that there are L distinct ratings and
let G denote the set of all step functions of the form

gupxq “

$

’

’

’

&

’

’

’

%

1 : x P r´N, au,1q
2 : x P rau,1, au,2q
...
L : x P rau,L´1, N s

.

We assume that for all u P rn2s, gu P

G and that the rating thresholds are random,

i.e., pa1,1, . . . ,a1,L´1q, . . . , pan2,1, . . . ,an2,L´1q
i.i.d.
„

Pr´N,NsL´1 . We write g1, . . . , gn2

i.i.d.
„ PG and we as-

sume that tguuuPrn2s is independent from txiuiPrn1s,
tyuuuPrn2s, and Ω. Let Pl denote the marginal distri-
bution of au,l for all u P rn2s. We make the following
assumption.

Definition 3. We say that PG is diverse if for ev-
ery open interval I Ă r´N,N s there exists l such that
PlpIq ą 0.

Let dR denote a metric on R; fix u P rn2s and let γpεq “
infzPr´N,Ns Ptau,lulPrL´1s

pDl P rL´ 1s : dRpz,au,lq ď εq.
The aforementioned assumption ensures via a measure
theoretic argument that γpεq ą 0 for all ε ą 0 (see
Lemma D.3 in the Appendix).

Theorem 2. Let ε, δ ą 0 and η P p0, ε4 q. Suppose
that PG is diverse and that almost every y P Y is
p ε4 , δq-discriminative. Let r be a positive nondecreas-

ing function such that rp ε4 q ě δ and rpηq ă δ
2 . Sup-

pose that almost every y P Y is r-discerning. Let
1
2 ą α ą α1 ą 0. If p ě maxpn

´ 1
2`α

1 , n
´ 1

2`α
2 q,

n1p
2 ě 16, n1 ě C1 logpn2q

1
2α for some constant C1,

and n2 is sufficiently large, Multi-Rank with k “ nα
1

2

and β “ p2n1

2 outputs pσ such that

Prtxiu,tyuu,tau,lu,Ωpdis2εppσ,Hq ą 0q

ďn2

ˆ

n1

2

˙

r2 expp´
pn2 ´ 1qp2

12
q ` pn2 ´ 1q expp´

n1p
2

8
q

`2 expp´γp
ε

4
qkq

`
1

1´ rp ε2 q
r3pn2 ´ 1qp2 expp´

δ2n1p
2

20
q

` exppr1´ κp
ε

4
q ` τpηq ` logp3

pn2 ´ 1qp2

2
qsk

´k logpkq ´ τpηq
pn2 ´ 1qp2

2
qss.

Corollary 2. Assume the setting of Theorem 2. If

p ě maxpn
´ 1

2`α
1 , n

´ 1
2`α

2 q, k “ nα
1

2 , and nC1
2 ě

n1 ě C2 logpn2q
1
2α for any constant C1 ą 0

and some constant C2 ą 0 depending on α, then
Prtxiu,tyuu,Ωpdis2εppσ,Hq ą 0q ÝÑ 0 as n2 ÝÑ 8.

The bulk of the analysis for the discrete ratings set-
ting is similar to the continuous rating setting and,
once again, mainly deals with the analysis of Pairwise-
Rank for a user u and items i and j. Since the ratings
are discrete, although users that are sufficiently close
to user u in the feature space agree about the order-
ing of items i and j, we need to show that at least
one of these neighbors does not give the same rating
to items i and j. To this end, we show that even-
tually k nearby points are sampled: yv1 , . . . ,yvk P
Bηpyuq. Conditional on |fpxi,yuq ´ fpxj ,yuq| ą ε,
using the Lipschitzness of f , pfpxi,yvq q, fpxj ,yvq qq
has length at least ε

2 . Finally, since PG is diverse, a
concentration argument wrt gv1 , . . . , gvk implies that
w.h.p. there exists q P rks and l P rL ´ 1s such that
avq,l P pfpxi,yvq q, fpxj ,yvq qq. Thus, user vq provides
distinct ratings for items i and j.

6 A Necessary and Sufficient
Condition for disεpσ,Hq “ 0

In this section, we characterize the class of optimal
collections of rankings, i.e., σ P Sn1ˆn2 such that
disεpσ,Hq “ 0. We show roughly that a collection of
rankings σ is optimal in the sense that disεpσ,Hq “ 0
if and only if σ agrees with the observed data and σ
gives the same ranking to users that are close to each
other in the latent space Y. To study this question,
we consider the regime where the number of items n1

is fixed, the probability of an entry being revealed p is
fixed, and the number of users n2 goes to infinity.

Consider the following notion, which is the main in-
gredient in our necessary and sufficient condition:
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Definition 4. Let ε ą 0 and T Ă rn1s ˆ rn1s ˆ rn2s.
σ P Sn1ˆn2 is an ε-consistent collection of rankings
over T if @i ‰ j P rn1s, u ‰ v P rn2s such that
pi, j, uq, pi, j, vq P T and dYpyu, yvq ď ε, it holds that
σpi, uq ă σpj, uq ðñ σpi, vq ă σpj, vq. If σ is an ε-
consistent collection of rankings over rn1sˆrn1sˆrn2s,
then we simply say that σ is an ε-consistent collection
of rankings.

In words, a collection of rankings is ε-consistent if it
gives the same ranking to users that are within ε of
each other in the latent space.

We introduce the following objective function:
xdispσ,Hq –

n2
ÿ

u“1

ÿ

iăj:pi,uq,pj,uqPΩ

1tphupxi, yuq ´ hupxj , yuqq

ˆpσpi, uq ´ σpj, uqq ă 0u.

Once again, we analyze separately the continuous rat-
ing and discrete rating settings. With respect to the
continuous rating setting, Theorems 3 and 5 roughly
imply that with probability tending to 1 as n2 ÝÑ 8,
a collection of rankings σ P Sn1ˆn2 that minimizes
xdisp¨, Hq is ε

2 -consistent if and only if disεpσ,Hq “ 0.
A similar statement holds for the discrete rating set-
ting.

To begin, we present our sufficient conditions.

Theorem 3. Assume the continuous rating setting.
Let ε ą 0 and suppose that for all u P rn2s, gup¨q
is strictly increasing. With probability increasing to
1 as n2 ÝÑ 8, if σ P Sn1ˆn2 is ε

2 -consistent and

minimizes xdisp¨, Hq, then disεpσ,Hq “ 0.

Theorem 4. Assume the discrete rating setting and
that PG is diverse. Let ε ą 0. With probability increas-
ing to 1 as n2 ÝÑ 8, if σ P Sn1ˆn2 is ε

8 -consistent

and minimizes xdisp¨, Hq, then disεpσ,Hq “ 0.

The proofs for the continuous and discrete cases are
similar. We briefly sketch the argument for the con-
tinuous case. Since Y is compact, there is a finite
subcover of Y with open balls with diameter at most
ε
2 . As n2 ÝÑ 8, with probability increasing to 1,
for every open ball O belonging to the finite subcover
and for every pair of distinct items i, j P rn1s, there
is some user u P O that has rated i and j. Then,
on this event, it can be shown that if disεpσ,Hq ą 0,

then xdispσ,Hq ą 0. Thus, using the contrapositive,
the result follows.

Theorem 5 gives our necessary condition.

Theorem 5. Let ε ą 0 and σ P Sn1ˆn2 such that
disεpσ,Hq “ 0. Let T “ tpi, j, uq P rn1s ˆ rn1s ˆ

rn2s : |fpxi, yuq´fpxj , yuq| ą ε, hpxi, yuq ‰ hpxj , yuqu.

Then, σ is an ε-consistent collection of rankings over
T .

Theorem 5 shows that in our general setting, learn-
ing the correct collection of rankings requires giving
the same ranking to nearby users. In particular, this
provides an intuition on the kind of embedding that
matrix factorization learns. Theorem 5 only applies to
items i, j and user u if there is a large enough differ-
ence in the underlying values given by f . The proof
follows by the Lipschitzness of f and algebra.

7 Experiments

In this section, we examine the empirical performance
of Multi-Rank. It is well-known that matrix factoriza-
tion methods tend to outperform neighborhood-based
methods. Nevertheless, neighborhood-based meth-
ods remain popular in situations where practitioners
want an easy-to-implement method, to avoid expensive
model-building, and to be able to interpret predictions
easily (Ning et al., 2011). Furthermore, it has been
observed that for the task of matrix completion, (i)
matrix factorization methods and neighborhood-based
methods have complementary strengths and weak-
nesses and (ii) performance gains can be achieved by
merging these methods into a single algorithm (Bell
and Koren, 2007; Koren, 2008). Yet, it is non-trivial
to generalize ideas for combining matrix factorization
and neighborhood-based methods in the matrix com-
pletion setting to the preference completion setting. In
light of this discussion, the purpose of our experiments
is not to demonstrate the superiority of our method
over matrix factorization methods, but to compare the
performance of our algorithm with the state-of-the-art.

We compared the performance of our algorithm (MR)
and a weighted version of our algorithm (MRW) where
votes are weighted by Ru,v against Alternating SVM
(AltSVM) (Park et al., 2015), Retargeted Matrix Com-
pletion (RMC) (Gunasekar et al., 2016), and the pro-
posed algorithm in (Lee et al., 2016) (LA). We chose
AltSVM and RMC because they are state-of-the-art
matrix factorization methods for preference comple-
tion and we chose LA because its theoretical guaran-
tees are similar to our guarantees for Multi-Rank and
it was shown to be superior to item-based and user-
based neighborhood methods (Lee et al., 2016). We
used grid search to optimize the hyperparameters for
each of the algorithms using a validation set.

We use the ranking metrics Kendall Tau, Spearman
Rho, NDCG@5, and Precision@5. Kendall Tau and
Spearman Rho measure how correlated the predicted
ranking is with the true ranking. The other metrics
measure the quality of the predicted ranking at the
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Dataset Method Kendall Tau Spearman Rho NDCG@5 Precision@5
MRW 0.3156 (0.0021) 0.4012 (0.0029) 0.7104 (0.0010) 0.4492 (0.0018)
MR 0.3105 (0.0021) 0.3963 (0.0030) 0.7063 (0.0038) 0.4457 (0.0044)
LA 0.3271 (0.0018) 0.4153 (0.0022) 0.7136 (0.0026) 0.4570 (0.0041)
AltSVM 0.3271 (0.0007) 0.4173 (0.0008) 0.7022 (0.0015) 0.4365 (0.0036)

Netflix RMC 0.3288 (0.0017) 0.4178 (0.0020) 0.7204 (0.0006) 0.4581 (0.0048)
MRW 0.3933 (0.0010) 0.5009 (0.0013) 0.7769 (0.0066) 0.6083 (0.0096)
MR 0.3924 (0.0011) 0.4999 (0.0013) 0.7735 (0.0061) 0.6021 (0.0063)
LA 0.3993 (0.0009) 0.5075 (0.0012) 0.7767 (0.0058) 0.6071 (0.0080)
AltSVM 0.4099 (0.0008) 0.5219 (0.0010) 0.8002 (0.0042) 0.6417 (0.0067)

Movielens RMC 0.4041 (0.0004) 0.5139 (0.0006) 0.8068 (0.0030) 0.6485 (0.0029)

Table 1: Netflix and MovieLens Results. On the Netflix dataset, MR usually used β “ 5 and k P r13, 19s. MRW
usually used β “ 9 and k P r16, 23s. On the MovieLens dataset, MR usually used β “ 10 and k P r7, 13s. MRW
usually used β “ 12 and k P r13, 17s.

Dataset Method Kendall Tau Spearman Rho NDCG@5 Precision@5
MRW 0.2736 (0.0017) 0.3327 (0.0021) 0.8063 (0.0031) 0.7849 (0.0034)
MR 0.2677 (0.0019) 0.3255 (0.0023) 0.7980 (0.0034) 0.7764 (0.0008)
LA 0.2786 (0.0022) 0.3387 (0.0027) 0.8024 (0.0024) 0.7843 (0.0018)
AltSVM 0.2743 (0.0015) 0.3335 (0.0018) 0.7949 (0.0023) 0.7768 (0.0023)

Netflix RMC 0.2856 (0.0017) 0.3473 (0.0021) 0.8052 (0.0038) 0.7861 (0.0032)
MRW 0.3347 (0.0015) 0.4090 (0.0018) 0.8903 (0.0059) 0.8810 (0.0059)
MR 0.3343 (0.0017) 0.4085 (0.0021) 0.8879 (0.0052) 0.8792 (0.0061)
LA 0.3395 (0.0017) 0.4149 (0.0020) 0.8908 (0.0085) 0.8845 (0.0078)
AltSVM 0.3451 (0.0016) 0.4217 (0.0020) 0.9070 (0.0056) 0.8982 (0.0056)

Movielens RMC 0.3504 (0.0014) 0.4281 (0.0017) 0.9140 (0.0026) 0.9051 (0.0032)

Table 2: Quantized Netflix and MovieLens Results. On the Netflix dataset, MR usually used β “ 5 and k “ 22.
MRW usually used β P r9, 10s and k P r27, 31s. On the MovieLens dataset, MR usually used β P r10, 13s and
k P r10, 19s. MRW usually used β P r8, 11s and k P r16, 23s.

Dataset Method Kendall Tau Spearman Rho NDCG@5 Precision@5
Netflix LA 0.1798 (0.0034) 0.2300 (0.0040) 0.5962 (0.0022) 0.3322 (0.0053)
MovieLens LA 0.2404 (0.0098) 0.3092 (0.0123) 0.6543 (0.0138) 0.4435 (0.0163)

Table 3: Monotonically Transformed Netflix and MovieLens Results. We only display the results for LA since
the other methods are invariant to monotonic transformations of the columns.

top of the list. For Precision@5, we deem an item
relevant if it has a score of 5. For all of these metrics,
higher scores are better. See Liu (2009) for a more
detailed discussion of these metrics. The numbers in
parentheses are standard deviations.

We use the Netflix and MovieLens 1M datasets. We
pre-process the data in a similar way to Liu and Yang
(2008). For the Netflix dataset, we take the 2000
most popular movies and randomly selected 4000 users
that had rated at least 100 of these movies. For both
datasets, we randomly subsample the ratings 5 times
in the following way: we randomly shuffled the (user-
id, movie, rating) triples and split 40% into a training
set, 15% into a validation set, and 45% into a test
set. For the Netflix dataset, we drop users if they have
fewer than 50 ratings in the training set and fewer
than 10 ratings in either the validation set or the test
set. For the MovieLens dataset, we drop users if they
have fewer than 100 ratings in the training set and
fewer than 50 ratings in either the validation set or the
test set. Table 1 shows that although MRW does not
have the best performance, it outperforms AltSVM on

NDCG@5 and Precision@5 on the Netflix dataset and
LA on NDCG@5 and Precision@5 on the MovieLens
dataset.

In addition, we quantized the scores of both datasets
to 1 if the true rating is less than or equal to 3 and to
5 otherwise (see Table 2). Here, MR and MRW have
the same amount of information as LA and RMC. On
the Netflix dataset, MRW performed the best on the
NDCG@5 measure.

Finally, we considered a setting where a company per-
forms A{B testing on various rating scales (e.g., 1-5,
1-10, 1-50, 1-100) and wishes to use all of the col-
lected data to predict preferences. To model this sit-
uation, for each user, we randomly sampled a number
a P t1, 2, 10, 20u and b P ra´1sYt0u, and transformed
the rating r ÞÑ a ¨ r ´ b. Table 3 shows that on the
monotonically transformed versions of the Netflix and
MovieLens datasets, LA performs dramatically worse.
This is unsurprising since it is well-known that the per-
formance of rating-oriented neighborhood-based meth-
ods like LA suffers when there is rating scale variance
(Ning et al., 2011).
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