Supplementary Material: On the challenges of learning with
inference networks on sparse, high-dimensional data

Contents

1. Spectral analysis of the Jacobian matrix
2. Learning with ¢* on small dataset

3. Comparison with KL-annealing

4. Depth of g4 (z|x)

5. Inference on documents with rare words

1 Spectral analysis of the Jacobian
matrix

For any vector valued function f(z) : R — RY,
V. f(z) is the matrix-valued function representing the
sensitivity of the output to the input. When f(z) is a
deep neural network, Wang et al. (2016) use the spec-
tra of the Jacobian matrix under various inputs x to
quantify the complexity of the learned function. They
find that the spectra are correlated with the complexity
of the learned function.

We adopt their technique for studying the utilization of
the latent space in deep generative models. In the case
of NFA, we seek to quantify the learned complexity
of the generative model. To do so, we compute the
Jacobian matrix as J(z) = V,logp(z|z). This is a
read-out measure of the sensitivity of the likelihood
with respect to the latent dimension.

J(2) is a matrix valued function that can be evaluated
at every point in the latent space. We evaluate it it
at the mode of the (unimodal) prior distribution i.e.
at z = 0. The singular values of the resulting matrix
denote how much the log-likelihood changes from the
origin along the singular vectors lying in latent space.
The intensity of these singular values (which we plot)
is a read-out measure of how many intrinsic dimensions
are utilized by the model parameters 6 at the mode of
the prior distribution. Our choice of evaluating J(z)
at z = 0 is motivated by the fact that much of the
probability mass in latent space under the NFA model
will be placed at the origin. We use the utilization
at the mode as an approximation for the utilization
across the entire latent space. We also plotted the
spectral decomposition obtained under a Monte-Carlo
approximation to the matrix E[7(z)] and found it to

be similar to the decomposition obtained by evaluating
the Jacobian at the mode.

Another possibility to measure utilization would be
from the KL divergence of the prior and the output of
the inference network (as in Burda et al. (2015)).

2 Learning with ¢* on a small dataset

Table 3: Test Perplexity on 20newsgroups: Left:
Baselines Legend: LDA (Blei et al. , 2003), Replicated
Softmax (RSM) (Hinton & Salakhutdinov, 2009), Sigmoid
Belief Networks (SBN) and Deep Autoregressive Networks
(DARN) (Mnih & Gregor, 2014), Neural Variational Doc-
ument Model (NVDM) (Miao et al. , 2016). K denotes
the latent dimension in our notation. Right: NFA on
text data with K = 100. We vary the features presented
to the inference network g¢(z|x) during learning between:

normalized count vectors (ﬁ, denoted “norm”) and
=

=1
normalized TF-IDF (denoted “tfidf”) features.

Model K Results NFA Perplexity

v o
LDA 50 1091
LDA 200 1058 1-¢(z)-norm | 1018 903

1-¢p*-norm | 1279 889
RSM 50 953 v
= 3-¢(z)-norm | 986 857
SBN 50 909 X
3-¢*-norm | 1292 879
fDARN 50 917
1-(z)-thdf | 932 839
DARN 200 — Ly thdf | 953 828
NVDM 50 836

, 3-p(z)-thidf | 999 842
NVDM 200 852 3-p*-tfidf | 1063 839

In the main paper, we studied the optimization of vari-
ational parameters on the larger RCV1 and Wikipedia
datasets. Here, we study the role of learning with ¢*
in the small-data regime. Table 3 depicts the results
obtained after training models for 200 passes through
the data. We summarize our findings: (1) across the
board, TF-IDF features improve learning, and (2) in
the small data regime, deeper non-linear models (3-1*-
tfidf) overfit quickly and better results are obtained
by the simpler multinomial-logistic PCA model (1-
Y*-tfidf). Overfitting is also evident in Fig. 7 from
comparing curves on the validation set to those on the
training set. Interestingly, in the small dataset setting,
we see that learning with ¢(z) has the potential to
have a regularization effect in that the results obtained
are not much worse than those obtained from learning
with *.

Manuscript under review by AISTATS 2018

1200 1200
—_ —— 1-Y(z 3(x n
= 1100 E) .) g 2
£1000 Z | —— 1y —a— 3 0.2
2 5 ==
5 = e
£ 800 = S = 0
=l = +~ —
= 2 3 &
£ 600 = R
o N
<00 0075 100 200 —2

0 100
Epochs

(a) Training Data

Figure 7: 20Newsgroups - Training and Held-out Bounds:

(b) Held-out Data

Epochs Dimensions

(c) Log-singular Values

Fig. Ta, 7b denotes the train (held-out) perplexity for

different models. Fig. 7c depicts the log-singular values of the Jacobian matrix for the trained models.

500 500
= "%'” 5 m'nun g
& 450 g 450 20 =
E —— 1-¢(z)—— 3-¢(x) E —— lp(z)—e— 34p(z) | = >
SR —— 1y —.— gy =400 fp — 1yf —=— 3y T = \
g 2 == 00
& 350 9 0 »n Z
: < 35 =
300 —2.5 SSssses
0 100 200 0 100 200 Dimensions
Epochs Epochs

(a) Training Data

Figure 8: RCV1 - Training and Held-out Bounds:

(b) Held-out Data

(¢) Log-singular Values

Fig. 8a, 8b denotes the train (held-out) perplexity for different

models. Fig. 8c depicts the log-singular values of the Jacobian matrix for the trained models.

For completeness, in Fig. 8, we also provide the training
behavior for the RCV1 dataset corresponding to the
results of Table 1 (in the main paper). The results
here, echo the convergence behavior on the Wikipedia
dataset.

3 Comparison with KL-annealing

An empirical observation made in previous work is
that when p(z|z;0) is complex (parameterized by a
recurrent neural network or a neural autoregressive
density estimator (NADE)), the generative model also
must contend with overpruning of the latent dimension.
A proposed fix is the annealing of the KL divergence
term in Equation (2) (e.g., Bowman et al. , 2016) as
one way to overcome local minima. As discussed in
the main paper, this is a different failure mode to the
one we present in that our decoder is a vanilla MLP —
nonetheless, we apply KL annealing within our setting.

In particular, we optimized E,(.|s) [logpe(z[2))] —
nKL(gg(z|z)||p(2)) where n was annealed from 0 to 1
(linearly — though we also tried exponential annealing)
over the course of several parameter updates. Note that
doing so does not give us a lower bound on the likeli-
hood of the data during learning until = 1. There are

few established guidelines about the rate of annealing
the KL divergence and in general, we found it tricky to
get it to work reliably. We experimented with different
rates of annealing for learning a three-layer generative
model on the Wikipedia data.

Our findings (visualized in Fig. 10) are as follows: (1)
on sparse data we found annealing the KL divergence
is very sensitive to the annealing rate — too small an
annealing rate and we were still left with underfitting
(as in annealing for 10k), too high an annealing rate
(as in 100k) and this resulted in slow convergence; (2)
learning with ¢* always outperformed (in both rate of
convergence and quality of final result on train and held-
out data) annealing the KL divergence across various
choices of annealing schedules. Said differently, on
the Wikipedia dataset, we conjecture there exists a
choice of annealing of the KL divergence for which the
perplexity obtained may match those of learning with
1* but finding this schedule requires significant trial
and error — Fig. 10 suggests that we did not find it. We
found that learning with ¢* was more robust, required
less tuning (setting values of M to be larger than 100
never hurt) and always performed at par or better than
annealing the KL divergence. Furthermore, we did
not find annealing the KL divergence to 1 to relize

good results for the experiments on the recommender
systems task.

4 Depth of g,(z|r)

Can the overall effect of the additional optimization be
learned by the inference network at training time? The
experimental evidence we observe in Fig. 9 suggests
this is difficult.

When learning with (), increasing the number of
layers in the inference network slightly decreases the
quality of the model learned. This is likely because
the already stochastic gradients of the inference net-
work must propagate along a longer path in a deeper
inference network, slowing down learning of the param-
eters ¢ which in turn affects ¢ (z), thereby reducing
the quality of the gradients used to updated 6.

5 Inference on documents with rare
words

We sample 20000 training and held-out data points; we
compute KL(¢(x)||¢*) (both are Normal distributions
and the KL is analytic) and the number of rare words
in each document (where a word is classified as being
rare if it occurs in less than 5% of training documents).
For each document, we normalize both values to be
between 0 and 1 using: #%
vector of KL, divergences or number of rare words. We
sort the paired values by the KL divergence and plot
them in Fig. 11. The x-axis corresponds to the index
of the sampled datapoints and the y-axis corresponds
to the normalized value of both the KL divergence
and the number of rare words in the document. As
before, we observe that the documents that the in-
ference network’s initial parameters are worst on (for
which the variational parameters must change the most
—measured in KL divergence) are those which have many
rare words.

where c is the

References

Blei, David M, Ng, Andrew Y, & Jordan, Michael I.
2003. Latent dirichlet allocation. JMLR.

Bowman, Samuel R, Vilnis, Luke, Vinyals, Oriol, Dai,
Andrew M, Jozefowicz, Rafal, & Bengio, Samy. 2016.

Generating sentences from a continuous space. In:
CoNLL.

Burda, Yuri, Grosse, Roger, & Salakhutdinov, Ruslan.
2015. Importance weighted autoencoders. In: ICLR.

Hinton, Geoffrey E, & Salakhutdinov, Ruslan R. 2009.
Replicated softmax: an undirected topic model. In:
NIPS.

Miao, Yishu, Yu, Lei, & Blunsom, Phil. 2016. Neural
Variational Inference for Text Processing. In: ICML.

Mnih, Andriy, & Gregor, Karol. 2014. Neural varia-
tional inference and learning in belief networks. In:
ICML.

Wang, Shengjie, Plilipose, Matthai, Richardson,
Matthew, Geras, Krzysztof, Urban, Gregor, & Aslan,
Ozlem. 2016. Analysis of Deep Neural Networks with
the Extended Data Jacobian Matrix. In: ICML.

Manuscript under review by AISTATS 2018

@ ¢1-y(x)—& ¢2U(x) q3-¢(x) @ ¢l-Y(z)—& 2-(x) q3-¢(x)

»>— gy M 2y q3-9* > gy - 2" q3-v*
1600 \ 1600
?1500
3
=, 1400
'q-—-)i
=R
= 1300
S
& 1200
N353 5 2 03 6 0 5 2
Epochs Epochs
(a) Training Data (b) Held-out Data

Figure 9: Varying the Depth of ¢4(z|z): Fig. 10a (10b) denotes the train (held-out) perplexity for a three-layer
generative model learned with inference networks of varying depth. The notation gq3-9* denotes that the inference network
contained a two-layer intermediate hidden layer h(z) = MLP(z; ¢) followed by p(z) = Wyh(z),log X(z) = Wieg sh(z).

1300 1300 i 31 o é%' 4.0
— = —Y(a =
£1250 E —}— 3—1() an
2 = 1250 = .35
< = —y(x ©n O.
e < RO
£ 1200 & =
= = Q=
£ 31200 — > 3.0
ﬁ 1150 :Z = .
D
= =
1100 - 1150 2
0369 1520 25 30 3540 45 50 0369 1520 253035404550 92 2.5 . .
Epochs Epochs : Dimensions
(a) Training Data (b) Held-out Data (c) Log-singular Values

Figure 10: KL annealing vs learning with ¢* Fig. 10a, 10b denotes the train (held-out) perplexity for different
training methods. The suffix at the end of the model configuration denotes the number of parameter updates that it
took for the KL divergence to be annealed from 0 to 1. 3-1*-50k denotes that it took 50000 parameter updates before
—L(x;0,v(x)) was used as the loss function. Fig. 7c depicts the log-singular values of the Jacobian matrix for the trained
models.

Wikipedia
100 1.0 | 107 - |
‘é 30 L, 08 KL(4(z)) L0871 KL(v () l)
g E e Rare Words E e Rare Words
2 = 2
< w0 =06 =06 .
= £ S
< E04 E04
g 40 Z g
g =2 z
2 0.2 0.2
3 20
= 0.0 0.0
0 10000 20000 Train Held-out
Word Indices
(b) Training Data (c) Held-out Data

(a) Sparsity of Wikipedia

Figure 11: Normalized KL and Rare Word Counts: Fig. 1la depicts percentage of times words appear in the
Wikipedia dataset (sorted by frequency). The dotted line in blue denotes the marker for 5%. In Fig. 11b, 1lc, we
superimpose and compare on the y-axis (1) the normalized (to be between 0 and 1) values of KL(¢)(z)|[#*) and (2) the
normalized number of rare words (sorted by value of the KL-divergence) in a document for 20,000 points (on the x-axis)
randomly sampled from the train and held-out data.

