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A Example of Weighted Vornoi Cells

Fig. 2 shows answers we get from a weak oracle to the query Oz(x, y) for points z in different regions of a
2-dimensional Euclidean space.
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Figure 2: Voronoi cells with a multiplicative distance ↵ = 2 for a two dimensional Euclidean space. This figure
partition the space into three parts based on the potential answers from the oracle.

B Proof of Lemma 1

Proof. To prove this lemma, we show that any ball Bx(2R) could be covered by at most k  c4 balls of radius R.

Lemma 3. An ✏-net of A is an ✏-cover of A.

Proof. Let {x1, x2, · · · , xk} be an ✏-net of A. Suppose that there exists x 2 A such that x /2
S

k

i=1 Bxi(✏). Then
we know that d(x, xi) > ✏ for all i. This contradicts the maximality of the ✏-net.

Assume {x1, x2, · · · , xk} is an R-net of the ball Bx(2R). We know for all i 6= j, Bxi(R/2) \ Bxj (R/2) = ?.
Therefore, we have µ([k

i=1Bxi(R/2)) =
P

k

i=1 µ(Bxi(R/2)). Also,

µ(Bxi(R/2)) � c�3µ(Bxi(4R)) � c�3µ(Bx(2R)).

Also, [k

i=1Bxi(R/2) ✓ Bx(4R). To sum-up we have

µ(Bx(2R)) � c�1µ(Bx(4R)) � c�1µ([k

i=1Bxi(R/2)) � c�1
kX

i=1

µ(Bxi(R/2)) � kc�4µ(Bx(2R)).

C Proof of Theorem 1

Proof. To prove this theorem, we show: (a) In each iteration the target t remains in the next version space.
Therefore, Worcs-I always find the target t. (b) The µ-mass of the version space shrinks by a factor of at least
1� c�2 in each iteration, which results in the total number of 1 + H(µ)

log(1/(1�c�2)) iterations. (c) The number of
queries to find the next version space is upper bounded by a polynomial function of the doubling constant c.

(a) Assume ct is the center of a ball which contains t, i.e., t 2 Bct(
�

8(↵+1) ). For all cj 6= ct such that d(ct, cj) > �
8 ,

we have Ot(ct, cj) = ct. This is because d(ct, t) 
�

8(↵+1) and d(cj , t) >
�
8 �

�
8(↵+1) , and thus ↵d(ct, t) < d(cj , t).
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On the other hand, consider an i such that for all j 6= i with d(ci, cj) >
�
8 , we have Ot(ci, cj) = ci. We claim

t 2 Bci(
�(↵+2)
8(↵+1) ). Assume this in not true. Then for ct we have d(ci, ct) > d(ci, t) �

�
8(↵+1) �

�
8 . Therefore,

following the same lines of reasoning as the fist part of the proof, we should have Ot(ci, ct) = ct. This contradicts
our assumption.

(b) We have µ(Vi+1)  (1� c�2)µ(Vi). To prove this, we first state the following lemma.

Lemma 4. Assume � = maxx,y2Vi d(x, y). 8x 2 Vi we have maxy2Vi d(x, y) �
�
2 .

Proof. Assume x⇤, y⇤ = argmax
x,y2Vi

d(x, y). By using triangle inequality we have d(x, x⇤) + d(x, y⇤) �

d(x⇤, y⇤) = �. We conclude that at least one of d(x, x⇤) or d(x, y⇤) is larger than or equal to �
2 . This

results in maxy2Vi d(x, y) � max{d(x, x⇤), d(x, y⇤)} �
�
2 .

Let’s assume ci is the center of µ(Vi+1) and point c⇤
i

is the furthest point from ci. From Lemma 4 we know that
d(ci, c⇤i ) �

�
2 . Also, it is straightforward to see Bci(

�(↵+2)
8(↵+1) ) \Bc

⇤
i
(�4 ) = ;. From the definition of expansion rate

we have µ(Bc
⇤
i
(�4 )) � c�2µ(Bc

⇤
i
(�)) � c�2µ(Vi).

(c) Let’s consider t 2 suppM as the target. Worcs-I locates the target t, provided µ(Vi)  (1�c�2)iµ(V0)  µ(t)

or equivalently i � 1 + log µ(t)
log(1�c�2) � d

log(µ(t)
log(1�c�2)e. The expected number of iterations is then upper bounded by

P
t2supp(M) µ(t)

⇣
1 + log µ(t)

log(1�c�2)

⌘
= 1 + H(µ)

log(1/(1�c�2)) . Finally, from Lemma 1, we know that we can cover the
version space Vi with at most c4dlog 8(↵+1)e balls of radius �

8(↵+1) . Note that in the worst case we should query
the center of each ball versus centers of all the other balls in each iteration.

D Proof of Theorem 2

Proof. Let S1 , Vi \V or(y, x,Vi), S2 , Vi \V or(x, y,Vi) and S3 , Vi \ (V or(x, y,Vi)[V or(y, x,Vi)). We denote
the distance between x and y by r , d(x, y). Assume � is the largest distance between any two pints in Vi, i.e.,
� , diam(Vi). We have � = �/r for 0  �  1. We condition on the target element t 2 supp(M).

We first prove that µ(Vi)  (1�c�l

strong)
iµ(V0) = (1�c�l

strong)
i. Note that we have 2l · r

↵+1 �
↵+1
�

·
r

↵+1 � �. The first
step is to show that V or(x, y,Vi) ◆ Bx(

r

↵+1 ). For any element v 2 Bx(
r

↵+1 ), we have d(x, v)  r

↵+1 . Therefore,
↵d(x, v)  ↵r

↵+1  r � d(x, v) = d(x, y)� d(x, v)  d(y, v), which yields immediately that v 2 V or(x, y,Vi). As a
result,

µ(V or(x, y,Vi)) � µ(Bx(
r

↵+ 1
)) � c�l

strongµ(Bx(2
l
·

r

↵+ 1
)) � c�l

strongµ(Bx(D)) � c�l

strongµ(Vi).

We deduce that µ(S2) = µ(Vi) � µ(V or(x, y,Vi))  (1 � c�l

strong)µ(Vi). Similarly, we have µ(V or(y, x,Vi)) �

c�l

strongµ(Vi) and µ(S1)  (1 � c�l

strong)µ(Vi). In addition, µ(S3)  (1 � c�l

strong)µ(Vi). To sum up, we have
max1j3 µ(Sj)  (1� c�l

strong)µ(Vi).

The search process ends after at most i iterations provided µ(Vi)  (1 � c�l

strong)
i
V0  µ(t), or equivalently

i � 1 + log µ(t)

log(1�c
�l
strong)

. The average number of iterations is then bounded from above by

X

t2supp(M)

µ(t)

 
1 +

logµ(t)

log(1� c�l

strong)

!
 1 +

H(µ)

log(1/(1� c�l

strong))
.

Also, in each iteration we need to query only one pair of objects.

E Proof of Lemma 2

Proof. We first prove that we can always find at least one point with this property. Define x⇤ = argmax
z2Vi

d(x, z).
From Lemma 4, we know that d(x, x⇤) � �

2 . We claim there is no z 6= x⇤ such that x 2 V or(x⇤, z,Vi). Assume
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there is a z. This means ↵d(x, x⇤)  d(x, z), where it contradicts with the choice of x⇤. This means that the set
of points with this property is not empty. If y = z⇤ then we are done with the proof, because d(x, x⇤) � �

2 �
�
2↵ .

Next, we prove that for any y 6= x⇤ with this property, we have d(x, y) �
�
2↵ . Assume y 6= x⇤. We know

x /2 V or(y, x⇤,Vi). Therefore, we have ↵d(x, y) � d(x, x⇤) � �
2 and d(x, y) � �

2↵ .
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