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Abstract

Active label correction addresses the problem
of learning from input data for which noisy
labels are available (e.g., from imprecise mea-
surements or crowd-sourcing) and each true
label can be obtained at a significant cost
(e.g., through additional measurements or hu-
man experts). To minimize these costs, we
are interested in identifying training patterns
for which knowing the true labels maximally
improves the learning performance. We ap-
proximate the true label noise by a model
that learns the aspects of the noise that are
class-conditional (i.e., independent of the in-
put given the observed label). To select labels
for correction, we adopt the active learning
strategy of maximizing the expected model
change. We consider the change in regular-
ized empirical risk functionals that use differ-
ent pointwise loss functions for patterns with
noisy and true labels, respectively. Different
loss functions for the noisy data lead to differ-
ent active label correction algorithms. If loss
functions consider the label noise rates, these
rates are estimated during learning, where im-
portance weighting compensates for the sam-
pling bias. We show empirically that viewing
the true label as a latent variable and comput-
ing the maximum likelihood estimate of the
model parameters performs well across all con-
sidered problems. A maximum a posteriori es-
timate of the model parameters was beneficial
in most test cases. An image classification ex-
periment using convolutional neural networks
demonstrates that the class-conditional noise
model, which can be learned efficiently, can
guide re-labeling in real-world applications.
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1 INTRODUCTION

Acquiring data with noisy labels for supervised learn-
ing is often cheap and simple, while obtaining reliable
labels remains difficult and/or costly. For instance, in
astronomy huge amounts of photometric data from sky
surveys are available. Noisy labels can be obtained us-
ing crowd-sourcing or automated labeling, but getting
a reliable label may require an expert or even additional
costly spectroscopic measurements. Another example
are medical images, which can be labeled either un-
reliably by medical students or by expensive experts
(Urner et al., 2012). If we are willing to invest in get-
ting high quality labels for some of our training data
in order to increase the generalization performance of
a machine learning model, two fundamental questions
arise. First, how should we learn from both noisy and
true labels? Second, which training examples should
be re-labeled? We address these questions by devising
tailored loss functions and corresponding active label
correction strategies that try to identify examples for
which obtaining the true labels would be most helpful.
Active label correction has been considered before by
Rebbapragada et al. (2012) and as learning from weak
teachers by Urner et al. (2012). We incorporate a label
noise model, based on which we can derive algorithms
for learning and re-labeling in a principled way. This
noise model must be simple so that its parameters can
be estimated efficiently during training.

Therefore, we consider a model for the parts of the
noise distribution that are class-conditional (Angluin
and Laird, 1988), that is, we learn label noise rates
that depend on the true class, but are independent
of the instance covariate. In practice, the noise dis-
tribution will be more complex. However, as we will
see in our experiments on real-world data, the class-
conditional model can capture aspects of the label noise
that help guiding the re-labeling (see also Patrini et al.,
2017). For selecting noisy examples for correction, we
adopt the strategy from active learning to select those
points that promise to change the model the most in
expectation (Settles and Craven, 2008; Settles et al.,
2008).
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Next, we summarize additional related work and our
main contributions. Section 2 introduces the general ac-
tive label correction framework, different pointwise loss
functions for noisy examples, and the resulting general
label correction algorithms. Section 3 derives concrete
algorithms for logistic regression. Section 4 presents
an importance-weighting method for estimating the
noise model during learning. We present experimental
results on a range of datasets using logistic regression
and convolutional neural networks in section 5.

Related work. Label noise can degrade the accuracy
of a learning algorithm to a great extent, and there
are different ways of dealing with this problem, see the
survey by Frenay and Verleysen (2014). One way is to
incorporate a label noise model into the loss function
of logistic regression (Bootkrajang and Kabán, 2012;
Natarajan et al., 2013) or deep neural networks (Reed
et al., 2015; Sukhbaatar and Fergus, 2015; Xiao et al.,
2015; Patrini et al., 2017). We follow this approach
to guide label corrections and to mitigate the effects
of label noise on not yet corrected training examples.
The work most similar to ours is by Rebbapragada
et al. (2012), although they do not model the label
noise. They use uncertainty sampling to select the next
example to correct and show that this improves over
random selection. Two relevant, purely theoretical con-
tributions have been made by Zhang and Chaudhuri
(2015) and Urner et al. (2012). Zhang and Chaudhuri
are closer to the standard active learning setting. In
their scenario it is possible to obtain the labels of newly
queried examples using a weak and a strong labeler,
while we assume that all noisy labels are readily avail-
able right from the beginning. Their algorithm, which
has to our knowledge never been empirically tested,
comes with theoretical guarantees, but the need to
select a target error and a confidence level a priori is
problematic in practice. Urner et al. (2012) make as-
sumptions on the noisy labeling which are very different
from our noise model and which are based on a notion
of neighborhood in the input space. Roughly speaking,
if the labels are homogeneous in a neighborhood, then
the noise rate in that neighborhood has to be low; if
the labels are heterogeneous, the noise rate has to be
high. Label correction has also been considered in the
crowd-sourcing community (Sheng et al., 2008; Zhao
et al., 2011). In these works the authors examine the
problem of noisy labelers and consider the trade-off be-
tween sampling new examples and asking for additional
labels for an already sampled example. In our case we
assume that labels are corrected in a reliable way, that
the dataset is fixed, and that the noise is inherent (i.e.,
there is not necessarily a distribution of labels from
different labelers). This setting is common in practice,
where one often has to analyze data without having

access to the full acquisition pipeline.

One might ask whether the underlying problem could
simply be reduced to the standard active learning prob-
lem and vice versa. While possible, this discards the
valuable information in the noisy labels. We show em-
pirically that, in general, such reductions do not achieve
the same performance as the methods we present.

Main contributions. (i) We introduce noise-aware
loss functions for active label correction. These loss
functions attenuate the influence of noisy examples
and inform the selection for re-labeling. (ii) We adopt
the maximum expected model change strategy for the
proposed regularized risk functionals and devise novel
algorithms for active label correction. (iii) We show
how to simultaneously learn noise and classification
model parameters using importance-weighting. (vi) We
provide an empirical comparison demonstrating that
maximum likelihood weighted uncertainty re-labeling
(ML-WURL), which views the true label as a latent
variable and computes the maximum likelihood esti-
mate of the model parameters, performs well across all
considered test problems. The algorithm robust maxi-
mum a posteriori WURL (MAP-WURL) using a maxi-
mum a posteriori estimates of the model parameters
was often faster. Both methods perform particularly
well when the underlying problem could not be learned
with a high accuracy based on just a few noise-free data
points and never performed much worse otherwise. (v)
A real-world image classification experiment demon-
strates that the class-conditional noise model, which
can be learned efficiently, can indeed guide re-labeling
even if the real noise distribution is more complex.

2 ACTIVE LABEL CORRECTION
BY MAXIMIZING EXPECTED
MODEL CHANGE

We consider classification problems with input space
X , label space Y, and pointwise loss function `. The
goal is to minimize the risk R(h) = E(x,y)∼p[`(h(x), y)]
over hypotheses h ∈ H for an unknown distribution p.
For a training pattern (x, y) ∼ p, we may initially only
know (x, ỹ), the input x and a corresponding noisy
label ỹ ∈ Y . However, we can obtain the true label y at
a considerable cost. Although we refer to y as the true
label, we do not presume zero Bayes risk.1

We assume class-conditional label noise (Angluin and
Laird, 1988). That is, the noisy label is condition-
ally independent of the input given the true label,
p(ỹ |x, y) = p(ỹ | y). This noise model is well-studied

1For all subsequent considerations it is actually not
necessary to be able to obtain the true label; a significantly
more accurate label is sufficient.
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in the label noise literature (Bootkrajang and Kabán,
2012; Natarajan et al., 2013; Menon et al., 2015; Liu
and Tao, 2016). The model has the advantage that
learning its parameters typically requires only a few
observations of noisy labels with corresponding true
labels. Let us consider binary classification (the exten-
sion to multiple classes is straight-forward) and define
the noise rates as ρ+1 := p(Ỹ = −1|Y = +1) and
ρ−1 := p(Ỹ = +1|Y = −1), with ρ+1 + ρ−1 < 1, where
Y, Ỹ ∈ Y = {−1,+1} are random variables for the true
and the noisy label, respectively.

Our learning strategy is minimizing the regularized
empirical risk with regularizer Ω weighted by λ

`(h) :=
∑

(x,y)∈S

`(h(x), y) +
∑

(x,ỹ)∈S̃

˜̀(h(x), ỹ) + λΩ(h) ,

(1)
given a noisy training set S̃ containing inputs with
noisy labels (x, ỹ) and a clean training set S containing
(x, y) ∼ p. We will investigate different choices for
the noise-aware pointwise loss function ˜̀, which may
depend on (estimates of) the noise rates.

We assume that we have the possibility to correct labels.
That is, we can query the true label y for (x, ỹ) ∈ S̃. We
query single (or small batches of) labels in an iterative
process. For any (x, ỹ) for which we obtain the true
label y, we remove (x, ỹ) from S̃ and add (x, y) to the
clean training set S. As re-labeling is assumed to be
costly, we need a method for selecting the potentially
most informative examples for correction.

We propose to greedily select the example(s) having
the strongest expected influence on the error measure
in Eq. (1). This criterion was suggested by Settles
et al. (2008) in the context of multiple-instance ac-
tive learning. It has the computational advantage that
re-training of the model is not required for the selec-
tion process, as it is, for instance, in expected error
reduction (Roy and McCallum, 2001). We approximate
the expected model change by the difference between
the gradient of the error measure before and after cor-
recting the respective label. After we have selected
an example (xj , ỹj) and corrected its label to yj the
regularized empirical risk changes to

Lj(h) :=
∑

(x,y)∈S∪{(xj ,yj)}

`(h(x), y)

+
∑

(x,ỹ)∈S̃\{(xj ,ỹj)}

˜̀(h(x), ỹ) + λΩ(h) .

We assume a differentiable error measure L and define

g(h) :=
∂L(h)

∂w
and gj(h) :=

∂Lj(h)

∂w

as the gradients of L and Lj with respect to the model
parameter w of the hypothesis h. Our approach is to

pick (x∗, ỹ∗) ∈ S̃ maximizing

Eyj |xj ,ỹj
[
‖gj(h)− g(h)‖

]
= Eyj |xj ,ỹj

[∥∥∥∥ ∂

∂w

(
`(h(xj), yj)− ˜̀(h(xj), ỹj)

)∥∥∥∥] (2)

for re-labeling. Here, the Euclidean norm is a stan-
dard choice (e.g., in the work by Settles et al., 2008);
other norms could be explored. Different noise-aware
loss functions ˜̀ lead to different algorithms. The pseu-
docode for this algorithmic framework can be found in
Figure 2f. We consider the following variants of ˜̀.

Noise-agnostic estimator. The simplest way to
deal with label noise is to neglect it and just choose the
noise-aware loss ˜̀ to coincide with the standard loss `.

Unbiased estimator. If we know the noise rates
ρ−1 and ρ+1, we can define a loss `u on the noisy data
as an unbiased estimator of the standard loss ` on the
clean data, such that Eỹ

[
`u(h(x), ỹ)

]
= `(h(x), y) for

all x, y, and h, as discussed by Natarajan et al. (2013).

However, following this approach within our framework
did not lead to competitive results in our empirical
evaluation. Therefore, we do not discuss the resulting
algorithm in the remainder of the main paper, however,
the method (referred to as U-WURL) and correspond-
ing empirical results are presented in the supplementary
material.

Maximum likelihood estimator. Following
Bootkrajang and Kabán (2012), we can consider the
true label y as a latent variable and write the posterior
probability of a noisy label with class-conditional noise
as

p(ỹ|x) =
∑
y

p(ỹ, y|x) =
∑
y

p(ỹ|y)p(y|x)

=
(
1− ρỹ

)
p(y = ỹ|x) + ρ−ỹ p(y = −ỹ|x) .

If we assume that we can model p(y|x) with the current
hypothesis h ∈ H, we can write the likelihood of the
model parameters w given a single training example as

L(w|x, ỹ) ∝ p(ỹ|x,w) =
(
1−ρỹ

)
h(x)+ρ−ỹ

(
1−h(x)

)
.

Taking the negative log-likelihood, the noise-aware max-
imum likelihood loss can be defined as

`ML(h(x), ỹ) := − log
((

1−ρỹ
)
h(x)+ρ−ỹ

(
1−h(x)

))
.

(3)
This maximum likelihood approach coincides with the
unbiased estimator only in the noiseless case.
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3 ACTIVE LABEL CORRECTION
WITH LOGISTIC REGRESSION

In the following, the active label correction strategies
are applied to logistic regression. Logistic regression
has the advantages that its output can be interpreted as
a probability (allowing its use for the noise-aware maxi-
mum likelihood estimator), that the unbiased estimator
is convex (Natarajan et al., 2013), and that it can be
easily extended to multi-class classification and to deep
neural network architectures (e.g., convolutional neural
networks, see experiments in section 5). For logis-
tic regression we have h(x) := σ(x) = 1

1+exp(−w>x)
.

A natural choice for the loss is the cross-entropy
`(h(x), y) := [y = +1] log 1

h(x) + [y = −1] log 1
1−h(x) ,

where [·] is the Iverson bracket. Combining both com-
ponents gives `(h(x), y) = − log σ(yx). To compute
the expectation in the criterion Eq. (2), we re-write
the probabilities using Bayes’ rule and the noise model
Ỹ ⊥⊥ X|Y . Assuming that our current output σ(yx)
models the posterior probability p(Y |X), we get:

p(Y = −ỹ|Ỹ = ỹ, X = x)

=
p(Ỹ = ỹ|Y = −ỹ)p(Y = −ỹ|X = x)

p(Ỹ = ỹ|X = x)

=
ρ−ỹσ(−ỹx)

ρ−ỹσ(−ỹx) + (1− ρỹ)σ(ỹx)

p(Y = +ỹ|Ỹ = ỹ, X = x)

=
(1− ρỹ)σ(ỹx)

ρ−ỹσ(−ỹx) + (1− ρỹ)σ(ỹx)

Now, we derive three novel active label correction al-
gorithms. These pick the next example (x∗, ỹ∗) to be
corrected based on the aforementioned loss functions.

3.1 Weighted uncertainty re-labeling
(WURL)

Using standard regularized logistic regression, the gra-
dient g becomes

g(σ) = −
∑

(x,y)∈S

yxσ(−yx)−
∑

(x,ỹ)∈S̃

ỹxσ(−ỹx)+
∂

∂w
Ω(w) .

(4)
The gradient gj , which measures the change rate after
replacing ỹj with yj is then

gj(σ) = −
∑

(x,y)∈S∪{(xj ,yj)}

yxσ(−yx)

−
∑

(x,ỹ)∈S̃\{(xj ,ỹj)}

ỹxσ(−ỹx) +
∂

∂w
Ω(w) . (5)

Inserting Eq. (4) and Eq. (5) into Eq. (2) gives

(x∗, ỹ∗) = arg max
(xj ,ỹj)∈S̃

Eyj |xj ,ỹj
[
‖gj(σ)− g(σ)‖

]
= arg max

(xj ,ỹj)∈S̃
‖xj‖ p(Y = −ỹj |Ỹ = ỹj , X = xj)

= arg max
(xj ,ỹj)∈S̃

‖xj‖
ρ−ỹjσ(−ỹjxj)

ρ−ỹjσ(−ỹjxj) + (1− ρỹj )σ(ỹjxj)

:= arg max
(xj ,ỹj)∈S̃

sW(xj , ỹj) , (6)

where we assume that p(y |x) can be replaced by σ(yx).
The criterion sW suggests to pick the example which has
the least confidence predicting its given label, weighted
by the length of the sample vector ‖x‖ (in the case
of logistic regression; for neural networks the norm of
the gradient differences involves all layers). Empirical
results suggest that the bias towards input patterns
with larger norm does not affect performance in practice
(Settles et al., 2008; Settles and Craven, 2008). Note
that we do not assume that the given model classifies
the clean points perfectly. We only assume that our
current model is a good predictor for p(Y |X).

3.2 Robust maximum likelihood weighted
uncertainty re-labeling (ML-WURL)

For logistic regression, the maximum likelihood loss in
Eq. (3) takes the form as derived by Bootkrajang and
Kabán (2012):

`ML(σ(x), ỹ) = − log
(

(1− ρỹ)σ(ỹx) + ρ−ỹ
(
1− σ(ỹx)

))
= `(σ(x), ỹ)− log

(
1 + ρ−ỹ exp(−ỹw>x)− ρỹ

)
(7)

Unfortunately, minimizing `ML is not a convex problem.
The form of Eq. (7), however, suggests that future work
might employ DC programming by interpreting it as a
difference of two convex functions (Tao, 1997). If we
use `ML as the noise-aware loss, we get

L(σ) =
∑

(x,y)∈S

`(σ(x), y) + Ω(w)

+
∑

(x,ỹ)∈S̃

(
`(σ(x), ỹ)−log

(
1+ρ−ỹ exp(−ỹw>x)−ρỹ

))

with gradient

g(σ) = −
∑

(x,y)∈S

yxσ(−yx) +
∂

∂w
Ω(w)

+
∑

(x,ỹ)∈S̃

ỹx
( ρ−ỹ
ρ−ỹ + (1− ρỹ) exp(ỹw>x)

− σ(−ỹx)
)
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Figure 1: Behavior of the selection criterion sML in the
symmetric case ρ−1 = ρ+1 as a function of noise rate
and classifier output for the case ỹ = +1.

leading to:

‖gj(σ)− g(σ)‖ = ‖x‖

·
∣∣∣−yσ(−yx)−ỹ

( ρ−ỹ
ρ−ỹ + (1− ρỹ) exp(ỹw>x))

−σ(−ỹx)
)∣∣∣

Thus, we select the example (x∗, ỹ∗) for correction that
maximizes

Ey|x,ỹ
[
‖gj(σ)− g(σ)‖

]
= 2‖x‖p(Y = −ỹ|Ỹ = ỹ, X = x) p(Y = ỹ|Ỹ = ỹ, X = x)

= 2‖x‖ ρ−ỹσ(−ỹx)(1− ρỹ)σ(ỹx)(
ρ−ỹσ(−ỹx) + (1− ρỹ)σ(ỹx)

)2 := sML(x, ỹ) .

Figure 1 shows how the selection criterion sML changes
for the case of symmetric label noise ρ = ρ−1 = ρ+1

as a function of the noise rate ρ and the output of the
classifier σ(ỹx) for ỹ = +1 and ‖x‖ = 1. If ρ = 0.5, the
observed label does not provide any information and
sML reduces to uncertainty sampling. That is, we are in
the standard active learning scenario and sample close
to the decision boundary (σ(x) = 0.5). If the noise
rate is zero, there is no preference over the examples
as re-labeling does not change anything (note that this
is different from the standard active learning scenario).
Between these extremes, the criterion depends on how
strongly noisy observation and current model prediction
deviate. It is high if the observed label ỹ = +1 and
the prediction by the model disagree (i.e., σ(ỹx) < 0.5)
and low if they observation and prediction agree. The
higher the noise rate, the less pronounced this effect
until it vanishes for ρ = 0.5.

4 ESTIMATING NOISE RATES

The noise-aware selection criteria assume that the noise
rates are known. In practice, it is unlikely that they are.
In this case we can draw an initial sample uniformly at
random and estimate the noise rates by counting the
number of corrected labels:

ρ̂k =

∑
(x,y,ỹ)∈SC [ỹ = −k, y = k]∑

(x,y,ỹ)∈SC [y = k]
, (8)

where [·] is the Iverson bracket, and SC is the set of
all corrected examples (x, y, ỹ) with their noisy and
true labels. In case SC is drawn uniformly at random,
ρ̂k is an unbiased estimator of the corresponding true
noise rate. This approach has the drawback that in
this initial phase the active learning algorithm does not
yet exploit the gathered information about the noise
rates.

Importance-weighting. Thus, we want to simulta-
neously estimate the noise model parameters while us-
ing the current noise model for active learning. Drawing
examples actively (i.e., non-uniformly) has the draw-
back that Eq. (8) becomes biased. One way of dealing
with this bias is importance-weighting. Instead of de-
terministically picking examples that maximize our
criterion, in each iteration t, we define a sampling prob-
ability distribution ps(x, ỹ, t) over the noisy sample S̃.
This distribution assigns examples with a higher score
in the selection criterion a higher probability of being
picked. When an example is chosen, it is given an im-
portance weight, defined as the inverse of its sampling
probability ps. To avoid infinite importance weights,
we also have to make sure that the sampling probabil-
ity is bounded away from zero by adding a minimum
probability pmin ≤ 1

n . Thus, similar to Ganti and
Gray (2012), we can define our sampling probability
distribution as:

ps(x, ỹ, t) := pmin(t)+(1−n·pmin(t))
s(x, ỹ)∑

(x,ỹ)∈S∪S̃ s(x, ỹ)

(9)
Here, n = |S ∪ S̃| and s(x, ỹ) is a non-negative se-
lection criterion, for example one of the criteria sW
and sML we introduced above. If s(x, ỹ) = 0 for all
(x, ỹ), we just sample uniformly at random by setting
ps(x, ỹ, t) = 1

n . Following Ganti and Gray (2012), we
define the minimum probability pmin(t) = 1

ntκ , where
κ is a hyperparameter that tunes the trade-off between
exploiting the criterion and exploring new examples
for noise rate estimation. Note that in order to draw
each example independently, we draw with replacement.
Therefore, it is possible that an example is selected mul-
tiple times. In this case, we just re-use its previously
corrected example at no cost.
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To account for the non-uniform selection, we can esti-
mate the noise rates in iteration t by

ρ̂k(t) =

∑t
τ=1 w(xτ , ỹτ , τ)[ỹτ = −k, yτ = k]∑t

τ=1 w(xτ , ỹτ , τ)[yτ = k]
.

Here, k ∈ {−1, 1} is the label of interest. The cor-
rected example in round τ and its labels are denoted
by (xτ , ỹτ , yτ ), and we define w(x, ỹ, τ) := 1

ps(x,ỹ,τ)
.

Although ρ̂k(t) is not an unbiased estimator of the true
unknown noise rate either, its bias vanishes for t→∞.

By employing importance weights we are able to simul-
taneously estimate the noise rates while maximizing
the accuracy through active learning. In order to avoid
an unstable start-up phase, it is possible to integrate a
prior probability. This prior can be informed by meth-
ods that estimate noise rates from noisy samples only
(e.g., Liu and Tao, 2016; Menon et al., 2015).

Maximum likelihood estimation. Instead of esti-
mating the noise rates through importance sampling,
we can also maximize the likelihood with respect to the
noise rate parameters of the model, analogous to the
model weights. Bootkrajang and Kabán (2012) showed
that in this case the noise rates can be updated using

ρ̂ML
k (t)← µtk

µtk + δtk
, (10)

where

µtk =
∑

(x,ỹ)∈S̃

[ỹ = −k] ρ̂ML
k (t)σ(kx)

ρ̂ML
k (t)σ(kx) +

(
1− ρ̂ML

−k (t)
)
σ(−kx)

δtk =
∑

(x,ỹ)∈S̃

[ỹ = k]
(
1− ρ̂ML

k (t)
)
σ(kx)(

1− ρ̂ML
k (t)

)
σ(kx) + ρ̂ML

−k (t)σ(−kx)

Then we can alternate the optimization of the model
weights and noise parameters until convergence similar
to expectation maximization. Therefore, we call this
variant EM-WURL. The advantage of this algorithm
is that we do not need any importance-weighting. The
optimization problem is non-convex, and we initial-
ize the noise rate estimates randomly from a uniform
distribution between 0 and 0.5.

Maximum a posteriori estimation. However,
EM-WURL does not make any use of the informa-
tion we gained about the noise rates by re-labeling a
sub-sample of the dataset. Can we combine the sam-
ple estimates we use in ML-WURL and the maximum
likelihood estimates in EM-WURL? A natural way to
combine both sources of information is by treating the
sample estimates as parameters of a prior distribution.
By assuming that this prior follows a beta distribu-
tion, whose parameters can be interpreted as virtual

draws from the underlying distribution, we can obtain
the maximum a posteriori estimate. Formally, in each
round of the re-labeling, we assume the following prior
distributions

ρk ∼ Beta
(
ρk|αtk, βtk

)
,

where we set the parameters of the distribution to be

αtk = |S| ρ̂k(t)

βtk = |S|
(
1− ρ̂k(t)

)
,

which are the estimated numbers of corrected (αtk)
and confirmed (βtk) examples if a random sample had
been drawn. If we use this prior distribution, then the
maximum a posteriori estimates for the noise rates can
be obtained by

ρ̂MAP
k (t)← αtk + µtk − 1

αtk + βtk + µtk + δtk − 2
. (11)

If we use Eq. (11), we refer to the algorithm as max-
imum a posteriori WURL (MAP-WURL). As in the
case of EM-WURL, we alternate between updating
the estimated noise rates and the model weights until
convergence.

5 EXPERIMENTS

We started by evaluating the algorithms for label cor-
rection on data sets where we injected class-conditional
noise. Then we applied these methods to an image clas-
sification task using a convolutional neural network.2

We randomly sampled training sets of 2000 patterns
from different benchmark datasets and flipped their
labels with probabilities ρ−1 ∈ {0.2, 0.3} and ρ+1 =
0.1. We evaluated the accuracies of the classifiers on
separate test sets of 5000 samples (in the case of the
dataset ’ad’ we used 359 samples as more data are not
available). We averaged each experimental outcome
over 30 trials.

The result achieved by training the predictive model
on the full training set without label noise is called
the clean baseline. It indicates the performance limit
achieved by correcting the whole dataset. For the
active label correction, we started with 0 corrected
examples (S = ∅) and stop when half of the training
set is corrected (|S| = 1000). For all experiments we
set the trade-off parameter κ = 0.5, as suggested in
Theorem 3 by Ganti and Gray (2012) for the squared
loss. To start with a stable estimated noise rate for
ML-WURL, we employ a burn-in phase of sampling
nburn-in = 50 examples uniformly at random.

2The code reproducing all results is available at
https://github.com/kremerj/relabeling.

https://github.com/kremerj/relabeling
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The algorithms we devised in this paper are referred to
as weighted uncertainty re-labeling (WURL) and robust
ML weighted uncertainty re-labeling (ML-WURL), see
section 3.1 and 3.2, respectively. If we determine the
noise rate parameters by maximum likelihood, we refer
to the algorithm as EM-WURL, if we combine maxi-
mum likelihood estimate and the importance-sampled
estimates, we refer to the algorithm as MAP-WURL,
see section 4. For comparison, we consider three base-
lines. The first is random sampling for the standard
loss, that is, choosing an example to correct uniformly
at random. The second is the algorithm presented by
Rebbapragada et al. (2012), referred to as uncertainty
re-labeling, which amounts to selecting the example
with the closest absolute distance to the decision hy-
perplane and then training using Eq. (1) with ` = ˜̀.
Furthermore, we evaluated another simple reduction,
in which we perform uncertainty re-labeling, but only
train on the clean data. This corresponds to simply
applying a standard active learning algorithm to our
re-labeling task, namely uncertainty sampling. Uncer-
tainty sampling, although simple, gives state-of-the-art
performance in the standard active learning scenario
(Yang and Loog, 2016).

Logistic regression. The algorithms are evaluated
on the binary classification benchmark datasets ‘a1a’,
‘ad’, ‘covtype’, ‘w1a’, ‘mushrooms’, ‘cod-rna’ and
‘ijcnn1’ from the LIBSVM data repository. We eval-
uated each classifier after correcting one additional
example. We tested `2-regularization Ω(h) = 1

2‖x‖
2

with λ ∈ {1, 10}. Each loss is optimized using L-BFGS
and each iteration is warm-started.

Figure 2 shows selected empirical results. Additional ex-
periments on the remaining datasets and with different
parameter settings can be found in the supplementary
material. We can see that on all shown datasets the ro-
bust algorithms were always among the fastest to reach
the clean baseline and never failed catastrophically. Al-
though the simple uncertainty sampling dominated on
some datasets that are “easy” in the sense that the clean
baseline is above 0.9 accuracy, it failed in comparison
to the robust methods if the clean baseline accuracy
was lower (see supplementary material).

Experiments with realistic noise: Clothing data.
We argue that modeling the class-conditional part of
real noise is sufficient to improve selection of the next
example(s) for correction in practice. This is demon-
strated in the following experiment.

We considered a real-world data set provided by Xiao
et al. (2015), who obtained images of clothes from sev-
eral online shopping websites. A label indicating the
type of clothing was automatically obtained by analyz-

ing the text surrounding the images. A subset of these
noisy labels was manually corrected afterwards. In our
experiments, shown in Figure 2e, we considered dresses
and vests because these had the largest difference in
noise rates (0.37 and 0.05).

We employed a pre-trained ‘AlexNet’ (Krizhevsky et al.,
2012) implemented using TensorFlow (Abadi et al.,
2016). We selected 2048 examples for training and
2000 examples for testing, which we picked randomly
in 10 trials, and report the mean performance. We
only trained the final fully connected layer and keep
the other layers fixed. We trained the network using
stochastic gradient descent with weight decay parame-
ter of 0.0005, momentum parameter of 0.9, and learning
rate of 0.01 for 100 epochs using a mini-batch size of
64. In contrast to the logistic regression experiments,
we greedily selected a full batch of 64 examples for
re-labeling in each step. The initial batch was used for
burn-in.

The CNN experiment showed that ML- and MAP-
WURL can outperform alternative algorithms even in
settings where the class-conditional noise assumption is
not a perfect match. Uncertainty sampling performed
on par. The EM-WURL algorithm worked less well,
most likely because the label noise parameters are more
difficult to optimize in the stochastic gradient setting.
Adapting the update to stochastic gradient descent is
promising future work.

6 CONCLUSION

We presented a principled approach to active label
correction. We propose to employ loss functions that
depend on a noise model and to apply the maximum
expected model change criterion to the corresponding
regularized risk functionals. Class-conditional noise
was assumed as a model for the true noise. We demon-
strated how to adapt the parameters of the noise model
during learning. Different loss functions were consid-
ered and corresponding algorithms were derived. On
datasets where training on true labels achieves an ac-
curacy below 0.9 the robust approaches ML-, EM- and
MAP-WURL were among the best performing algo-
rithms and in most cases beat uncertainty sampling
(i.e., standard active learning). Here, MAP-WURL
gave good results regardless of how many re-labelings
were provided, while in our deep learning application
both ML- and MAP-WURL were among the best. The
CNN experiment demonstrated (in accordance with Pa-
trini et al., 2017) that the class-conditional noise model,
which can be learned efficiently, can guide re-labeling
in real-world applications.
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(a) Logistic regression classifying dataset ‘a1a’.
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(b) Logistic regression classifying dataset ‘covtype’.
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(c) Logistic regression classifying dataset ‘w1a’.
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(d) Logistic regression classifying dataset ‘cod-rna’.
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(e) CNN classifying ‘vest’ vs. ‘dress’.

Input:
noisy data S̃, clean data S = ∅
rounds t, loss L, selection criterion s
for τ = 1 to t do
Estimate noise rates ρ̂ from S, S̃ and optionally,
current model parameters ŵ
Optimize ŵ, ρ̂ = arg max

w,ρ
L(w, ρ̂,S, S̃, τ)

Update ps(x, ỹ, τ)
Correct (x∗, ỹ∗) drawn from ps and add to S

end for
Output: clean data S

(f) Pseudocode of the algorithmic framework.

Figure 2: Empirical results on the benchmark datasets (a-e) evaluating the algorithmic framework (f). Shown
are the mean test set errors and bootstrapped 99% confidence intervals over 30 trials for logistic regression
(λ = 1.0, κ = 0.5, nburn-in = 50) and over 10 trials for the CNN (κ = 0.5, nburn-in = 64). The noise rates in the
logistic regression experiments were ρ−1 = 0.3, ρ+1 = 0.1. Experiments on further datasets and for different
parameter settings can be found in the supplementary material. That some algorithms performed better than the
clean baseline is a random artifact; when training was continued, these finally matched the baseline.
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