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Abstract

There is increasing interest in learning algo-
rithms that involve interaction between hu-
man and machine. Comparison-based queries
are among the most natural ways to get feed-
back from humans. A challenge in designing
comparison-based interactive learning algo-
rithms is coping with noisy answers. The
most common fix is to submit a query several
times, but this is not applicable in many situa-
tions due to its prohibitive cost and due to the
unrealistic assumption of independent noise
in different repetitions of the same query.

In this paper, we introduce a new weak oracle
model, where a non-malicious user responds
to a pairwise comparison query only when she
is quite sure about the answer. This model
is able to mimic the behavior of a human in
noise-prone regions. We also consider the ap-
plication of this weak oracle model to the prob-
lem of content search (a variant of the nearest
neighbor search problem) through compar-
isons. More specifically, we aim at devising ef-
ficient algorithms to locate a target object in a
database equipped with a dissimilarity metric
via invocation of the weak comparison oracle.
We propose two algorithms termed WORCS-
I and WoRces-II (Weak-Oracle Comparison-
based Search), which provably locate the tar-
get object in a number of comparisons close to
the entropy of the target distribution. While
WoRcs-1 provides better theoretical guaran-
tees, WORCS-II is applicable to more tech-
nically challenging scenarios where the algo-
rithm has limited access to the ranking dis-
similarity between objects. A series of ex-
periments validate the performance of our
proposed algorithms.
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1 Introduction

Interactive machine learning refers to many important
applications of machine learning that involve collabora-
tion of human and machines. The goal of an interactive
learning algorithm is to learn an unknown target hy-
pothesis from input provided by humans' in the forms
of labels, pairwise comparisons, rankings or numerical
evaluations [Huang et al., 2010, Settles, 2010, Yan et al.,
2011]. A good algorithm, in both theory and practice,
should be able to efficiently deal with inconsistent or
noisy data because human feedback can be erroneous.
For instance, experimental studies show error rates up
to 30% in crowdsourcing platforms such as Amazon
Mechanical Turk [Ipeirotis et al., 2010].

Studies conducted by psychologists and sociologists
suggest that humans are bad at assigning meaningful
numerical values to distances between objects or at
rankings [Stewart et al., 2005]. It has been shown that
pairwise comparisons are a natural way to collect user
feedback [Thurstone, 1927, Salganik and Levy, 2015]:
they tend to produce responses that are most consistent
across users, and they are less sensitive to noise and ma-
nipulation [Maystre and Grossglauser, 2015|. Despite
many successful applications of pairwise comparison
queries in noise-free environments, little is known on
how to design and analyze noise-tolerant algorithms.
Furthermore, many active learning methods end up
querying points that are the most noise-prone [Balcan
et al., 2009].

In the literature, the most common approach to cope
with noisy answers from comparison based oracles is
to make a query several times and use majority voting
[Dalvi et al., 2013]. These methods assume that by re-
peating a question they can reduce the error probability
arbitrarily. As an example, this approach has been con-
sidered in the context of classic binary search through
different hypotheses and shown to be suboptimal [Karp
and Kleinberg, 2007, Nowak, 2009]. In general, the idea
of repeated queries for handling noisy oracles suffers
from three main disadvantages: (i) In many impor-
tant applications, such as recommender systems and

'In this paper, we refer to human, crowd or user inter-
changeably.
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exploratory searches, the algorithm is interacting with
only one human and it is not possible to incorporate
feedback from several users. (i) Many queries are in-
herently difficult, even for human experts, to answer.
(iii) Massive redundancy significantly increases the to-
tal number of oracle accesses in the learning process.
Note that each query information requires significant
cost and effort.

In order to efficiently address the problem of non-
perfect and noisy answers from the crowd, we introduce
a new weak oracle model, where a non-malicious user
responds to a pairwise comparison query only when
she is quite sure about the answer More specifically,
we focus on the application of this weak oracle model
to queries of the form of “is object z more similar to
object x or to object y?". In this model, a weak oracle
gives an answer only if one of the two objects = or y
is substantially more similar to z than the other. We
make this important assumption to cope with difficult
and error-prone situations where, to almost the same
degree, the two objects are similar to the target. Since
the oracle may decline to answer a query, we can refer
to it as an abstention oracle. This model is one of the
very first attempts to somewhat accurately mimic the
behavior of crowd in real world problems. To motivate
the main model and algorithms of this paper consider
the following example.

Example 1. Assume Alice is a new user to our movie
recommender system platform. In order to recommend
potentially interesting movies to Alice, we plan to figure
out an unknown target movie? that she likes the most.
Our aim is to find her favorite movie by asking her
preference over pairs of movies she has watched already.
With each response from Alice, we expect to get closer
to the target movie. For this reason, we are interested
i algorithms that find Alice’s taste by asking a few
questions. To achieve this goal, we should (i) present
Alice movies that are different enough from each other
to make decision easier for her, and (i) find her interest
with the minimum number of pairwise comparisons
because each query takes some time and the number of
potential quertes might be limited.

To elaborate more on the usefulness of our weak oracle
model, as a special case of active learning, we aim at
devising an algorithm to locate a target object in a
database through comparisons. We model objects in
the database as a set of points in a metric space. In
this problem, a user (modeled by a weak oracle) has
an object ¢ (e.g., her favorite movie or music) in mind
which is not revealed to the algorithm. At each time,
the user is presented with two candidate objects z
and y. Then through the query O(z,y) she indicates
which of these is closer to the target object. Previous

2The target movie of Alice is unknown to the platform.

works assume a strong comparison oracle that always
gives the correct answer [Tschopp et al., 2011, Karbasi
et al., 2012a,b]. However, as we discussed earlier, it is
challenging, in practice, for the user to pinpoint the
closer object when the two are similar to the target to
almost the same degree.

We therefore propose the problem of comparison-based
search via a weak oracle that gives an answer only if
one of the two objects is substantially more similar to
the target than the other. Note that due to the weak
oracle assumption, the user cannot choose the closer
object if they are in almost the same distance to the
target. Our goal is to find the target by making as few
queries as possible to the weak comparison oracle. We
also consider the case in which the demand over the
target objects is heterogeneous, i.e., there are different
demands for object in the database.

Analysis of our algorithms relies on a measure of in-
trinsic dimensionality for the distribution of demand.
These notions of dimension imply, roughly, that the
number of points in a ball in the metric space increases
by only a constant factor when the radius of the ball
is doubled. This is known to hold, for instance, under
limited curvature and random selection of points from
a manifold (two reasonable assumptions in machine
learning applications) [Karger and Ruhl, 2002]. Com-
puting the intrinsic dimension is difficult in general,
but we do not need to know its value; it merely appears
in the query bounds for our algorithms.

Contributions In this paper, we make the following
contributions: (i) We introduce the weak oracle model
to handle human behavior, when answering comparison
queries, in a more realistic way. We believe that this
weak oracle model opens new avenues for designing
algorithms, which handle noisy situations efficiently,
for many machine learning applications. (ii) As an
important example of our weak oracle model, we pro-
pose a new adaptive algorithm, called WORCs-1, to
find an object in a database. This algorithm relies
on a priori knowledge of the distance between objects,
i.e., it assumes we can compute the distance between
any two objects. (iii) We prove that, under the weak
oracle model, if the search space satisfies certain mild
conditions then our algorithm will find the target in a
near-optimal number of queries. (iv) In many realis-
tic and technically challenging scenarios, it is difficult
to compute all the pairwise distances and we might
have access only to a noisy information about relative
distances of points. To address this challenge, we pro-
pose WORCS-II. The main assumption in WORCs-11
is that for all triplets x,y and z we only know if the
the distance of one of x or y is closer to z by a factor
of a. Note this is a much less required information
than knowing all the pairwise distances. This kind of
information could be obtained, for example, from an
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approximation of the distance function.? We prove that
Worcs-11, by using only this minimal information, can
locate the target in a reasonable number of queries. We
also prove that if WoRcs-11 is allowed to learn about
the ranking relationships between objects, it provides
better theoretical guarantees. (v) Finally, we evaluate
the performance of our proposed algorithms and several
other baseline algorithms over real datasets.

The remainder of this paper is organized as follows. We
discuss the related work in Section 2. We overview def-
initions and preliminaries in Section 3. We present the
main algorithms of this paper in Section 4. In Section 5,
we report our experimental evaluations. We conclude
the paper in Section 6. Proofs for all of theoret-
ical results are deferred to the Supplementary
Material.

2 Related Work

Interactive learning from pairwise comparisons has a
range of applications in machine learning, including
exploratory search for objects in a database [Tschopp
et al., 2011, Karbasi et al., 2011, 2012a,b], nearest
neighbor search [Goyal et al., 2008], ranking or finding
the top-k ranked items [Chen et al., 2013, Wauthier
et al., 2013, Eriksson, 2013, Maystre and Grossglauser,
2015, Heckel et al., 2016, Maystre and Grossglauser,
2017|, crowdsourcing entity resolution [Wang et al.,
2012, 2013, Firmani et al., 2016], learning user prefer-
ences in a recommender system [Wang et al., 2014, Qian
et al., 2015], estimating an underlying value function
[Balcan et al., 2016], multiclass classification [Hastie
and Tibshirani, 1997], embedding visualization [Tamuz
et al., 2011] and image retrieval [Wah et al., 2014].

Comparison-based search, as a form of interactive learn-
ing, was first introduced by Goyal et al. [2008]. Lifshits
and Zhang [2009] and Tschopp et al. [2011] explored this
problem in worst-case scenarios, where they assumed
demands for the objects are homogeneous.* Karbasi
et al. [2011] took a Bayesian approach to the problem
for heterogeneous demands, i.e, where the distribution
of demands are far from the uniform. It is noteworthy
that the two problems of content search and finding
nearest neighbor are closely related [Clarkson, 2006,
Indyk and Motwani, 1998].

Search though comparisons can be formalized as an
special case of the Generalized Binary Search (GBS) or
splitting algorithm [Dasgupta, 2004, 2005|, where the
goal is to learn an underlying function from pairwise
comparisons. In practice GBS performs very well in
terms of required number of queries, but it appears
to be difficult to provide tight bounds for its perfor-
mance. Furthermore, its computational complexity is

3Finding the partial relative distances between points is
not the focus of this paper.
4Their distributions are close to uniform.

prohibitive for large databases. For this reason, Kar-
basi et al. [2012a,b] introduced faster algorithms that
locate the target in a database with near-optimal ex-
pected query complexities. In their work, they assume
a strong oracle model and a small intrinsic dimension
for points in the metric space.

The search process should be robust against erroneous
answers. Karp and Kleinberg [2007] and Nowak [2009]
explored the idea of repeated queries for the GBS to
cope with noisy oracles. Also, for the special case
of search though comparisons, Karbasi et al. [2012a)
propose similar ideas for handling noise.

The notion of assuming a small intrinsic dimension
for points in a metric space is used in many different
problems such as finding the nearest neighbor [Clarkson,
2006, Har-Peled and Kumar, 2013|, routing [Hildrum
et al., 2004, Tschopp et al., 2015], and proximity search
[Krauthgamer and Lee, 2004].

3 Definitions and Preliminaries

Let M be a metric space with distance function
d(-,-). Intuitively, M characterizes the database of
objects. An example of a distance function is the
Euclidean distance between feature vectors of items
in a database. Given any object x € M, we de-
fine the ball centered at  with radius r as B,(r)
{y € M : d(z,y) < r}. We define the diameter of
aset A C M as diam(A) = sup, ,c4d(z,y). We
will consider a distribution p over the set M which
we call the demand: it is a non-negative function
M — [0,1] with > pu(z) = 1. For any set A C M,

we define u(A) = > ., u(z). The entropy of u

is given by H(n) = 3=, cqupp(m) #(2) log ﬁ, where

supp(p) = {x € M : p(x) > 0} is the support of
. Next, we define an e-cover and an e-net for a set

AC M.

Definition 1 (e-cover). An e-cover of a subset A C M
is a collection of points {x1,--- ,x} of A such that
AC Ui Bu,(e).

Definition 2 (e-net). An e-net of a subset A C M
is a mazimal (a set to which no more objects can be
added) collection of points {x1, - ,xr} of A such that
for any i # j we have d(x;,x;) > €.

An e-net can be constructed efficiently via a greedy
algorithm in O(k?|.A|) time, where k is the size of the
e-net. We refer interested readers to [Clarkson, 2006].
Our algorithms are analyzed under natural assumptions
on the expansion rate and underlying dimension of
datasets, where we define them next.

Doubling Measures The doubling constant cap-
tures the embedding topology of the set of objects
in a metric space when we are generalizing analysis
from Euclidean spaces to more general metric spaces.
Such restrictions imply that the volume of a closed
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ball in the space does not increase drastically when its
radius is increased by a certain factor. Formally, the
doubling constant of the measure p [Karger and Ruhl,
2002] is given by

A sup M(Bx@R))

C .
x€supp(u),R>0 ,U(Ba: (R))

A measure p is c-doubling if its doubling constant is
¢ < 0. We define dim,,, (M) = loge. To provide guar-
antees for the performance of algorithms in Sections 4.3
and 4.4, a stronger notion of doubling measure is re-
quired. Intuitively, we need bounds on the expansion
rate of all the possible subsets of support of u. The
strong doubling constant of the measure p [Ram and
Gray, 2013, Haghiri et al., 2017] is given by

Cst e sup sup 4M(B.L(2R) i A)
strong — .
& ACM zesupp(pn)NA,R>0 IU’(BI (R) N A)

We also say that measure p is cgrong-doubling if its
strong doubling constant is cstrong < 00. Note that for
a finite space M both ¢ and cstrong are bounded.

Doubling Spaces The doubling dimension of a met-
ric space (M,d) is the smallest k such that every
subset B, (2R) of M can be covered by at most k
balls of radius R. We define the doubling dimension
dimg(M) = log, k. Lemma 1 states that a metric with
a bounded doubling constant has a bounded doubling
dimension, i.e., every doubling measure carries a dou-
bling space.

Lemma 1 (Proposition 1.2. [Gupta et al., 2003]).
For any finite metric (M,d), we have dimgs(M) <
4dim,, (M), where dim,, (M) = log, c.

Weak Comparison Oracle The strong comparison
oracle O5°"8(z,y) [Goyal et al., 2008] takes three ob-
jects x,y, z as input and returns which one of x and y
is closer to z; formally,

7, if d(z,2) < d(y, 2),
y, otherwise.

Oztrong(l,7y) — {

In this paper, we propose the weak comparison oracle®
as a more realistic and practical model. This oracle
gives an answer for sure only if one of d(z, z) and d(y, 2)
is substantially smaller than the other. Formally,

T, if ad(x,2) <d(y, 2),
Y, if ad(y, 2) < d(z, 2),
O:(x.9) =95, & (v 2)

?ory, if d(y,z

where a > 1 is a constant that characterizes the ap-
proximate equidistance of x and y. More precisely, the

SWe refer to it as an abstention oracle interchangeably.

answers to a query O,(z,y) has the following interpre-
tation: (i) if it is «, then d(x, z) < d(y, z). (ii) if it is y,
d(x,z) > d(y, z). (i) if it is “?”, d(x, z) and d(y, z) are
within a multiplicative factor a of each other. In our
model, an answer of x or y does not provide any infor-
mation about the relative distances of x and y from the
target other than stating that one of them is closer to .
Given x,y € A C M, the a-weighted Voronoi cell of z is
defined as Vor(z,y, A) ={v € A: ad(z,v) < d(y,v)},
where o > 1. Similarly, we can define the a-weighted
Voronoi cell of y as Vor(y,z, A). Note that the two
Voronoi cells Vor(z,y, A) and Vor(y, z, A) contain the
set of points which we are sure about the answers we
get from the oracle.

4 Main Results

Our main goal is to design an algorithm that can locate
an unknown target ¢ € M by making only f(c)H (u)
queries in expectation, where f(c) is polynomial in the
doubling constant c¢. In addition, we are interested
in algorithms with a low computational complexity
for deciding on the next query which we are going to
make. Note that identifying a target having access
to the very powerful membership oracle® in average
needs at least H(u) queries [Cover and Thomas, 2012].
Also, Karbasi et al. [2011] proved that a strong oracle
needs Q(cH(p)) queries to find an object via a strong
oracle. To sum-up, we conclude that an algorithm with
a query complexity f(c)H (u) is near-optimal (in terms
of number of queries) for a weak oracle model.

4.1 Generalized Ternary Search

In this section, we first take a greedy approach to the
content search problem as a baseline. Let the version
space V; be the set of points (hypotheses) consistent
with the answers received from the oracle so far (at time
i). After each query Oi(z,y) there are three possible
outcomes of “x”, “y” or “?”. The Generalized Ternary
Search algorithm (GTS), as a generalization of GBS
[Dasgupta, 2004], greedily selects the query O:(z,y)
that results in the largest reduction in mass of the
version space based on the potential outcomes. More
rigorously, the next query to be asked by GTs is found
through

arg min max( Z

2
(z.y)€V; 2€V;,0. (z,y)=x

Sk, >

Zev’hoz(way):y Zevivoz(lvy):?

1(2),

p(z)). (1)

The computational complexity of GTS is ©(n3) and
thus makes it prohibitive for large databases. Also,
while this type of greedy algorithms performs well in
practice (in terms of number of queries), it is difficult

5An oracle such that for any A C M identifies if t € A
or not.
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(or even impossible) to provide tight bounds for their
performances [Dasgupta, 2004, Golovin and Krause,
2011]. Furthermore, the noisy oracle model makes
analysis even harder. For this reason, we need more
efficient algorithms with provable guarantees. The key
ingredient of our methods is how to choose queries in
order to find the target in a near optimal number of
queries.

4.2 Full Knowledge of the Metric Space

The first algorithm we present (WORCS-I) relies on
a priori knowledge of the distribution p and the pair-
wise distances between all the points. We prove that
WOoRcs-I (see Algorithm 1) locates the target ¢, where
its query complexity is within a constant factor from
the optimum. WORCS-I uses two main ideas: (i) it
guarantees that, by carefully covering the version space,
in each iteration the target ¢ remains in the ball (which
is found in line 11 of Algorithm 1), and (ii) the vol-
ume of version space decreases by a constant factor at
each iteration. These two facts ensure that in a few
iterations we can locate the target. We should mention
that while WORCS-I relies on knowing all the pairwise
distances, but we guarantee bounds for a c-doubling
measure  in the metric space M.” Later in this sec-
tion, we devise two other algorithms that relax the
assumption of having access to the pairwise distances.

Theorem 1. The average number of queries required
by WORCS-I to locate an object is bounded from above

by f(c) - |1+ %}, where ¢ is the doubling
constant of the measure p in the metric space M and
f(e) is a polynomial function in c.

In order to find a -cover in line 8 of Algo-

SatD
rithm 1, we can generate a (A/2')-net of V;, where
I = [log, 8(cr + 1)]. The size of such a net is at most
clogz 8(a+1)1+3 by Lemma 1 in [Karbasi et al., 2012b].
Also, since we assume the value of ¢ is constant, f(c) is
independent of the size of database; it remains constant
and our bound depends on the size of database only
through H(u), which is growing with a factor of at
most O(log|M]).

4.3 Partial Knowledge of the Metric Space

Despite the theoretical importance of WORCS-I, it suf-
fers from two disadvantages: (i) First, it needs to know
the pairwise distances between all points a priori, which
makes it impractical in many applications. (ii) Second,
experimental evaluations show that, due to the high
degree of the polynomial function f(c) (see proof of
Theorem 1), the query complexity of WORCS-I is worse
than baseline algorithms for small datasets. To over-
come these limitations, we present another algorithm
called WoRcs-I1.

"This is a fairly loose condition for a metric space.

Algorithm 1 WoRrcs-1

Input: Metric space M and oracle Oy(,-)
Output: Target ¢

1: Vo« M

2: 10

3: loop

4: if |V;| <2 then

5: Invoke O;(x,y) and halt

6: end if

7 A < diameter of V;

8: Let C be a ﬁ—cover of V;

9: for each ¢; € C do

10: if for all ¢; such that d(c,c;) > %:

Ot (Ci, Cj) = C; then
11: Vit1 < Bc,; ( @((Silz)))
12: end if
13: end for
14: 11+ 1
15: end loop

WoRrcs-I1 allows us to relax the assumption of hav-
ing access to all the pairwise distances. Indeed, the
WoRrcs-IT algorithm can work by knowing only rel-
ative distances of points, i.e., for each triplets =,y
and z, it needs to know only if ad(z,y) < d(x,z) or
ad(z,z) < d(z,y). Note that this is enough to find
Vor(z,y,V:) and Vor(y,z,V;) for all points x and y.
We refer to this information as F;. Information of F;
is applied to find the resulting version space after each
query. Theorem 2 guarantees that WoRcs-I1, by using
F1 and choosing a pair with a § approximation of the
largest distance in each iteration, will lead to a very
competitive algorithm.

Theorem 2. Let] £ [logQ (“T'Hﬂ . The average num-

ber of required queries by WORCS-11I to locate an object

18 bounded from above by 1 + log(l/(?(fi)*’))’

Cstrong 15 the strong doubling constant of the measure
1 in the metric space M.

where

From Theorem 2, we observe that the performance
of WORCs-II improves by larger values of 3. Gen-
erally, we can assume there is auxiliary information
(called F3) that could be applied to find points with
larger distances in each iteration. For example, WORCS-
II-RANK refers to a version of WORCS-1I where the
ranking relationships between objects is provided as
side information (it is used for F3). By knowing the
rankings, we can easily find the farthest points from
z. From the triangle inequality, we can ensure this
results in a 3 of at least 1/2. Also, WORCS-1I by know-
ing all the pairwise distances (similar to WoORcs-I),
can always find a query with 8 = 1. For the detailed
explanation of WORCS-11 see Algorithm 2.
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Algorithm 2 WoRrcs-11

Input: Oracle O(+,-), F1 and F » Fi is used
for finding the next version space after each query.
Auxiliary information Fs is used for finding points
with larger 3.

Output: Target ¢

1: Vg Mand i+ 0
2: loop
3: if |V;| <2 then

4: Invoke O(x,y) and halt

5: end if

6: Find z,y € V; such that d(x,y) > 8 diam(V;)
7 if O (z,y) =« then

8: Vit1 = Vi\ Vor(y,z,V;)

9: else if O;(z,y) =y then

10: Viy1 = Vi \ Vor(z,y,Vs)}

11: else

12: Vit1 = Vi \ Vor(z,y,V;) UVor(y,z, Vi)
13: end if

14: 14—1+1

15: end loop

Although the theoretical guarantee for WORCS-II de-
pends on the assumption that the underlying metric
space is Csrong-doubling, the dependence in cgrong is
through a polynomial function with a degree much
smaller than f(c). Note that the WORrcs-11 algorithm
finds the next query much faster than GTs. Indeed,
GTs needs O(]V;|?) operations in order to find the next
query at each iteration. It is easy to see, for example,
WOoRCs-II-RANK finds the next query in only O(|V;|)
steps. In the following, we present a version of WORCS-
IT that needs much less information in order to find an
acceptable query.

4.4 Algorithm with Minimalistic Information

In this section, we present WORCS-II-WEAK which
needs only partial information about the relative dis-
tances. This is exactly the information from Fj.
WOoRCsS-II-WEAK, in each iteration, instead of pick-
ing two points with distance diam(V;) or diam(V;)/2
(which is possible only with information provided from
F3), uses Algorithm 3 to find the next query. From the
result of Lemma 2, we guarantee that Algorithm 3 finds
a pair of points with distance at least %. The compu-
tational complexity to find such a pair is O(|V;]?).
Lemma 2. Assume for x and y there exist no z # y
such that O, (y, z) =y, then d(z,y) > %.

Corollary 1. From the results of Theorem 2 and
Lemma 2, we conclude that the expected query com-
plexity of WORCS-II-WEAK s bounded from above by

% with 1 =1+ [logy a(a + 1)].

The bounds in Theorem 2 and Corollary 1 depend on

the value of cgrong through the required number of iter-
ations because the reduction in the size of version space
is lower bounded by a function of cgtrong. In WORCS-11
at each iteration we only ask one question, therefore we
do not have any dependence on a polynomial function
of Cstrong- Also, note that our algorithms do need to
know the value of «.

Algorithm 3 Find z and y

Input: V; and F;
Output: (z,y) with d(z,y) > 5= diam(V;)
: Uniformly at random pick z € V;
: for y € V;\ {z} do
if V2 e Vi\{z,y} :z ¢ Vor(y, z,V;) then
return (z,y)
end if
end for

A S

In this section, we presented four different algorithms
to locate an object in a database by using a weak or-
acle model. These algorithms use different types of
information as input. To provide guarantees for their
performances, we need to make different assumptions
on the structure of the underlying metric space (see
Table 1). WORcs-I provides better theoretical results;
The guarantee for WORCS-I depends on constant values
of ¢ which is a looser assumption than having a constant
Cstrong- 1N the next section, we will show that although
the theoretical guarantee of WORCS-II is based on a
stronger assumption over the metric space (csm,ng Vs
¢), in all of our experiments it shows better perfor-
mances in comparison to WORCS-I. It finds the target
with fewer queries and the computational complexity
of choosing the next query is much less. We believe
that for most real datasets both ¢ and cgtrong are small
and close to each other. Therefore, the polynomial
term f(c) (defined in Theorem 1) plays a very impor-
tant role in practice. Finally, providing guarantees for
the performance of GTS or similar algorithms seems
impossible [Dasgupta, 2004, Golovin and Krause, 2011].

5 Experiments

We compare WORCS-I and Worcs-1T (Worces-11-
WEAK and WORCS-II-RANK)® with several baseline
methods. Recall that WORCS-I needs to know the pair-
wise distances between objects, and WORCS-II-RANK
and WORCS-II-WEAK need only information about
ranking and partial ordering obtained from the weak
oracle, respectively. For choosing the baselines, we
followed the same approach as Karbasi et al. [2012a].
Our baseline methods are: (i) GTs. (ii) RANDOM:
The general framework of RANDOM is the same as Al-

8In this section, Worcs-11-R and WoRrcs-1I-W stand
for Worcs-1I-RANK and WoRcs-11-WEAK.
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Table 1: Comparison between algorithms

Algorithm Input information Constraint
GTSs Weak rank information No guarantees
Worcs-1 Pairwise distances Doubling constant

WOoORCs-1I-RANK

Rank information
WORCS-II-WEAK  Weak rank information

Strong doubling constant
Strong doubling constant

gorithm 2 except that in Line 6, RANDOM randomly
samples a pair of points x and y in the current version
space. (iii) FAST-GTs: In light of the computationally
prohibitive nature of GTS, FAST-GTS is an approx-
imate alternative to GTS. Rather than finding the
exact minimizer, it randomly samples k pairs of points
and finds the minimizer of Eq. (1) only in the sampled
pairs. RANDOM and GTS can be viewed as a special
case of FAST-GTs with parameter k = 1 and k = (l‘gl)
(sampling without repetition), respectively. We take
k =10 in the experiments. (iv) MINDIST: In contrast
to WORCS-II, MINDIST selects a pair of points that
reside closest to each other. We use this baseline to
highlight the importance of choosing a pair that attain
the approximate maximum distance.

We evaluate the performance of algorithms through two
metrics: (i) query complexity: the expected number of
queries to locate an object, and (ii) computational com-
plexity: the total time-complexity of determining which
queries to submit to the oracle. We conduct experi-
ments over the following datasets: MovieLens [Harper
and Konstan, 2016], Wine [Forina et al., 1991], Mu-
sic [Zhou et al., 2014], and Fisher’s Iris dataset. The
demand distribution p is set to the power law with ex-
ponent 0.4. In order to model uncertain answers from
the oracle O.(x,y), i.e., for points ¢ that are almost
equidistant from both z and y, we use the following
model: if d(z,t) < d(y,t) < ad(z,t), the oracle out-

puts x with probability W and outputs “?”

otherwise; similarly if d(y,t) < d(z,t) < ad(y,t), the
oracle outputs y with probability W and

outputs “?” otherwise.

We present expected query complexity of all seven al-
gorithms on each dataset in Table 2 (we have to use a
table rather than a bar chart since the data are highly
skewed). The corresponding computational complexity
is shown in Fig. 1(a). It can be observed that WORCS-
II-WEAK outperforms all other algorithms in terms
of query complexity. WORCS-II-RANK is only second
to WORCS-1I-WEAK. Intuitively, selecting two distant
items for a query leads into two large Voronoi cells
around them, which partially explains the good perfor-
mance of WORCs-II-RANK. However, it could leave the
rest of the version space relatively small; therefore, it
may not reduce the version space substantially when a

“?” response is received from the oracle. Unlike WORCS-
II-RANK, WORCS-II-WEAK is only guaranteed to find
a pair that attain a S-approximation of the diameter
of the current version space, where § > i as shown
in Lemma 2, thereby resulting in a relatively more
balanced division of the version space. This explains
the slightly better performance of WORCS-II-WEAK
versus WORCS-II-RANK. With respect to the computa-
tional complexity, RANDOM costs the smallest amount
of computational resources since it does not need to
algorithmically decide which pair of items to query.
WORCS-II-WEAK is only second to RANDOM.

In this set of experiments, in order to study the scal-
ability of algorithms, we use the Music dataset and
sub-sampled 10 to 1000 items from the dataset. Query
and computational complexity of different algorithms
is shown in Figs. 1(b) and 1(c). We see the positive cor-
relation between query/computational complexity and
the dataset size. Since the curves are approximately
linear in a log-log plot, the complexity of algorithms
scales approximately polynomially in the dataset size.
Specifically, the query complexity of WORCS-II-RANK
and WORCS-II-WEAK scales approximately O(v/N),
where N is the dataset size. In Fig. 1(b), the curves of
WOoRrcs-1I-RANK and WORCs-II-WEAK are the two
lowest curves, which represent lowest query complexity.

The performance of algorithms for different values of «
is another important aspect to study. We used the Iris
dataset and varied « from 1 to 100. Query and com-
putational complexity of different algorithms is shown
in Figs. 1(d) and 1(e). A general upward tendency in
computational complexity as « increases is observed
in Fig. 1(e). With respect to the query complexity
shown in Fig. 1(d), WORCs-I exhibits a unimodal curve.
In fact, while a large « leads to a greater number of
balls in the ﬁ—cover (increases the query complex-

ity in line 8 of Algorithm 1), it results in smaller balls
and therefore a smaller version space in the next it-
eration (reduces the query complexity as in line 11
of Algorithm 1). This explains the unimodal behavior
of the curve of WORCS-I. Other algorithms exhibit a
general positive correlation with «, as a larger o tends
to induce a more unbalanced division of the version
space. Finally, we explore impact of demand distribu-
tion. We used the Iris dataset and varied the exponent
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Table 2: Expected Query Complexity on Each Dataset

RaAND WoRcs-I W-II-R* W-II-W  MiINnDist GtTs  FAST-GTS
MowvieLens 11.46  594.97 10.86 10.79 49.45 9.01 9.79
Wine 7.03 55.68 6.47 6.11 35.16 22.82 10.46
Music 14.31 648.12 12.71 12.67 143.61 36.90 27.78
Iris 7.86 164.42 7.56 6.98 19.85 9.81 9.54

*W-II-R and W-II-W are the abbreviation of Worcs-II-RaNk and Worcs-1I-WEAK, respectively.
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Figure 1: Fig. 1(a) shows the expected computational complexity, per search, of all seven algorithms applied
to each dataset. Figs. 1(d) and 1(e) show the expected query and computational complexity as a function of
the dataset size. We present how the expected query and computational complexity vary with « in Figs. 1(d)
and 1(e). In Fig. 1(f), we present how the query complexity scales as a function of the power law exponent of the

demand distribution.

of the power law distribution from 10~! to 102. Query
complexity of different algorithms is shown in Fig. 1(f).
We observe that algorithms are generally robust to
the change of the parameter of the power law demand
distribution.

6 Conclusion

In this paper, we studied the problem of interactive
learning though pairwise comparisons. We introduced
a new weak oracle model to handle noisy situations, un-
der which the oracle answers only when it is sure of the
answer. We also considered the problem of comparison-
based search via our weak oracle. We proposed two
algorithms where they require different levels of knowl-
edge about the distances or rankings between objects.
We guaranteed the performance of these algorithms

based on a measure of intrinsic dimensionality for the
distribution of points in the underling metric space.
Finally, we compared our algorithms with several base-
line algorithms on real datasets. Note that we assumed
the oracle is non-malicious and when it is not confident,
it answers with “?”. Although this model is robust to
high levels of uncertainty, but considering the effect of
erroneous answers from the weak oracle is interesting
for future work.
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