
Hyunjik Kim and Yee Whye Teh

Appendix

A Bayesian Information Criterion
(BIC)

The BIC is a model selection criterion that is the
marginal likelihood with a model complexity penalty:

BIC = log p(y|θ̂)− 1

2
p log(N)

for observations y, number of observations N , maxi-
mum likelihood estimate (MLE) of model hyperparam-
eters θ̂, number of hyperparameters p. It is derived as
an approximation to the log model evidence log p(y).

B Compositional Kernel Search
Algorithm

Algorithm 2: Compositional Kernel Search Algorithm
Input: data x1, . . . , xn ∈ RD, y1, . . . , yn ∈ R,base

kernel set B
Output: k, the resulting kernel
For each base kernel on each dimension, fit GP to
data (i.e. optimise hyperparams by ML-II) and set k
to be kernel with highest BIC.

for depth=1:T (either fix T or repeat until BIC no
longer increases) do

Fit GP to following kernels and set k to be the one
with highest BIC:

(1) All kernels of form k +B where B is any base
kernel on any dimension

(2) All kernels of form k ×B where B is any base
kernel on any dimension

(3) All kernels where a base kernel in k is replaced
by another base kernel

C Base Kernels

LIN(x, x′) = σ2(x− l)(x′ − l)

SE(x, x′) = σ2 exp
(
− (x− x′)2

2l2

)
PER(x, x′) = σ2 exp

(
− 2 sin2(π(x− x′)/p)

l2

)
D Matrix Identities

Lemma 1 (Woodbury’s Matrix Inversion Lemma).
(A+UBV )−1 = A−1−A−1U(B−1 +V A−1U)−1V A−1

So setting A = σ2I (Nyström) or σ2I + diag(K − K̂)
(FIC) or σ2I + blockdiag(K − K̂) (PIC), U = ΦT = V ,

B = I, we get:

(A+ Φ>Φ)−1 = A−1 −A−1Φ>(I + ΦA−1Φ>)−1ΦA−1

Lemma 2 (Sylvester’s Determinant Theorem). det(I+
AB) = det(I +BA) ∀A ∈ Rm×n ∀B ∈ Rn×m

Hence:

det(σ2I + Φ>Φ) = (σ2)n det(I + σ−2Φ>Φ)

= (σ2)n det(I + σ−2ΦΦ>)

= (σ2)n−m det(σ2I + ΦΦ>)

E Proof of Proposition 1

Proof. If PCG converges, the upper bound for NIP is
exact. We showed in Section 4.1 that the convergence
happened in only a few iterations. Moreover Cortes
et al [7] shows that the lower bound for NIP can be
rather loose in general.

So it suffices to prove that the upper bound for
NLD is tighter than the lower bound for NLD. Let
(λi)

N
i=1, (λ̂i)

N
i=1 be the ordered eigenvalues of K +

σ2I, K̂ + σ2I respectively. Since K − K̂ is positive
semi-definite (e.g. [3]), we have λi ≥ λ̂i ≥ 2σ2 ∀i (us-
ing the assumption in the proposition). Now the slack
in the upper bound is:

−1

2
log det(K̂ + σ2I)− (−1

2
log det(K + σ2I))

=
1

2

N∑
i=1

(log λi − log λ̂i)

Hence the slack in the lower bound is:

−1

2
log det(K + σ2I)

−
[
− 1

2
log det(K̂ + σ2I)− 1

2σ2
Tr(K − K̂)

]
= −1

2

N∑
i=1

(log λi − log λ̂i) +
1

2σ2

N∑
i=1

(λi − λ̂i)

Now by concavity and monotonicity of log, and since
λ̂ ≥ 2σ2, we have:

log λi − log λ̂i

λi − λ̂i
≤ 1

2σ2

⇒
N∑
i=1

(log λi − log λ̂i) ≤
1

2σ2

N∑
i=1

(λi − λ̂i)

⇒ 1

2

N∑
i=1

(log λi − log λ̂i)

≤ 1

2σ2

N∑
i=1

(λi − λ̂i)−
1

2

N∑
i=1

(log λi − log λ̂i)



Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes

F Convergence of hyperparameters
from optimising lower bound to
optimal hyperparameters

Note from Figure 7 that the hyperparameters found by
optimising the lower bound converges to the hyperpa-
rameters found by the exact GP when optimising the
exact marginal likelihood, giving empirical evidence for
the second claim in Section 3.3.

G Parallelising SKC

Note that SKC can be parallelised across the random
hyperparameter initialisations, and also across the ker-
nels at each depth for computing the BIC intervals. In
fact, SKC is even more parallelisable with the kernel
buffer: say at a certain depth, we have two kernels
remaining to be optimised and evaluated before we can
move onto the next depth. If the buffer size is 5, say,
then we can in fact move on to the next depth and grow
the kernel search tree on the top 3 kernels of the buffer,
without having to wait for the 2 kernel evaluations to
be complete. This saves a lot of computation time
wasted by idle cores waiting for all kernel evaluations
to finish before moving on to the next depth of the
kernel search tree.

H Optimisation

Since we wish to use the learned kernels for interpreta-
tion, it is important to have the hyperparameters lie
in a sensible region after the optimisation. In other
words, we wish to regularise the hyperparameters dur-
ing optimisation. For example, we want the SE kernel
to learn a globally smooth function with local variation.
When naïvely optimising the lower bound, sometimes
the length scale and the signal variance becomes very
small, so the SE kernel explains all the variation in
the signal and ends up connecting the dots. We wish
to avoid this type of behaviour. This can be achieved
by giving priors to hyperparameters and optimising
the energy (log prior added to the log marginal likeli-
hood) instead, as well as using sensible initialisations.
Looking at Figure 8, we see that using a strong prior
with a sensible random initialisation (see Appendix
I for details) gives a sensible smoothly varying func-
tion, whereas for all the three other cases, we have
the length scale and signal variance shrinking to small
values, causing the GP to overfit to the data. Note that
the weak prior is the default prior used in the GPstuff
software [39].

Careful initialisation of hyperparameters and inducing
points is also very important, and can have strong in-
fluence the resulting optima. It is sensible to have the
optimised hyperparameters of the parent kernel in the
search tree be inherited and used to initialise the hy-
perparameters of the child. The new hyperparameters
of the child must be initialised with random restarts,
where the variance is small enough to ensure that they
lie in a sensible region, but large enough to explore a
good portion of this region. As for the inducing points,
we want to spread them out to capture both local and
global structure. Trying both K-means and a random
subset of training data, we conclude that they give
similar results and resort to a random subset. More-
over we also have the option of learning the inducing
points. However, this will be considerably more costly
and show little improvement over fixing them, as we
show in Section 4. Hence we do not learn the inducing
points, but fix them to a given randomly chosen set.

Hence for SKC, we use maximum a posteriori (MAP)
estimates instead of MLE for the hyperparameters to
calculate the BIC, since the priors have a noticeable
effect on the optimisation. This is justified [23] and has
been used for example in [11], where they argue that us-
ing the MLE to estimate the BIC for Gaussian mixture
models can fail due to singularities and degeneracies.

I Hyperparameter initialisation and
priors

Z ∼ N (0, 1), TN(σ2, I) is a Gaussian with mean 0
and variance σ2 truncated at the interval I then
renormalised.
Signal noise
σ2 = 0.1× exp(Z/2)
p(log σ2) = N (0, 0.2)

LIN
σ2 = exp(V ) where V ∼ TN(1, [−∞, 0]), l = exp(Z2 )
p(log σ2) = logunif
p(log l) = logunif

SE
l = exp(Z/2), σ2 = 0.1× exp(Z/2)
p(log l) = N (0, 0.01), p(log σ2) = logunif

PER
pmin = log(10 × max(x)−min(x)

N ) (shortest possible
period is 10 time steps)
pmax = log(max(x)−min(x)

5 ) (longest possible period is
a fifth of the range of data set)
l = exp(Z/2), p = exp(pmin + W ) or exp(pmax + U),
σ2 = 0.1× exp(Z/2) w.p. 1

2
where W ∼ T N (−0.5, [0,∞]),



Hyunjik Kim and Yee Whye Teh

Figure 7: Log marginal likelihood and hyperparameter values after optimising the lower bound with ARD kernel
on a subset of the Power plant data for different values of m. This is compared against the exact GP values
when optimising the true log marginal likelihood. Error bars show mean ± 1 standard deviation over 10 random
iterations.

1600 1650 1700 1750 1800 1850 1900 1950 2000 2050
year

1360

1360.5

1361

1361.5

1362

W
/m

2

data
strong prior, rand init
weak prior, rand init
strong prior, small init
weak prior, small init

Figure 8: GP predictions on solar data set with SE kernel for different priors and initialisations.

U ∼ T N (−0.5, [−∞, 0]))
p(log l) = t(µ = 0, σ2 = 1, ν = 4),
p(log p) = LN (pmin − 0.5, 0.25) or LN (pmax − 2, 0.5)
w.p. 1

2
p(log σ2) = logunif where LN (µ, σ2) is log Gaussian,
t(µ, σ2, ν) is the student’s t-distribution.

J Computation times

Look at Table 2. For all three data sets, the GP
optimisation time is much greater than the sum of the
Var GP optimisation time and the upper bound (NLD
+ NIP) evaluation time for m ≤ 80. Hence the savings
in computation time for SKC is significant even for
these small data sets.

Note that we show the lower bound optimisation time
against the upper bound evaluation time instead of the
evaluation times for both, since this is what happens
in SKC - the lower bound has to be optimised for
each kernel, whereas the upper bound only has to be
evaluated once.

K Mauna and Solar plots and
hyperparameter values found by
SKC

Solar The solar data has 26 cycles over 285 years,
which gives a periodicity of around 10.9615 years. Us-
ing SKC with m = 40, we find the kernel: SE × PER
× SE ≡ SE × PER. The value of the period hyper-
parameter in PER is 10.9569 years, hence SKC finds
the periodicity to 3 s.f. with only 40 inducing points.
The SE term converts the global periodicity to local
periodicity, with the extent of the locality governed by
the length scale parameter in SE, equal to 45. This is
fairly large, but smaller than the range of the domain
(1610-2011), indicating that the periodicity spans over
a long time but isn’t quite global. This is most likely
due to the static solar irradiance between the years
1650-1700, adding a bit of noise to the periodicities.

Mauna The annual periodicity in the data and the
linear trend with positive slope is clear. Linear regres-
sion gives us a slope of 1.5149. SKC with m = 40 gives
the kernel: SE + PER + LIN. The period hyperpa-
rameter in PER takes value 1, hence SKC successfully
finds the right periodicity. The offset l and magnitude
σ2 parameters of LIN allow us to calculate the slope



Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes

Table 2: Mean and standard deviation of computation times (in seconds) for full GP optimisation, Var GP
optimisation(with and without learning inducing points), NLD and NIP (PCG using PIC preconditioner) upper
bounds over 10 random iterations.

Solar Mauna Concrete
GP 29.1950± 5.1430 164.8828± 58.7865 403.8233± 127.0364
Var GP m=10 7.0259± 4.3928 6.0117± 3.8267 5.4358± 0.7298

m=20 8.3121± 5.4763 11.9245± 6.8790 10.2410± 2.5109
m=40 10.2263± 4.1025 17.1479± 10.7898 19.6678± 4.3924
m=80 9.6752± 6.5343 28.9876± 13.0031 47.2225± 13.1955
m=160 25.6330± 8.7934 91.0406± 39.8409 158.9199± 18.1276
m=320 76.3447± 20.3337 202.2369± 96.0749 541.4835± 99.6145

NLD m=10 0.0019± 0.0001 0.0033± 0.0002 0.0113± 0.0004
m=20 0.0026± 0.0001 0.0046± 0.0002 0.0166± 0.0007
m=40 0.0043± 0.0001 0.0079± 0.0003 0.0286± 0.0005
m=80 0.0084± 0.0002 0.0154± 0.0004 0.0554± 0.0012
m=160 0.0188± 0.0006 0.0338± 0.0007 0.1188± 0.0030
m=320 0.0464± 0.0032 0.0789± 0.0036 0.2550± 0.0074

NIP m=10 0.0474± 0.0092 0.1020± 0.0296 0.2342± 0.0206
m=20 0.0422± 0.0130 0.1274± 0.0674 0.1746± 0.0450
m=40 0.0284± 0.0075 0.0846± 0.0430 0.2345± 0.0483
m=80 0.0199± 0.0081 0.0553± 0.0250 0.2176± 0.0376
m=160 0.0206± 0.0053 0.0432± 0.0109 0.2136± 0.0422
m=320 0.0250± 0.0019 0.0676± 0.0668 0.2295± 0.0433

Var GP, m=10 23.4± 14.6 42.0± 33.0 110.0± 302.5
learn IP m=20 38.5± 17.5 62.0± 66.0 70.0± 97.0

m=40 124.7± 99.0 320.0± 236.0 307.0± 341.4
m=80 268.6± 196.6 1935.0± 1103.0 666.0± 41.0
m=160 1483.6± 773.8 10480.0± 5991.0 4786.0± 406.9
m=320 2923.8± 1573.5 39789.0± 23870.0 25906.0± 820.9

by the formula σ2(x− l)>[σ2(x− l)(x− l)> + σ2
nI]−1y

where σ2
n is the noise variance in the learned likelihood.

This formula is obtained from the posterior mean of the
GP, which is linear in the inputs for the linear kernel.
This value amounts to 1.5150, hence the slope found
by SKC is accurate to 3 s.f.

L Optimising the upper bound

If the upper bound is tighter and more robust with
respect to choice of inducing points, why don’t we
optimise the upper bound to find hyperparameters? If
this were to be possible then we can maximise this to
get an upper bound of the exact marginal likelihood
with optimal hyperparameters. In fact this holds for
any analytic upper bound whose value and gradients
can be evaluated cheaply. Hence for any m, we can find
an interval that contains the true optimised marginal
likelihood. So if this interval is dominated by an interval
of another kernel, we can discard the kernel and there
is no need to evaluate the bounds for bigger values ofm.
Now we wish to use values ofm such that we can choose
the right kernel (or kernels) at each depth of the search
tree with minimal computation. This gives rise to an
exploitation-exploration trade-off, whereby we want
to balance between raising m for tight intervals that

allow us to discard unsuitable kernels whose intervals
fall strictly below that of other kernels, and quickly
moving on to the next depth in the search tree to
search for finer structure in the data. The search
algorithm is highly parallelisable, and thus we may
raise m simultaneously for all candidate kernels. At
deeper levels of the search tree, there may be too many
candidates for simultaneous computation, in which case
we may select the ones with the highest upper bound
to get tighter intervals. Such attempts are listed below.

Note the two inequalities for the NLD and NIP terms:

−1

2
log det(K̂ + σ2I)− 1

2σ2
Tr(K − K̂)

≤ −1

2
log det(K + σ2I)

≤− 1

2
log det(K̂ + σ2I) (5)

−1

2
y>(K̂ + σ2I)−1y

≤ −1

2
y>(K+σ2I)−1y

≤− 1

2
y>(K + (σ2 + Tr(K − K̂))I)−1y

(6)

Where the first two inequalities come from [3], the



Hyunjik Kim and Yee Whye Teh

1600 1650 1700 1750 1800 1850 1900 1950 2000 2050
year

1360

1360.2

1360.4

1360.6

1360.8

1361

1361.2

1361.4

1361.6

1361.8

1362

so
la

r i
rra

di
an

ce

(a) Solar

1950 1960 1970 1980 1990 2000 2010 2020
year

310

320

330

340

350

360

370

380

390

400

410

C
O

2 
le

ve
l

(b) Mauna

Figure 9: Plots of small time series data: Solar and
Mauna

third inequality is a direct consequence of K− K̂ being
postive semi-definite, and the last inequality is from
Michalis Titsias’ lecture slides 3.

Also from 4, we have that

−1

2
log det(K̂ + σ2I) +

1

2
α>(K + σ2I)α− α>y

is an upper bound ∀α ∈ RN . Thus one idea of obtaining
a cheap upper bound to the optimised marginal likeli-
hood was to solve the following maximin optimisation
problem:

max
θ

min
α∈RN

−1

2
log det(K̂+σ2I)+

1

2
α>(K+σ2I)α−α>y

One way to solve this cheaply would be by coordinate
descent, where one maximises with respect to θ fixing
α, then minimises with respect to α fixing θ. How-
ever σ tends to blow up in practice. This is because
the expression is O(− log σ2 + σ2) for fixed α, hence
maximising with respect to σ pushes it towards infinity.

An alternative is to sum the two upper bounds above
3http://www.aueb.gr/users/mtitsias/papers/titsiasNipsVar14.pdf

to get the upper bound

−1

2
log det(K̂+σ2I)− 1

2
y>(K+(σ2+Tr(K−K̂))I)−1y

However we found that maximising this bound gives
quite a loose upper bound unless m = O(N). Hence
this upper bound is not very useful.

M Random Fourier Features

Random Fourier Features (RFF) (a.k.a. Random
Kitchen Sinks) was introduced by [26] as a low rank ap-
proximation to the kernel matrix. It uses the following
theorem

Theorem 3 (Bochner’s Theorem [29]). A stationary
kernel k(d) is positive definite if and only if k(d) is the
Fourier transform of a non-negative measure.

to give an unbiased low-rank approximation to the
Gram matrix K = E[Φ>Φ] with Φ ∈ Rm×N . A bigger
m lowers the variance of the estimate. Using this
approximation, one can compute determinants and
inverses in O(Nm2) time. In the context of kernel
composition in 2, RFFs have the nice property that
samples from the spectral density of the sum or product
of kernels can easily be obtained as sums or mixtures of
samples of the individual kernels (see Appendix N). We
use this later to give a memory-efficient upper bound
on the exact log marginal likelihood in Appendix P.

N Random Features for Sums and
Products of Kernels

For RFF the kernel can be approximated by the inner
product of random features given by samples from its
spectral density, in a Monte Carlo approximation, as
follows:

k(x− y) =

∫
RD

eiv
>(x−y)dP(v)

∝
∫
RD

p(v)eiv
>(x−y)dv

= Ep(v)[eiv
>x(eiv

>y)∗]

= Ep(v)[Re(eiv
>x(eiv

>y)∗)]

≈ 1

m

m∑
k=1

Re(eivk
>x(eivk

>y)∗)

= Eb,v[φ(x)>φ(y)]

where φ(x) =
√

2
m (cos(v1

>x+b1), . . . , cos(vm
>x+bm))

with spectral frequencies vk iid samples from p(v) and
bk iid samples from U [0, 2π].
Let k1, k2 be two stationary kernels, with respective



Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes

spectral densities p1, p2 so that
k1(d) = a1p̂1(d), k2(d) = a2p̂2(d), where p̂(d) :=∫
RD p(v)eiv

>ddv. We use this convention as the Fourier
transform. Note ai = ki(0).

(k1 + k2)(d) = a1

∫
p1(v)eiv

>ddv + a2

∫
p2(v)eiv

>ddv

= (a1 + a2)p̂+(d)

where p+(v) = a1
a1+a2

p1(v) + a2
a1+a2

p2(v), a mixture of
p1 and p2. So to generate RFF for k1 + k2, gener-
ate v ∼ p+ by generating v ∼ p1 w.p. a1

a1+a2
and v ∼

p2 w.p. a2
a1+a2

Now for the product, suppose

(k1 · k2)(d) = a1a2p̂1(d)p̂2(d) = a1a2p̂∗(d)

Then p∗(d) is the inverse fourier transform of p̂1p̂2,
which is the convolution p1 ∗ p2(d) :=

∫
RD p1(z)p2(d−

z)dz. So to generate RFF for k1 · k2, generate v ∼ p∗
by generating v1 ∼ p1, v2 ∼ p2 and setting v = v1 + v2.
This is not applicable for non-stationary kernels, such
as the linear kernel. We deal with this problem as
follows:

Suppose φ1, φ2 are random features such that
k1(x, x′) = φ1(x)>φ1(x′), φ2(x)>φ2(x′), φi : RD →
Rm.
It is straightforward to verify that

(k1 + k2)(x, x′) = φ+(x)>φ+(x′)

(k1 · k2)(x, x′) = φ∗(x)>φ∗(x
′)

where φ+(·) = (φ1(·)>, φ2(·)>)> and φ∗(·) = φ1(·) ⊗
φ2(·). However we do not want the number of features
to grow as we add or multiply kernels, since it will grow
exponentially. We want to keep it to be m features. So
we subsample m entries from φ+ (or φ∗) and scale by
factor

√
2 (
√
m for φ∗), which will still give us unbiased

estimates of the kernel provided that each term of the
inner product φ+(x)>φ+(x′) (or φ∗(x)>φ∗(x

′)) is an
unbiased estimate of (k1 +k2)(x, x′)(or (k1 ·k2)(x, x′)).
This is how we generate random features for linear
kernels combined with other stationary kernels, using
the features φ(x) = σ√

m
(x, . . . , x)>.

O Spectral Density for PER

From [35], we have that the spectral density of the
PER kernel is:

∞∑
n=−∞

In(l−2)

exp(l−2)
δ

(
v − 2πn

p

)
where I is the modified Bessel function of the first kind.

P An upper bound to NLD using
Random Fourier Features

Note that the function f(X) = − log det(X) is convex
on the set of positive definite matrices [6]. Hence
by Jensen’s inequality we have, for Φ>Φ an unbiased
estimate of K:

−1

2
log det(K + σ2I) = f(K + σ2I)

= f(E[Φ>Φ + σ2I])

≤ E[f(Φ>Φ + σ2I)]

Hence − 1
2 log det(Φ>Φ + σ2I) is a stochastic upper

bound to NLD that can be calculated in O(Nm2). An
example of such an unbiased estimator Φ is given by
RFF.

Q Further Plots



Hyunjik Kim and Yee Whye Teh

10 20 40 80 160 320
m

0

500

1000

1500

2000

n
e

g
a

tiv
e

 e
n

e
rg

y

fullGP
exact
Var LB
UB

10 20 40 80 160 320
m

1500

2000

2500

3000

3500

N
L

D

exact
Nystrom NLD UB
RFF NLD UB

10 20 40 80 160 320
m

-350

-300

-250

-200

-150

-100

-50

0

N
IP

exact
CG
PCG Nys
PCG FIC
PCG PIC

lo
g 

M
L

(a) Mauna: fix inducing points
10 20 40 80 160 320

m

0

500

1000

1500

2000

n
e

g
a

tiv
e

 e
n

e
rg

y

fullGP
exact
Var LB
UB

10 20 40 80 160 320
m

2000

2500

3000

N
L

D

exact
Nystrom NLD UB
RFF NLD UB

10 20 40 80 160 320
m

-400

-300

-200

-100

0

N
IP

exact
CG
PCG Nys
PCG FIC
PCG PIC

lo
g 

M
L

(b) Mauna: learn inducing points

Figure 10: Same as 1a and 1b but for Mauna Loa data.

10 20 40 80 160 320
m

-8000

-6000

-4000

-2000

0

n
e

g
a

tiv
e

 e
n

e
rg

y

fullGP
exact
Var LB
UB

10 20 40 80 160 320
m

200

400

600

800

1000

N
L

D

exact
Nystrom NLD UB
RFF NLD UB

10 20 40 80 160 320
m

-550

-500

-450

-400

-350

-300

N
IP

exact
CG
PCG Nys
PCG FIC
PCG PIC

lo
g 

M
L

(a) Concrete: fix inducing points

10 20 40 80 160 320

m

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

n
e

g
a

tiv
e

 e
n

e
rg

y

fullGP

exact

Var LB

UB

10 20 40 80 160 320

m

100

200

300

400

500

600

700

800

900

1000

1100

N
L

D

exact

Nystrom NLD UB

RFF NLD UB

10 20 40 80 160 320

m

-600

-550

-500

-450

-400

-350

-300

N
IP

exact

CG

PCG Nys

PCG FIC

PCG PIC

lo
g 

M
L

(b) Concrete: learn inducing points

Figure 11: Same as 1a and 1b but for Concrete data.

10 20 40 80 160320
m

-500

-400

-300

-200

-100
LIN

10 20 40 80 160320
m

-500

-400

-300

-200

-100
PER

10 20 40 80 160320
m

-500

-400

-300

-200

-100
SE

10 20 40 80 160320
m

-500

-400

-300

-200

-100
(SE)*SE

10 20 40 80 160320
m

-500

-400

-300

-200

-100
(SE)+SE

10 20 40 80 160320
m

-500

-400

-300

-200

-100
(PER)+SE

10 20 40 80 160320
m

-500

-400

-300

-200

-100
(SE)*PER

10 20 40 80 160320
m

-500

-400

-300

-200

-100
(PER)+PER

10 20 40 80 160320
m

-500

-400

-300

-200

-100
(PER)*PER

10 20 40 80 160320
m

-500

-400

-300

-200

-100
(PER)+LIN

10 20 40 80 160320
m

-500

-400

-300

-200

-100
(PER)*LIN

10 20 40 80 160320
m

-500

-400

-300

-200

-100
(LIN)+LIN

10 20 40 80 160320
m

-500

-400

-300

-200

-100
(LIN)*LIN

10 20 40 80 160320
m

-500

-400

-300

-200

-100
(LIN)+SE

10 20 40 80 160320
m

-500

-400

-300

-200

-100
(SE)*LIN

Figure 12: Kernel search tree for SKC on solar data up to depth 2. We show the upper and lower bounds for
different numbers of inducing points m.



Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes

Figure 13: Same as Figure 12 but for Mauna data.

Figure 14: Same as Figure 12 but for concrete data and up to depth 1.


	Bayesian Information Criterion (BIC)
	Compositional Kernel Search Algorithm
	Base Kernels
	Matrix Identities
	Proof of Proposition 1
	Convergence of hyperparameters from optimising lower bound to optimal hyperparameters
	Parallelising SKC
	Optimisation
	Hyperparameter initialisation and priors
	Computation times
	Mauna and Solar plots and hyperparameter values found by SKC
	Optimising the upper bound
	Random Fourier Features
	Random Features for Sums and Products of Kernels
	Spectral Density for PER
	An upper bound to NLD using Random Fourier Features
	Further Plots

