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Abstract

We study —both in theory and practice— the
use of momentum motions in classic iterative
hard thresholding (IHT) methods. By sim-
ply modifying plain IHT, we investigate its
convergence behavior on convex optimization
criteria with non-convex constraints, under
standard assumptions. In diverse scenaria, we
observe that acceleration in IHT leads to sig-
nificant improvements, compared to state of
the art projected gradient descent and Frank-
Wolfe variants. As a byproduct of our in-
spection, we study the impact of selecting
the momentum parameter: similar to convex
settings, two modes of behavior are observed
—“rippling” and linear— depending on the level
of momentum.

1 Introduction

It is a well-known fact in convex optimization that
momentum techniques provably result into significant
gains w.r.t. convergence rate. Since 1983, when Nes-
terov proposed his optimal gradient methods [1], these
techniques have been used in diverse machine learning
and signal processing tasks. Lately, the use of momen-
tum has re-gained popularity in non-convex settings,
thanks to their improved performance in structured
practical scenaria: from empirical risk minimization
(ERM) to training neural networks.

Here, we mainly focus on structured constrained ERM
optimization problems:

e biect t
minimize f(z) subject to x€C, (1)

that involve convex objectives f and simple structured,
but non-convex, constraints C, that can be described
using a set of atoms, as in [2] 3]; see also Section
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Practical algorithms for are convexified projected
gradient descent schemes [3], non-convex iterative hard
thresholding (IHT) variants [4] and Frank-Wolfe (FW)
methods [5]. Convex methods can accommodate accel-
eration due to [1} 6] and come with rigorous theoreti-
cal guarantees; but, higher computational complexity
might be observed in practice (depending on the na-
ture of C); further, their configuration could be harder
and/or non-intuitive. FW variants [7, [§] simplify the
handling of constraints, but the successive construction
of estimates —by adding singleton atoms to the putative
solution— could slow down convergence. Non-convex
methods, such as THT [9] [10], could be the methods of
choice in practice, but only few schemes justify their be-
havior in theory. Even more importantly, IHT schemes
that utilize acceleration inferably are lacking. We defer
the discussion on related work to Section [Bl

In this work, we study the use of acceleration in IHT
settings and supply additional information about open
questions regarding the convergence and practicality
of such methods on real problems. The current paper
provides evidence that “THT dies hard”

o Accelerated THT comes with theoretical guarantees
for the general minimization problem . While
recent results [11] focus on plain ITHT, there are
no results on Accelerated IHT, apart from [12] on
specific cases of and under stricter assumptions.
The main assumptions made here are the existence
of an exact projection operation over the structure
set C, as well as standard regularity conditions on
the objective function.

e Regarding the effect of the momentum on the con-
vergence behavior, our study justifies that similar
—to convex settings— behavior is observed in practice
for accelerated IHT: two modes of convergence exist
(“rippling” and linear), depending on the level of
momentum used per iteration.

e We include extensive experimental results with real
datasets and highlight the pros and cons of using
THT variants over state of the art for structured
ERM problems.
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Our framework applies in numerous structured appli-
cations, and one of its primary merits is its flexibility.

2 Problem statement

2.1 Low-dimensional structures

Following the notation in [3], let A denote a set of
atoms; i.e., simple building units of general “signals”.
E.g., we write ¢ € R™ as ¢ = ), w;a,, where w; are
weights and a; € R" atoms from A.

Given A, let the “norm” function ||x|o 4 return the
minimum number of superposed atoms that result into
x. Note that || - |[o,4 is a non-convex entity for the
most interesting A cases. Also, define the support
function supp 4(x) as the function that returns the
indices of active atoms in z. Associated with |- ||o, 4 is
the projection operation over the set A:

I 4(z) € argmin %Hx—y”g
y:llyllo,a<k

To motivate our discussion, we summarize some well-
known sets 4 used in machine learning problems; for a
more complete description see [13].

A represents plain sparsity: Let A = {a; € R" | a; =
+e;,Vi € [n]}, where e; denotes the canonical basis
vector. In this case, k-sparse “signals” z € R™ can be
represented as a linear combination of k& atoms in A:
T =) .y wia; for |Z| <k and w; € Ry. The “norm”
function is the standard £o-“norm” and II; 4(x) finds
the k-largest in magnitude entries of x.

A represents block sparsity [14]: Let {G1,Ga,...,Gun}
be a collection of M non-overlapping group indices
such that UM G; = [n]. With a slight abuse of no-
tation, A = {a; € R" | a; = Uj;jeq,e;} is the collec-
tion of grouped indices, according to {G1, Ga, ..., G}
Then, k-sparse block “signals” z € R™ can be expressed
as a weighted linear combination of k group atoms in
A. The “norm” function is the extension of £y-“norm’
over group structures, and Il 4(z) finds the k most
significant groups (i.e., groups with largest energy).

A denotes low rankness: Let A = {a; € R™*" | a; =
u;v;, ||luill2 = |lvill2 = 1} be the set of rank-one matri-
ces. Here, sparsity corresponds to low-rankness. The
“norm” function corresponds to the notion of rankness;
IT; _4(z) finds the best k-rank approximation.

)

2.2 Loss function f

Let f: R™ — R be a differentiable convex loss function.
We consider applications that can be described by
restricted strongly convex and smooth functions f.

Definition 1. Let f be convex and differentiable. f is

a-restricted strongly convex over C C R™ if:

f) > f@)+(Vf(z), y—2)+ %lz—yll, Yo,y €C. (2)

Definition 2. Let f be a convexr and differentiable. f
1s B-restricted smooth over C C R™ if:

Fy) < f@)+(Vf@), y—2)+5le—yl3, Yo,y € C. (3)

Combined with the above, C could be the set of rk-
sparse vectors, rk-sparse block “signals”, etc, for some
integer r > 0.

2.3 Optimization criterion

Given f and a low-dimensional structure A, we focus
on the following optimization problem:

minimize f(z) subject to |[lz[loa < k. (1)
TER™

Here, k € Z, denotes the level of “succinctness”. Exam-
ples include (i) sparse and model-based sparse linear
regression, (ii) low-rank learning problems, and (i)
model-based, ¢>-norm regularized logistic regression
tasks; see also Section [6]

3 Accelerated ITHT variant

We follow the path of THT methods. These are first-
order gradient methods, that perform per-iteration a
non-convex projection over the constraint set 4. With
math terms, this leads to:

Tip1 = U a (x; — iV f(x;)), where u; € R.

While the merits of plain IHT, as described above, are
widely known for simple sets A and specific functions
f (cf, 9L 4 15, [11]), momentum-based acceleration
techniques in THT have not received significant atten-
tion in more generic ML settings. Here, we study a
simple momentum-variant of IHT, previously proposed
in [16l [12], that satisfies the following recursions:

Tip1 = g a (ug — 1 Vr, fug)),
and
Uiy1 = Tip1 + 7 (Tig1 — T4). (5)

Here, V7, f(-) denotes restriction of the gradient on
the subspace spanned by set 7; more details below. T
is the momentum step size, used to properly weight
previous estimates with the current one, based on [17]

!Nesterov’s acceleration is an improved version of
Polyak’s classical momentum [18] schemes. Understanding
when and how hard thresholding operations still work for
the whole family of momentum algorithms is open for future
research direction.
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Despite the simplicity of , to the best of our knowl-
edge, there are no convergence guarantees for generic
f, neither any characterization of its performance w.r.t.
7 values. Nevertheless, its superior performance has
been observed under various settings and configurations

[16], 119} [12].

In this paper, we study this accelerated IHT variant, as
described in Algorithm[1l This algorithm was originally
presented in [16] [12]. However, [16] [12] covers only a
special case (i.e., squared loss) of our setting, and the
theory there is restricted, and further needs justification
(e.g., the role of 7 in the convergence behavior is not
studied). For simplicity, we will focus on the case
of sparsity; same notions can be extended to more
complicated sets A.

Some notation first: given gradient Vf(x) € R, and
given a subset of [n], say T C [n], V7 f(z) € R” has
entries from V f(z), only indexed by 7P| 7¢ represents
the complement of [n] \ 7.

Algorithm 1 Accelerated IHT algorithm

1: Input: Tolerance n, T, o, 8 > 0, model A, k € Z,..
2: Initialize: zg,ug + 0, Uy + {0}. Set £ =1 — %;

select 7 s.t. |7 < 1;2"715/1;2, where p = 1+T‘/§

3: repeat

4 T; < supp 4 (k4 (Ve f(u)) Ul

5: 7._L1' = U; — %Vﬁf(ul)

6: w1 =14 (ﬂi)T

7 Ui+l = Tig41 T+ T($¢+1 7%1) where L{Hl —
supp 4 (ti+1)

8: until ||z; — z;—1]| < nljz;|| or after T iterations.

©

T Optional: Debias step on x;41, restricted on the
support supp 4(zit1).

Algorithm [I] maintains and updates an estimate of the
optimum at every iteration. It does so by maintaining
two sequences of variables: x;’s that represent our pu-
tative estimates per iteration, and u;’s that model the
effect of “friction” (memory) in the iterates. The first
step in each iteration is active support expansion: we
expand support set U; of u;, by finding the indices of k
atoms of the largest entries in the gradient in the com-
plement of U;. This step results into set 7; and makes
sure that per iteration we enrich the active support
by “exploring” enough outside of it. The following two
steps perform the recursion in , restricted on T;; i.e.,
we perform a gradient step, followed by a projection
onto A; finally, we update the auxiliary sequence u by
using previous estimates as momentum. The iterations

2Here, we abuse a bit the notation for the case of low
rank structure A: in that case Vrf(z) € R™*" denotes
the part of V f(z) that “lives” in the subspace spanned by
the atoms in 7.

terminate once certain condition holds.

Some observations: Set 7; has cardinality at most 3k;
x; estimates are always k-sparse; intermediate “signal”
u; has cardinality at most 2k, as the superposition of
two k-sparse “signals”.

4 Theoretical study

Our studyiﬂ starts with the description of the dynamics
involved per iteration (Lemma , followed by the con-
ditions and eligible parameters that lead to convergence.
Proofs are deferred to the Appendix.

Lemma 1 (Iteration invariant). Consider the non-
convex optimization problem in , for given struc-
ture A, associated with Iy A(-), and loss function f,
satisfying restricted strong convexity and smoothness
properties over 4k sparse “signals”, with parameters
a and B, respectively. Let x* be the minimizer of f,
with |4 = k and f(z*) < f(y), for any y € K"
such that ||yllo,.a < 3k. Assuming xo = 0, Algorithm
[Z satisfies V7 the following linear system at the i-th
iteration:

[@it1 — 2|2
<
{ lzi — 2|2

[(1 ) el (1- E) - |T|} [l ]

1 |zic1 — x*||2

Proof ideas involved: The proof is composed mostly of
algebraic manipulations. For exact projection ITjy 4(-)
and due to the optimality of the step z;11 = Iy 4 (4;),
we observe that ||z; 11 — 2|3 < 2 (w41 — 2%, U4 — 2*).
Using Definitions we prove a version of Lemma 2 in
[20] over non-convex constraint sets, using optimality
conditions over low-dimensional structures [21]. These
steps are admissible due to the restriction of the active
subspace to the set 7; per iteration: most operations
—i.e., inner products, Euclidean distances, etc— involved
in the proof are applied on “signals” comprised of at
most 4k atoms. After algebraic “massaging”, this leads
to the two-step recursion:

i —a*llo < (1= 5) - L+ o ="l
+ (1= 8) Il aiea = "o

Finally, we convert this second-order linear system into
a two-dimensional first-order system, that produces the
desired recursion. See Appendix [A]for a detailed proof.

30ur focus is to study optimization guarantees (conver-
gence), not statistical ones (required number of measure-
ments, etc). Our aim is the investigation of accelerated
IHT and under which conditions it leads to convergence;
not its one-to-one comparison with plain IHT schemes.
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A specific case of the above analysis was presented in
[12]; however, the theory specifically applies only to
the matrix sensing case over low-rank matrices, using
the RIP property. Here, we generalize these results
for generic (restricted) strongly convex and smooth
functions f, where different theoretical tools apply.
Our analysis moves beyond this point, as we show next,
in contrast to [12]. Further we investigate a variable 7
selection, instead of a constant selection, as in [12].

Remark 1. The assumption f(x*) < f(y), for any
y € R™ such that ||y|lo,a < 3k, is trivially satisfied by
any noiseless norm-based objective; i.e., for b = dx*
and f(z) = 3[|b—®z|3, f(z*) =0 for linear regression
orb= M(X*) and f(X) = Llb—M(X)[3, F(X*) =0
for low rank recovery problems. We note that this
assumption does not restrict our analysis just to the
noiseless setting. It states that x* has the minimum
function value f, among all vectors that are at most 3k-
sparse. E.g., any dense vector, that might be a solution
also due to noise, does not affect this requirement. We
conjecture that it is an artifact of our proof technique.

Lemmall|just states the iteration invariant of Algorithm
it does not guarantee convergence. To do so, we need
to state some interesting properties of A. The proof is
elementary and is omitted.

Lemma 2. Let A be the 2 X 2 matrix, as defined above,
parameterized by constants 0 < o < 3, and user-defined
parameter 7. Denote £ := 1 — /3. The characteristic
polynomial of A is defined as:

A —Tr(A)- A +det(4) =0

where A represent the eigenvalue(s) of A. Define A :=
Tr(A)? —4-det(A) = €2 (1+7)%2 +4¢ - |7]. Then, the
eigenvalues of A satisfy the expression: \ = w.

Depending on the values of o, 8,7

e A has a unique eigenvalue A = %, if A =0.
This happens when o = B and is not considered in
this paper (we assume functions f with curvature).

e A has two complex eigenvalues; this happens when
A < 0. By construction, this case does not happen
in our scenaria, since 3 > .

e For all other cases, A has two distinct real eigen-

&7 o VEA+T)+H4E T
7 T 2 :

values, satisfying A 2 =

[zit1 — 2|2
[[2; — 2*|2
system in Lemma [l for the i-th iteration becomes
y(i+1) < A-y(i). A has only non-negative values;
we can unfold this linear system over T iterations such

that

Define y(i + 1) = ]; then, the linear

y(T) < AT - y(0).

Here, we make the convention that x_; = g = 0, such
*

that y(0) = [Hlf_ol —$$*||||22] = [ﬂ - [[z*]|2. The follow-
ing lemma describes how one can compute a power
of a 2 x 2 matrix A, A%, through the eigenvalues \; o
(real and distinct eigenvalues); the proof is provided in
Section [Cl To the best of our knowledge, there is no
detailed proof on this lemma in the literature.
Lemma 3 (|22]). Let A be a 2 x 2 matriz with real
eigenvalues A1 2. Then, the following expression holds,
when A1 # Ag:

M- Ao
DYDY A1 — Ao

where \; denotes the i-th eigenvalue of A in order.

Al o

A=A

Then, the main recursion takes the following form:

T T T—1 __T-1
y(T) < @ . w

A. _
<N T y(0) — A1 e ST

-y(0).
(6)

Observe that, in order to achieve convergence (i.e., the
RHS convergences to zero), eigenvalues play a crucial
role: Both A and y(0) are constant quantities, and
only how fast the quantities AT — A3 and AT+ — \I—!
“shrink” matter most.

Given that eigenvalues appear in the above expressions
in some power (i.e., A{ , and AT, we require |\ o] <
1 for convergence. To achieve |\ 2| < 1, we have:

i r 2 )2
|A1,2|—‘“z*'i\/“1:> +&Ir]

£ [1+7]
2

IN

2 2
+’ S g ]

@) er1ar
< S L Ve + )2 + €T+ 7))
@) ¢31air 1
< 52(12+\ D +§,§2(1+|ﬂ)
1

=¢@-&2(1+]7))
where (7) is due to £ < 1, and ¢ = (1 + Vv5)/2 denotes
the golden ratio. Thus, upper bounding the RHS to

ensure |A1 o] < 1 implies |7] < 1;25/12/2.

Using the assumption |A; 2| < 1 for |7| < 13’2%5/12/2, ()

further transforms to:

y(T) < )/‘\f_f A -y(0) — AlAz)‘lT/\i_i\le -y(0)
@) (AT T
< m A y(0) + [ - M -y(0)
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where (i) is due to A - y(0) and y(0) being positive
quantities, and (i¢) is due to 1 > |A1| > |A2|. Focusing
on the first entry of y(7T') and substituting the first row
of A and y(0), we obtain the following inequality:

||:17 m*H < 4.|)\1|T (1 o) . |1 9 | i ||37*H
1 2 = [A1]=]A2] B 2-
(7)

This suggests that, as long as |A; 2| < 1, the RHS
“shrinks” exponentially with rate [A\;|7, but also de-
pends (inverse proportionally) on the spectral gap
[Ad1] — |[A2]. The above lead to the following conver-
gence result:

Theorem 1. Consider the non-convex optimization
problem in , for given structure A, associated with
Iy 4(+), and loss function f, satisfying restricted strong
convezity and smoothness properties over 4k sparse “sig-
nals”, with parameters a and 3, respectively. Under the
same assumptions with Lemma[I, Algorithm[I returns
a e-approximate solution, such that ||xr — x*||2 < e,

within O (log 1-2/s

——~—/~— | idterations (linear conver-
) (
gence rate).

Proof. We get this result by forcing the RHS of be
less than € > 0. Le.,

41\ T a *
il (1-8) 4ol <e = ®

e- (Ml =1A2])
R N e B A

B 2
4-(1=F) 427 |2* |2
lo B
T> S (P EEYY) (10)
10g|)\1‘

This completes the proof. O

5 Related work

Optimization schemes over low-dimensional structured
models have a long history; due to lack of space, we
refer the reader to [23] for an overview of discrete
and convex approaches. We note that there are both
projected and proximal non-convex approaches that
fit under our generic model, where no acceleration is
assumed. E.g., see [4] 24} [15] [14]; our present work fills
this gap. For non-convex proximal steps see [25] and
references therein; again no acceleration is considered.
Below, we focus on accelerated optimization variants,
as well as Frank-Wolfe methods.

Related work on accelerated THT variants. Accelerated
IHT algorithms for sparse recovery were first intro-
duced in [26] [19] [16]. In [26], the authors provide a
double overrelaxzation thresholding scheme [27] in order

to accelerate their projected gradient descent variant
for sparse linear regression; however, no theoretical
guarantees are provided. In [19], Blumensath accel-
erates standard THT methods for the same problem
[9] 28] using the double overrelaxation technique in [26].
His result contains theoretical proof of linear conver-
gence, under the assumption that the overrelaxation
step is used only when the objective function decreases.
However, this approach provides no guarantees that
we might skip the acceleration term often, which leads
back to the non-accelerated THT version; see also [27]
for a similar approach on EM algorithms. [29] describe
a family of IHT variants, based on the conjugate gra-
dient method [30], that includes under its umbrella
methods like in |31}, [32], with the option to perform
acceleration steps; however, no theoretical justification
for convergence is provided when acceleration motions
are used. [16, [12] contain hard-thresholding variants,
based on Nesterov’s ideas [17]; in [12], the authors pro-
vide convergence rate proofs for accelerated ITHT when
the objective is just least-squares; no generalization to
convex f is provided, neither a study on varied values of
7. [33] includes a first attempt towards using adaptive
7; his approach focuses on the least-squares objective,
where a closed for solution for optimal 7 is found [16].
However, similar to [19], it is not guaranteed whether
and how often the momentum is used, neither how to
set up 7 in more generic objectives; see also Section
[D]in the appendix. From a convex perspective, where
the non-convex constraints are substituted by their
convex relaxations (either in constrained or proximal
setting), the work in [34] and [35] is relevant to the
current work: based on two-step methods for linear
systems [36], [34] extends these ideas to non-smooth
(but convex) regularized linear systems, where f is a
least-squares term for image denoising purposes; see
also [35]. Similar to [33] [19], [34] considers variants
of accelerated convex gradient descent that guarantee
monotonic decrease of function values per iteration.

Related work on acceleration techniques. Nesterov in
[L] was the first to consider acceleration techniques in
convex optimization settings; see also Chapter 2.2 in
[17]. Such acceleration schemes have been widely used
as black box in machine learning and signal process-
ing [35] 34 [37], [38]. [6], [39] discuss restart heuristics,
where momentum-related parameters are reset periodi-
cally after some iterations. [40] provides some adaptive
restart strategies, along with analysis and intuition on
why they work in practice for simple convex problems.
Acceleration in non-convex settings have been very re-
cently considered in continuous settings [41), [42] [43],
where f could be non—conve However, none of these
works, beyond [44], consider non-convex and possibly

4The guarantees in these settings are restricted to finding
a good stationary point.
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Figure 1: Behavior of accelerated IHT method, applied on a toy example for sparse linear regression. Consider A
as the plain sparsity model, and let 2* be a k-sparse “signal” in R'° for k = 2, drawn from multivariate normal
distribution. Also, ||z*||2 = 1. Let b = ®2*, with ® € R6*! drawn entrywise i.i.d. from a normal distribution.
Let Z be an index set of k£ columns in ®; there are (Z) possible such subsets. By Definitions , we estimate «
and 3 as the A\yin (P @7) and Apax (P P7), where @7 is the submatrix of ®, indexed by Z. Here, a &~ 0.22 and
3 &~ 1.78, which leads to £ = 1 — /g ~ 0.87. We plot f(Z) — f(z*) vs. iteration count, where f(z) = $||b — ®z|3.
Gray shaded area on 7 horizontal line corresponds to the range |7| < (1 — @€&/2)/(p€'/?). (Left panel, top and
bottom row). Accelerated IHT diverges for negative 7, outside the 7 shaded area. (Middle panel, bottom
row). “Rippling” behavior for 7 values close to the lower bound of converging 7. (Middle panel, top row).
Convergence behavior for accelerated THT for various 7 values and its comparison to plain IHT (7 = 0). (Right
panel, top row). Similar “rippling” behavior as T approaches close to the upper bound of the shaded area;
divergence is observed when 7 goes beyond the shaded area (observe that, for 7 values at the border of the shaded
area, Algorithm |1 still diverges and this is due to the approximation of &).

discontinuous constraints—for instance the subset of k-  the discretization of the friction dynamical system

sparse sets. In the case of [44], our work differs in that
it explores better the low-dimensional constraint sets—
however, we require f to be convex. More relevant
to this work is [45]: the authors consider non-convex
proximal objective and apply ideas from [35] that lead
to either monotone (skipping momentum steps) or non-
monotone function value decrease behavior; further,
the theoretical guarantees are based on different tools
than ours. We identify that such research questions
could be directions for future work.

Related work on dynamical systems and numerical anal-
ysis. Multi-step schemes originate from explicit fi-
nite differences discretization of dynamical systems;
e.g., the so-called Heavy-ball method [18] origins from

Z(t) + vi(t) + Vf(x(t)) = 0, where v > 0 plays the
role of friction. Recent developments on this subject
can be found in [46]; see also references therein. From
a different perspective, Scieur et al. [47] use multi-step
methods from numerical analysis to discretize the gra-
dient flow equation. We believe that extending these
ideas in non-convex domains (e.g., when non-convex
constraints are included) is of potential interest for bet-
ter understanding when and why momentum methods
work in practical structured scenaria.

Related work on Frank-Wolfe variants: The Frank-
Wolfe (FW) algorithm [5] [7] is an iterative projection-
free convex scheme for constrained minimization.
Frank-Wolfe often has cheap per iteration cost by solv-
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ing a constrained linear program in each iteration. The
classical analysis by [5] presents sublinear convergence
for general functions. For strongly convex functions,
FW admits linear convergence if the optimum does not
lie on the boundary of the constraint set; in that case,
the algorithm still has sublinear convergence rate. To
address the boundary issue, [48] allows to move away
from one of the already selected atoms, where linear
convergence rate can be achieved [8]. Similarly, the
pairwise variant introduced by [49] also has a linear
convergent rate. This variant adjusts the weights of
two of already selected atoms. [50] present a different
perspective by showing linear convergence of classical
FW over strongly convex sets and general functions.
While several variants and sufficient conditions exist
that admit linear convergence rates, the use of momen-
tum for Frank-Wolfe, to the best of our knowledge is
unexplored.

6 Experiments

We conducted simulations for different problems to ver-
ify our predictions. In all experiments, we use constant
T = 1/4 as a potential universal momentum parameter.
Our experiments are proof of concept and demonstrate
that accelerated projected gradient descent over non-
convex structured sets can, not only offer high-quality
recovery in practical settings, but offer much more
scalable routines, compared to state-of-the-art. Here,
we present only a subset of our experimental findings
and we encourage readers to go over the experimental
results in the Appendiz[E}

6.1 Sparse linear regression setting

For sparse linear regression, next we consider two sim-
ulated problems settings: (¢) with i.i.d. regressors, and
(it) with correlated regressors.

Sparse linear regression under the i.i.d. Gaussian set-
ting: In this case, we consider a similar problem setting
with [8], where z* € R™ is the unknown normalized
k-sparse vector, observed through the underdetermined
set of linear equations: b = ®z*. ® € R™*" is drawn
randomly from a normal distribution. We consider the
standard least squares objective f(z) = 1|b — ®z|2

2
and the plain sparsity model A where ||z||o. 4 = ||z]/o.

We compare Algorithm |I (abbreviated as AccIHT
in plots) with two FW variants (see [§] for FW and
pairFW) Further, according to [8], pairFW performs
better than awayFW for this problem case, as well as
the plain THT algorithm. In this experiment, we

5Phase transition results and comparisons to standard
algorithms such as CoSaMP (restricted to squared loss) can
be found in [I6], and thus omitted.

use step sizes 1/ B for Algorithm E and THT, where
B = Amax(® T ®). For the FW variants, we follow the
setup in [8] and set as the constraint set the A-scaled
£1-norm ball, where A = 40. In the FW code, we fur-
ther “debias" the selected set of atoms per iteration, by
performing fully corrective steps over putative solution
(i.e., solve least-squares objective restricted over the ac-
tive atom set) [16][14]. We observed that such steps are
necessary in our setting, in order FW to be competitive
with Algorithm [I] and THT. For IHT and Algorithm
we set input k either exactly or use the ¢;-norm phase
transition plots [51], where the input parameter for
sparsity % is overshooted. See also Section [B for more
information. We compare the above algorithms w.r.t.
function values decrease and running times.

Figure [2/ depicts the summary of results we observed
for the case n = 2-10°, m = 7500 and k& = 500.
For THT and accelerated IHT, we also consider the
case where the input parameter for sparsity is set to
k = 2441 > k. The graphs indicate that the accelerated
hard thresholding technique can be much more efficient
and scalable than the rest of the algorithms, while at
the same time being at least as good in support /“signal"
recovery performance. For instance, while Algorithm
is only 1.2x faster than IHT, when k is known exactly,
Algorithm [I is more resilient at overshooting k: in
that case, IHT could take > 2x time to get to the
same level of accuracy. At the same time, Algorithm
[L detects much faster the correct support, compared
to plain THT. Compared to FW methods (right plot),
Algorithm [T]is at least 10x faster than FW variants.

As stated before, we only focus on the optimization
efficiency of the algorithms, not their statistical effi-
ciency. That being said, we consider settings that are
above the phase retrieval curve [], and here we make
no comparisons and claims regarding the number of
samples required to complete the sparse linear regres-
sion task. We leave such work for an extended version
of this work.

Sparse linear regression with correlated regressors: In
this section, we test Algorithm [I] for support recovery,
generalization and training loss performance in the
sparse linear regression, under a different data gener-
ation setting. We generate the data as follows. We
generate the feature matrix 800 x 200 design matrix
® according to a first order auto-regressive process
with correlation = 0.4. This ensures features are
correlated with each other, which further makes fea-
ture selection a non-trivial task. We normalize the
feature matrix so that each feature has f3-norm equal
to one. We generate an arbitrary weight vector z*
with ||2*][o = 20 and ||z*||2 = 1. The response vec-
tor b is then computed as y = ®Pz* + €, where € is
guassian iid noise that is generated to ensure that the
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Figure 3: Empirical evaluation. Algorithm E achieves strong performance on true support recovery (left),
generalization on test data (middle), and on training data fit (right)

signal-to-noise ratio is 10. Finally, the generated data
is randomly split 50-50 into training and test sets.

We compare against Lasso [52], oblivious greedy
selection (Oblivious [53]), forward greedy selec-
tion (Greedy [53]), and forward backward selection
(FoBa [54]). The metrics we use to compare on are
the generalization accuracy (R? coefficient determina-
tion performance on test set), recovery of true support
(AUC metric on predicted support vs. true support),
and training data fit (log likelihood on the training
set). The results are presented in Figure [3] and shows
Algorithm [1] performs very competitively: it is almost
always better or equal to other methods across different
sparsity levels.

7 Overview and future directions

The use of hard-thresholding operations is widely
known. In this work, we study acceleration techniques
in simple hard-thresholding gradient procedures and
characterize their performance; to the best of our knowl-

edge, this is the first work to provide theoretical support
for these type of algorithms. Our preliminary results
show evidence that machine learning problems can be
efficiently solved using our accelerated non-convex vari-
ant, which is at least competitive with state of the art
and comes with convergence guarantees.

Our approach shows linear convergence; however, in
theory, the acceleration achieved has dependence on
the condition number of the problem not better than
plain THT. This leaves open the question on what types
of conditions are sufficient to guarantee the better
acceleration of momentum in such non-convex settings?

Apart from the future directions “scattered" in the main
text, another possible direction lies at the intersection
of dynamical systems and numerical analysis with opti-
mization. Recent developments on this subject can be
found in [46] and [47]. We believe that extending these
ideas in non-convex domains is interesting to better
understand when and why momentum methods work
in practical structured scenaria.
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