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Abstract

This paper studies outlier detection and ro-
bust estimation for nonparametric regression
problems. We propose to include a subject-
specific mean shift parameter for each data
point such that a nonzero parameter will
identify its corresponding data point as an
outlier. We adopt a regularization approach
by imposing a roughness penalty on the re-
gression function and a shrinkage penalty on
the mean shift parameter. An efficient algo-
rithm has been proposed to solve the double
penalized regression problem. We discuss a
data-driven simultaneous choice of two reg-
ularization parameters based on a combina-
tion of generalized cross validation and modi-
fied Bayesian information criterion. We show
that the proposed method can consistently
detect the outliers. In addition, we obtain
minimax-optimal convergence rates for both
the regression function and the mean shift
parameter under regularity conditions. The
estimation procedure is shown to enjoy the
oracle property in the sense that the conver-
gence rates agree with the minimax-optimal
rates when the outliers (or regression func-
tion) are known in advance. Numerical re-
sults demonstrate that the proposed method
has desired performance in identifying out-
liers under different scenarios.

1 Introduction

Outliers are observations that deviate markedly from
the majority of data. They are commonly encountered
in real data applications such as genomics, biomed-
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ical imaging and signal processing. In the presence
of outliers, likelihood-based inference can be unreli-
able. For example, ordinary least squares estimates
for regression problems are highly sensitive to out-
liers. To facilitate valid statistical inference, an active
area of research has been devoted to outlier detection
and robust statistical estimation. Popular methods
include M-estimators (Huber, 1981), Generalized M-
estimators (Mallows, 1975), least median of squares
(Hampel, 1975), least trimmed squares (Rousseeuw,
1984), S-estimators (Rousseeuw and Yohai, 1984),
MM-estimators (Yohai, 1987), weighted least squares
(Gervini and Yohai, 2002) and empirical likelihood
(Bondell and Stefanski, 2013). Although many of the
existing robust regression approaches enjoy nice the-
oretical properties and satisfactory numerical perfor-
mances, they usually focus on linear regression mod-
els. While nonparametric regression models have been
widely used in modern statistics, there is a consider-
able gap in the literature on the extension of aforemen-
tioned methods to nonparametric regression problems,
in which identifying outliers may be more challenging
because outliers can be more easily associated with the
majority of data via a nonparametric function than a
linear curve. There are a few robust nonparametric
estimation methods such as Cleveland (1979), Brown,
Cai, and Zhou (2008) and Cai and Zhou (2009). How-
ever, these methods can only estimate the nonpara-
metric function, and none of them can be applied to
outlier detection.

In this paper, we fill in this gap by considering out-
lier detection and robust estimation simultaneously for
nonparametric regression problems. We use univariate
regression yi = f(xi) + εi as an illustrative example
and propose to include a subject-specific mean shift
parameter in the model. In particular, we add an ad-
ditional subject-specific term into the nonparametric
regression model, i.e. yi = f(xi) + γi + εi, where a
nonzero mean shift parameter γi indicates that the ith
observation is an outlier. Then the problem becomes
estimation of the regression function, f and mean shift
parameters, γi’s. This idea originates from Gannaz
(2006); McCann and Welsch (2007); She and Owen
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(2011) in the context of linear models, however, the
extension from linear model to nonparametric mod-
els requires nontrivial effort and the results are much
more flexible and useful in practice. The proposed
method is not restricted to particular domains, but
in general applicable for a wide range of domains in-
cluding univariate and multivariate data. The exten-
sion from univariate data to the multi-dimensional and
high-dimensional data is discussed in Section 6. Ma-
teos and Giannakis (2012) proposed a robust estima-
tion procedure based on a similar model as ours, how-
ever, there are several key differences between our pa-
per and this reference. First, our algorithm is different
and much faster. We only need to update γi’s itera-
tively, while Mateos and Giannakis (2012) need to iter-
atively update γi’s and f . Second, outlier detection is
an important goal of our paper, and we study the per-
formance of the method in terms of outlier detection,
while the reference only focused on robust function
estimation. Third, we have a better tuning method.
The tuning method in Mateos and Giannakis (2012)
depends on an initial function fit, which is computa-
tionally much slower. More severely, their initial func-
tion fit may not be robust and may result in a bad
estimate of the error variance. As their tuning crite-
rion is based on the estimate of the error variance, the
tuning parameters selected could be completely mis-
leading. Finally, we have investigated the asymptotic
theory of our method, which is not included in that
reference.

Our theoretical studies are concerned with the con-
sistency of outlier detection and the so-called “oracle
property” of the estimators. Specifically, we define the
“oracle estimate” of f as the one obtained given all
the outliers are known. Then an estimator of f is said
to satisfy the oracle property if it possesses the same
minimax-optimal convergence rate as the oracle esti-
mate. The oracle property for mean shift parameter
estimators can be defined in a similar way. A major
contribution of our paper is that we derive sufficient
conditions on the tuning parameters such that the esti-
mators of f and γ satisfy the oracle property. In other
words, our estimation procedure is not affected by the
additional step of identifying the outliers. The main
technique we use here is based on Müller and van de
Geer (2015) with modifications to accommodate the
mean shift parameter component in our case.

For mean shift regression models, regularization meth-
ods are commonly used to detect the outliers. For
example, McCann and Welsch (2007) considered an
L1 regularization. She and Owen (2011) imposed a
nonconvex penalty function on γi’s to obtain a sparse
solution. Kong et al. (2018) imposed an adaptive
penalty function on γi’s to obtain fully efficient ro-

bust estimation and outlier detection. In this pa-
per, we adopt a general penalized regression frame-
work by considering popular penalty functions such as
LASSO (Tibshirani, 1996) and smoothly clipped abso-
lute deviation (SCAD) (Fan and Li, 2001). The pro-
posed method also applies to multivariate nonpara-
metric regression and semi-parametric models (e.g.,
partial linear models). A major challenge in extending
the previous work in linear models lies in accurate and
efficient estimation of both the nonparametric func-
tion and the mean shift parameters at the same time.
In the literature, nonparametric estimation is usu-
ally achieved via a smoothing procedure, such as local
polynomial smoothing (Fan and Gijbels, 1996), poly-
nomial splines (Hastie and Tibshirani, 1990), regres-
sion splines (Agarwal and Studden, 1980) and smooth-
ing splines (Wahba, 1990; Gu, 2013). In this paper, we
adopt smoothing splines for the nonparametric func-
tion estimates, and propose an efficient algorithm to
solve an optimization problem that involves selecting
two different tuning parameters simultaneously.

The rest of the paper is organized as follows. Section 2
describes our methodology including the problem for-
mulation, computational algorithm and tuning param-
eter selection. Section 3 discusses the convergence rate
for our nonparametric estimates. We present some
simulation results to evaluate the finite-sample perfor-
mance of the proposed method in Section 4. In Section
5, we apply our method to the baseball data. We dis-
cuss some extensions to multi-dimensional and high-
dimensional models in Section 6 and conclude with
some remarks in Section 7. A proof sketch of the the-
orems is given in Section 8.

2 Methodology

We consider a univariate nonparametric mean shift
model as follows,

yi = f(xi) + γi + εi, (1)

where the covariate xi, lies in a bounded closed inter-
val on the real line, and εi’s are i.i.d random errors
with mean 0 and finite second moment. We are inter-
ested in using mean shift parameters γi’s as indicators
of the outliers in the nonparametric regression of yi
given xi. More precisely, if γi 6= 0, then its corre-
sponding subject i is an outlier. Similarly, if γi = 0,
subject i is a normal data point. Suppose we have n
samples (xi, yi), and we assume the number of outliers
is less than dn/2e. In other words, less than half of
the γi’s are nonzero, and this assumption guarantees
identifiability of our model.

We consider a shrinkage approach for outlier detec-
tion by pushing most of the γi’s toward zero. Clearly,
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those nonzero estimates will represent the outliers we
detect under the regression model. In addition to out-
lier detection, we are also interested in robust esti-
mation of the nonparametric function f(·). This is
achieved by adopting a smoothing spline technique
with a roughness penalty, which is based on the second
order derivative of f .

Throughout the paper, we assume xi ∈ [0, 1] without
loss of generality. For general situations, the proposed
method will still work by first scaling xi’s onto the
unit interval. Denote γ = (γ1, . . . , γn)T . We propose
to solve the following minimization problem

argminf,γ{
∑n
i=1(yi − f(xi)− γi)2

+
∑n
i=1 P (γi, κ) + λ

∫ 1

0
[f ′′(x)]2dx}, (2)

where P (γi, κ) is a general penalty function (e.g.,
LASSO and SCAD), and κ and λ serve as tuning pa-
rameters, which control the outlier detection and non-
parametric smoothing respectively.

It has been shown that problem (2) can be solved
efficiently by reformulating the problem itself as a
penalized regression problem and constructing a re-
producing kernel corresponding to the penalty term∫ 1

0
[f ′′(x)]2dx, see Wahba (1990) and Gu (2013) for

more details.

In particular, denote k1(s) = s−0.5, k2(s) = 1
2 (k21(s)−

1
12 ) and k4(s) = 1

24 (k41(s)− k21(s)
2 + 7

240 ). Define

K(s, t) = k2(s)k2(t)− k4(s− t). (3)

By the representer theorem (Kimeldorf and Wahba,
1971), for f(·), the solution of (2) can be represented
as

f(x) = d1 + d2x+

n∑
i=1

αiK(xi, x),

whereK is the kernel function defined in (3), and d1, d2
are unknown parameters.

Let 1 be a column vector of 1, α = (α1, . . . , αn)T and
X = (x1, . . . , xn)T . Denote K be a n× n matrix with
its (i, j)-th element taking value of K(xi, xj). We can
reformulate (2) as

argmind1,d2,α,γ{||y − d11− d2X−Kα− γ||22
+
∑n
i=1 P (γi, κ) + λαTKα}. (4)

Denote N = (1,X,K) and θ = (d1, d2,α
T )T . We also

define

L =

(
02×2 02×n
0n×2 K

)
.

Notice that for a fixed γ, we have

θ̂ = (NTN + λL)−1NT (y − γ). (5)

Thus, we can use the profiling idea to express the opti-
mization problem strictly as a function of γ. In partic-
ular, denote Hλ = N(NTN + λL)−1NT . By plugging
(5) into (4), the optimization problem becomes

argminγ{(y−γ)T (I−Hλ)(y−γ)+

n∑
i=1

P (γi, κ)}. (6)

For large sample sizes, solving (6) can be expensive
even for some popular choice of penalty functions.
For example, if we use the LASSO penalty, the prob-
lem can be reformulated as a quadratic programming
problem or a full sequence of solutions for κ can be
found via the Least Angle Regression (LARS) algo-
rithm (Efron et al., 2004) for each fixed λ. Since the
number of parameters equals the sample size n, when
n becomes large, the quadratic programming or LARS
would be computationally slow. If we use the SCAD
penalty, we may consider using a concave convex pro-
cedure (Kim, Choi, and Oh, 2008). However, the com-
putation will still be quite expensive.

To overcome computational burdens, we adopt
the Thresholding-based Iterative Selection Procedure
(TISP) proposed in She (2009). TISP provides a fea-
sible way to tackle the optimization problem in (4).
It is a simple procedure that does not involve compli-
cated operations such as matrix inversion. The general
idea is to update γ by an iterative thresholding rule.
More specifically, we write (y−γ)T (I −Hλ)(y−γ) =
||(I−Hλ)1/2y+{I−(I−Hλ)1/2}γ−γ||22. In this way,
we can update γ via

γ(j+1) = Θ({I − (I −Hλ)1/2}γ(j)

+ (I −Hλ)1/2y, κ). (7)

where Θ(·, κ) is a threshold function corresponding to
the penalty function P (·, κ). For example, if we use
the LASSO penalty, the threshold function would be

Θ(x, κ) =

{
0, |x| ≤ κ;

sgn(x)(|x| − κ), |x| > κ,

where sgn(·) is the sign function. If the SCAD penalty
is used, the threshold function is defined as

Θ(x, κ) =


0, |x| ≤ κ;

sgn(x)(|x| − κ), κ < |x| ≤ 2κ;

{(a− 1)x− sgn(x)aκ}/(a− 2), 2κ < |x| ≤ aκ;

x, |x| > aκ,

where a = 3.7 suggested by Fan and Li (2001).

To this end, our algorithm of solving (2) can be sum-
marized as follows. First step, we solve for γ(j) using
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(7) until convergence, and the limit would be γ̂. The
starting point γ(0) is chosen as (I−Hλ)1/2y. The sec-
ond step is to plug in the final solution γ̂ into (5) and

get θ̂. The outliers we identify are those observations
with γ̂i 6= 0, and the nonparametric function estimate
is f̂(x) = d̂1 + d̂2x+

∑n
i=1 α̂iK(xi, x).

The problem (2) involves two tuning parameters κ
and λ, which control the outlier detection and non-
parametric estimation respectively. It is important to
choose these two parameters appropriately. We use
grid search to choose κ and λ simultaneously through
a combination of generalized cross validation (GCV)
criterion and modified Bayesian information criterion
(BIC).

In particular, we use the following procedure:

1. For a fixed λ, we first tune κ on a set of grid
points. We calculate the smoothing matrix Hλ

and set γ(0) = (I −Hλ)y.

2. For each κ chosen from the grid points, we use (7)
to solve for γ̂(λ, κ). We define

RSS(λ, κ) = ||(I −Hλ)(y − γ̂(λ, κ))||22

and choose κ which minimizes the following mod-
ified BIC.

BIC(λ, κ) = m log(RSS(λ, κ)/m) + k log(m),

where k denotes the number of nonzero in γ̂(λ, κ)
and m is the effective sample size that is defined
by m = tr{(I − Hλ)}, where tr(·) denotes the
trace of a matrix. Denote κopt(λ) be the optimal
parameter we choose for this fixed λ.

3. We use the GCV criterion to select the smoothing
parameter λ. Denote γ̂(λ, κopt(λ)) as the solution
of γ̂ for a fixed λ and κ = κopt(λ). We choose the
λ which minimizes the GCV

GCV(λ) =
RSS (λ, κopt(λ))

(n− tr(Hλ))2

Note that for Step 2, we restrict k < n/2 because we
assume that the true number of outliers is less than
half of the sample size. Additionally, when the num-
ber of parameters exceeds the sample size, we will get
perfect fit if the degree of freedom is large enough,
which would make the BIC go to negative infinity as
the residual sum of squares goes to zero. This would
result in the wrong selection of the tuning parameter
because it tends to select the parameter that leads to
the perfect fit. In particular, when we tune κ, we only
consider those κ whose corresponding solution γ̂(λ, κ)
has less than n/2 nonzero components.

3 Asymptotic Theories

In this section, we discuss the asymptotic properties
for our method. We focus on the LASSO penalty, i.e.
we consider solving the following problem

argminf,γ{n−1
∑n
i=1(yi − f(xi)− γi)2

+ κ
∑n
i=1 |γi|+ λ

∫ 1

0
[f ′′(x)]2dx}.

Other penalty functions can be treated in a similar
way. Let f0 be the true nonparametric regression func-
tion. We make the following assumptions.

(A1) The residuals ε1, . . . , εn are generated indepen-
dent and identically distributed from N(0, 1).

(A2) The true nonparametric function f0 is twice dif-
ferentiable.

(A3) Denote the true mean shift parameter by γ0, and
the number of outliers by s0. We assume that
s0 log n/n = op(n

−2/5).

Condition (A1) assumes Gaussian errors with unit
variance for simplicity. It is possible to extend the
results for sub-Gaussian errors and unknown variance.
Condition (A2) is a standard assumption in nonpara-
metric statistics literature. Condition (A3) essentially
requires the number of outliers be of order op(n

3/5)
without the logarithmic factor.

The following theorem gives the convergence rate for
our nonparametric function estimate f̂ and the mean
shift parameter γ̂.

Theorem 1. Assume that Conditions (A1) – (A3)
hold. We choose κ = c1

√
log n/n and λ = c2n

−9/10

with some positive constants c1 and c2. Then with
probability of at least 1− 2n−1 + 6 exp(−n),

‖f̂ − f0‖2 ≤ C1n
−2/5, ‖γ̂ − γ0‖22 ≤ C2s0 log n/n

(8)

for some positive constants C1 and C2.

Theorem 1 implies that the outliers can be estimated
consistently. Moreover, it states that the estimator f̂
achieves the same minimax-optimal convergence rate
for the univariate nonparametric regression function
when there are no outliers. In other words, f̂ enjoys
the oracle property as if the outliers are known in ad-
vance. This result provides theoretical justification for
our estimation method because it essentially suggests
that the outlier detection procedure will not affect the
convergence rate of the regression function estimation.
Similar conclusions can be made on γ̂. If we let the
true number of outliers s0 to be a constant, the rate
of convergence is essentially Op(log n/n), which agrees
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with the optimal rate of log p/n for a typical regression
problem with p covariates and n observations, where
p = n in our case.

The proof proceeds by using the same techniques in
Theorems 1 and 2 of Müller and van de Geer (2015),
where the authors obtained the nonparametric conver-
gence rate for the regression function in a partial linear
model with a diverging number of parametric covari-
ates. The main difference is that we consider a mean-
shift parameter for each observation without replica-
tions. Therefore the conditions (2.1–2.6) in Müller
and van de Geer (2015) cannot be directly verified and
it requires a careful model re-parameterization, which
leads to an additional factor of n−1/2 on the original
optimal choice of λ = Op(n

−1/5). More details are
given in Section 8.

4 Simulation

In this section, we evaluate the proposed method
through simulations. We set different sample sizes
n = 50, 100, 200. For the true nonparametric function,
we set f(x) = 10 sin(2πx), where x ∈ [0, 1]. For xi’s,
they are randomly generated from uniform(0, 1). For
εi’s, they are generated independent and identically
distributed from N(0, 1). The true response is gener-
ated from y∗i = f(xi)+εi. Among all the observations,
we randomly set cn of them to be outliers, where we
consider different values c = 0.1, 0.2. In particular, we
contaminate cn of the observations by adding each of
the corresponding y∗i by b, i.e. yi = y∗i + bi, where
we consider different levels b = 5, 10. Denote the final
observations as {(xi, yi), 1 ≤ i ≤ n}.

For each setting, we conduct 100 Monte Carlo replica-
tions and report the mean of the following four quan-
tities:

1. M the mean masking probability (fraction of un-
detected true outliers)

2. S the mean swamping probability (fraction of
good points labeled as outliers)

3. JD the joint outlier detection rate (fraction of
simulations with 0 masking)

4. MSE the mean square error (MSE), which is de-
fined as

MSE =
1

n

n∑
i=1

{
f̂(xi)− f(xi)

}2

Masking can occur when we specify too few outliers.
For an outlier detection procedure, it is desirable to
have masking probability as small as possible. This is

the most important criterion to evaluate a robust pro-
cedure. Swamping occurs when we specify too many
outliers. Although it is not as critical as masking,
swamping can not be too large. The joint outlier de-
tection rate is to report the proportion of simulations
with 0 masking, i.e. we can identify all the outliers cor-
rectly, and the desired outlier detection rate is 1. The
MSE is used to characterize how well the nonparamet-
ric function is estimated in the presence of the outliers.
The smaller the MSE is, the better the robust proce-
dure is.

We compare the performance of the proposed method
with other robust regression approaches. As there is no
other existing approach that achieves outlier detection
and robust regression for univariate nonparametric re-
gression to the best of our knowledge, we adopt a two-
step approach. First, we apply regression spline to ap-
proximate the nonparametric function f(·) such that
the problem transforms to a linear regression problem.
Then we can use some of the existing outlier detection
and robust regression techniques under the linear re-
gression framework. In particular, we choose a set of
B-spline basis with the degree of freedom (df= 3) and
consider knots that are quantiles of the range of x de-
pending on the number of the knots (denoted by k)
we set. We choose k that minimizes the GCV, which
is defined as

GCV(k) =
RSS(k)

(n− df − k)2
,

where RSS(k) is the residual sum of squares when the
knots number is k.

After selecting the number of knots k, we use regres-
sion splines to fit the nonparametric function with the
B-spline basis. We consider a set of robust regression
methods in linear regression, including MM-estimators
(Yohai, 1987), Gervini and Yohai’s (GY) fully efficient
one-step procedure (Gervini and Yohai, 2002) with
least square estimates as an initial value. For GY’s
method, we need to estimate the variance of εi. For
simplicity, we plug in the true value σ2 = 1, which
makes the performance of GY’s method better than
when plugging in the estimates of σ2 since an oracle
value is used. We summarize the simulation results in
Table 1 based on 100 Monte Carlo replicates.

From the results, we find that the proposed method
performs reasonably well under different scenarios. It
achieves much smaller masking rate and much higher
joint outlier detection rate than those of using MM
and GY methods for majority of the cases. The MM
and GY methods work reasonably well when b = 10
although our method still outperforms these two meth-
ods for most of the cases. However, when b decreases
to 5, these two methods work poorly. This indicates
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Table 1: Simulation Results (along with the associated
standard errors in brackets) for the proposed method
(P), compared with MM and GY methods.

(n, c, b) Method M S JD MSE
(50, 0.1, 5) P 0.012(0.006) 0.209(0.009) 0.95 0.235(0.022)

MM 0.446(0.031) 0.003(0.001) 0.17 1.828(1.153)
GY 0.182(0.021) 0.04(0.003) 0.42 0.622(0.049)

(50, 0.1, 10) P 0.008(0.005) 0.103(0.011) 0.97 0.61(0.293)
MM 0.016(0.008) 0.003(0.002) 0.95 1.808(1.227)
GY 0.026(0.008) 0.121(0.005) 0.89 1.108(0.133)

(50, 0.2, 5) P 0.019(0.006) 0.251(0.007) 0.87 0.38(0.048)
MM 0.779(0.022) 0.002(0.001) 0 83.938(78.204)
GY 0.242(0.018) 0.096(0.005) 0.12 1.195(0.088)

(50, 0.2, 10) P 0.012(0.005) 0.158(0.012) 0.93 0.667(0.175)
MM 0.047(0.014) 0.005(0.002) 0.8 271.046(266.292)
GY 0.037(0.009) 0.302(0.007) 0.8 2.642(0.27)

(100, 0.1, 5) P 0.001(0.001) 0.155(0.007) 0.99 0.1(0.006)
MM 0.296(0.023) 0.002(0.001) 0.12 6209.61(6209.23)
GY 0.08(0.009) 0.028(0.002) 0.46 0.223(0.02)

(100, 0.1, 10) P 0.001(0.001) 0.032(0.005) 0.99 0.177(0.086)
MM 0(0) 0.001(0) 1 0.306(0.022)
GY 0.003(0.002) 0.103(0.003) 0.97 0.524(0.04)

(100, 0.2, 5) P 0.003(0.002) 0.245(0.007) 0.97 0.133(0.018)
MM 0.779(0.02) 0.001(0.001) 0 1.32(0.281)
GY 0.192(0.012) 0.082(0.003) 0.05 0.732(0.057)

(100, 0.2, 10) P 0(0) 0.046(0.005) 1 0.097(0.006)
MM 0.072(0.018) 0.011(0.003) 0.73 4× 109 (4× 109)
GY 0.007(0.002) 0.307(0.004) 0.86 1.664(0.122)

(200, 0.1, 5) P 0.001(0.001) 0.116(0.004) 0.98 0.053(0.003)
MM 0.247(0.016) 0.002(0.002) 0.03 1.4× 106 (1.4× 106)
GY 0.055(0.006) 0.022(0.001) 0.35 0.086(0.01)

(200, 0.1, 10) P 0(0) 0.02(0.001) 1 0.041(0.002)
MM 0(0) 0(0) 1 0.148(0.021)
GY 0(0) 0.085(0.003) 1 0.29(0.028)

(200, 0.2, 5) P 0.021(0.014) 0.206(0.006) 0.95 0.087(0.017)
MM 0.776(0.016) 0.003(0.001) 0 2× 108(2× 108)
GY 0.139(0.006) 0.073(0.002) 0.01 0.348(0.027)

(200, 0.1, 10) P 0(0) 0.028(0.002) 1 0.046(0.003)
MM 0.026(0.007) 0.008(0.002) 0.8 2× 1017(2× 1017)
GY 0.001(0.001) 0.312(0.003) 0.98 1.039(0.055)

that our method is more sensitive in detecting out-
liers than the comparing methods. As sample size
increases, both P and GY have better performances
(e.g., smaller MSE, higher S). In terms of MSE, our
method beats the other two significantly. For MM,
it happens sometimes that the estimates break down
and the MSE becomes unrealistically large (e.g., 109)
due to outliers for a few Monte Carlo Studies. For GY
method, although it does not break down, its MSE
still doubles the MSE of our method in most cases.

5 Real Data Application

In this section, we consider the baseball data obtained
from He, Ng, and Portnoy (1998), which can be down-
loaded from
http://www.blackwellpublishers.co.uk/rss. The data
consist of 263 North American Major League players
during the 1986 season. We are interested in studying
how the performance of baseball players affect their
annual salaries (in thousands of dollars). We use the
number of home runs in the latest year to measure
the performance. We treat the annual salary as the
response yi and the number of home runs xi as the co-
variate. Figure 5 shows a scatterplot of (xi, yi). We see

that the signal-to-noise ratio is quite low. We have ap-
plied the proposed method to this data set, and found
15 outliers. We have colored the outliers in red and
plotted the estimated regression curve in the same fig-
ure.
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Figure 1: Data Scatter Plot: identified outliers colored
in red and estimated function in solid curve.

Interestingly, the mean shift parameter estimates of
these outliers are all positive, which indicates that
there exists some other factors which cause these play-
ers to have a higher salary than their peers. The
dataset also contains an additional variable seniority,
which is the number of years the player has played
in the league. The average number of years played
among these outliers is 11.2, and is 7.12 years among
these ‘normal’ players. We have performed a t-test to
check whether the outliers group have a longer play-
ing history than that of the normal group. The result-
ing p-value is 0.0003, which indicates that the average
years played among the outliers are significant longer
than the average years among normal players. Thus,
it confirms our findings of the outliers by associating
their high salaries with their longer career histories af-
ter adjusting for the performance effect.

6 Extension

Although we restrict our discussion to univariate re-
gressions, the proposed method can be easily ex-
tended to nonparametric multidimensional regression
and semiparametric multidimensional regression mod-
els. For example, we may consider the following par-
tially linear model

yi = f(xi) + zTi β + εi, (9)

where f(·) is an unknown nonparametric function,
xi = (xi1, . . . , xip)

T are p-dimensional covariates, zi =
(zi1, . . . , ziq)

T are q-dimensional covariates and εi is
the random error. This model is often used in genetics
to jointly model the genetic pathway effect nonpara-
metrically and the clinical effect parametrically, see
Liu et al. (2007); Kong et al. (2016) for example. A
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special case of our model is the nonparametric multi-
dimensional regression problem, where we do not have
the term zTi β.

The mean shift model can also be used under this sce-
nario to detect the outliers in the data. Similarly, we
consider

yi = f(xi) + zTi β + γi + εi, (10)

and we are interested in identifying the nonzero γi es-
timates.

In genetics, it is often the case that the number of
genes p is larger than the sample size, which makes
it challenging to do statistical inference using tradi-
tional nonparametric regression techniques. To solve
this problem, Liu et al. (2007) used the kernel ma-
chine smoothing method for the nonparametric func-
tion f(·). Specifically, they assume the function f(·)
resides in a functional space HK generated by a posi-
tive definite kernel function K(·, ·). Under the kernel
machine framework, estimation would be more accu-
rate for multi-dimensional data. According to Mer-
cer’s Theorem (Cristianini and Shawe-Taylor, 2000),
there is a one-to-one correspondence between a pos-
itive definite kernel function and a functional space
HK under some regularity conditions. We call HK the
Reproducing Kernel Hilbert Space generated by the
kernel K. We can expand the function f(·) on the ba-
sis functions in HK , where the basis functions can be
represented using the kernel function. By representer
theorem (Kimeldorf and Wahba, 1971), the solution of
the nonparametric function f(·) can be written as

f(x) =

n∑
i=1

θiK(x,xi), (11)

where θ = (θ1, . . . , θn)T are unknown parameters.
There are several popular kernels such as the dth de-
gree polynomial kernel K(x1,x2) = (xT1 x2 + 1)d, the
gaussian kernel K(x1,x2) = exp(−||x1 − x2||2/ρ) and
the identity-by-state kernel, where d and ρ are the tun-
ing parameters. Under the kernel machine framework,
one often starts with certain kernel function, which
implicitly determines the functional space HK .

We would borrow the similar idea in Section 2 and
consider solving the following optimization problem

argminf,γ
∑n
i=1(yi − f(xi)− zTi β − γi)2

+
∑n
i=1 P (γi, κ) + λ||f ||2HK

.

Let y = (y1, . . . , yn)T , θ = (θ1, . . . , θn)T , z =
z1, . . . , zn

T , x = (x1, . . . ,xn)T and K be a n× n ma-
trix with ijth element K(xi,xj). Plugging (11) into
the objective function, we obtain

argminβ,θ,γ{||y−zβ−Kθ−γ||22+

n∑
i=1

P (γi, κ)+λθTKθ}.

We would use the similar profiling and TISP method
to obtain the estimates of β, θ and γ. However, it
is unclear how to tune parameters under this scenario
for a few reasons. First, the dimension of xi can be
much higher than the sample size, and the tuning of
parameters may be affected by the curse of dimension-
ality. Second, for some kernels such as polynomial and
gaussian kernels, we need to also tune the parameters
involved in the kernel function (e.g., d and ρ), which
makes the computation more complicated. Another
interesting question is how to choose the kernel func-
tion that is adaptive to the data. We leave these topics
for future research.

7 Discussion

In this paper, we consider the outlier detection and
robust estimation for the univariate nonparametric re-
gression problem. A mean shift parameter is intro-
duced for outlier detection purpose. We consider a
penalized approach and propose an efficient algorithm
to solve the “two-component” optimization problem.
We also discuss the simultaneous selection of different
tuning parameters. We obtain a minimax-optimal con-
vergence rate for nonparametric regression function es-
timation and show that it enjoys the oracle property in
the sense that it agrees with the optimal nonparamet-
ric rate when the outliers are known in advance. Our
method can be extended to nonparametric and semi-
parametric multidimensional regression models. It re-
mains open to develop efficient algorithms as well as
appropriate tuning procedures for these cases.

8 Proof sketch

The main idea of the proof is to re-parameterize the
model (1) into a partial linear model such that the re-
sults in Müller and van de Geer (2015) are applicable.
This can be done by considering

n−1/2y = n−1/2f(x) + Iγ + n−1/2ε, (12)

where I is the n-dimensional identity matrix and γ =
n−1/2(γ1, . . . , γn)T is the collection of re-scaled mean-
shift parameters. Then the noise level is reduced to as
if there are n replications. To verify Conditions (2.1)–
(2.6) in Müller and van de Geer (2015), first we note
that the design matrix is the identity matrix, hence
Condition (2.1)–(2.3) are easily satisfied. Condition
(2.4) holds because we assume f0 is twice differen-
tiable. Condition (2.5) holds since we use the smooth-
ness penalty function (second-order derivative). Con-
dition (2.6) also holds because of the independence as-
sumption. Then we can obtain the convergence rates
as a consequence of the assumption (A3) we make on
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s0 and the results in Theorem 2 of Müller and van de
Geer (2015) with the choice of p = n there. The addi-
tional n−1/2 can be absorbed by the tuning parameters
κ and λ.
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