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Abstract

In this paper we study study constant step-
size averaged linear stochastic approxima-
tion. With an eye towards linear value es-
timation in reinforcement learning, we ask
whether for a given class of linear estimation
problems i) a single universal constant step-
size with ii) a C/t worst-case expected error
with a class-dependent constant C > 0 can be
guaranteed when the error is measured via an
appropriate weighted squared norm. Such a
result has recently been obtained in the con-
text of linear least squares regression. We
give examples that show that the answer to
these questions in general is no. On the pos-
itive side, we also characterize the instance
dependent behavior of the error of the said
algorithms, identify some conditions under
which the answer to the above questions can
be changed to the positive, and in partic-
ular show instance-dependent error bounds
of magnitude O(1/t) for the constant step-
size iterate averaged versions of TD(0) and a
novel variant of GTD, where the stepsize is
chosen independently of the value estimation
instance. Computer simulations are used to
illustrate and complement the theory.

1 Introduction

Various estimation problems in supervised, unsuper-
vised, or reinforcement learning and beyond are for-
mulated as the problem of finding the unique solu-
tion θ∗ ∈ Rd to the linear equation E [At] θ = E [bt],
where {(At, bt)}t≥1 is an Rd×d × Rd-valued random
sequence with a common distribution P and the ex-
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pectation E [At] of the matrix At is non-singular [e.g.,
2, 13, 17, 6, 19, 24, 11, 21, 20, 12]. Oftentimes, the
matrices At are rank-1, E [At] is Hurwitz (its eigenval-
ues have positive real parts) and the dimensionality
d is large. Then, for any positive-valued, user-chosen
stepsize sequence {αt}t≥1, the updates

θt = θt−1 + αt(bt −Atθt−1) (1)

can be implemented in O(d) time and space, mak-
ing such linear stochastic approximation (LSA) algo-
rithms an appealing alternative to directly comput-
ing the solution to Ātθ = b̄t, where Āt = 1

t

∑t
s=1As,

b̄t = 1
t

∑t
s=1 bs by inverting Āt (in which case the com-

putational and storage costs are O(d2) or more).

Assuming sufficient regularity of {(At, bt)}t≥1, e.g., in-
dependence, or mixing, in addition to bounded mo-
ments, if the stepsize sequence converges to zero at an
appropriate rate, convergence of {θt}t≥0 to θ∗ can be
guaranteed in various senses [2, 3]. In applications, one
often starts from some additional broad properties of
the common distribution P underlying {(At, bt)}, i.e.,
P ∈ P for a known family of instances P. For example,
in linear regression under the squared loss criterion
(LS), A = E [At] (the expectation of At) is symmet-
ric and positive definite and E

[
‖bt‖2

]
, E
[
‖At‖2

]
≤ B

with B known. The goal then is not only to guarantee
asymptotic convergence on a per-instance basis, but
also to choose {αt}t≥1 based on the knowledge of P
only, so that the worst-case error is “small” over the
whole class P and for any t ≥ 1.

To overcome the difficulty of choosing such a “univer-
sally good” stepsize sequence, following the ideas of
Ruppert [15], Polyak and Juditsky [14], in the context
of linear regression with the squared loss (LS), Bach
and Moulines suggested that (1) should be used with
αt = α > 0 (t ≥ 1) with some α > 0 to be chosen

based on P, and use the average θ̂t
·
= 1

t+1

∑t
s=0 θs as

the output [1]. Their main result is that for the LS
problem, under the assumption that {(At, bt)}t≥1 is
an independent sequence, the stepsize α can be chosen
solely based on the above-mentioned upper bound B
to guarantee that for some universal constant C > 0
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the expected squared prediction error of using θ̂t is at
most C dB2/t for any t ≥ 1, which is information-
theoretically near-optimal (e.g., [16]).

In this paper we ask to what extent the nice re-
sult of Bach and Moulines can be extended beyond
LS; in other words, we are asking which aspects
of the LS problem play a critical role. Our inter-
est stems from the desire to reproduce this result
for linear value-function estimation (LVE) in rein-
forcement learning (RL) where multiple members of
the temporal-difference (TD) family of algorithms (cf.
[19, 21, 20, 12] and Section 5) have been proposed as an
analog of the “LMS algorithm” analyzed by Bach and
Moulines [1]. The extension is not straightforward as
there are a number of critical differences between the
properties of the instances in LS and LVE. In particu-
lar, in LVE (i) A = E [At] is in general non-symmetric;
(ii) the sequence {(At, bt)}t≥1 is “driven by Markov
noise” [23]; (iii) and while the natural error metric

in LS problems is ‖θ̂t − θ∗‖2A (here ‖x‖2Q = x>Qx for
Q symmetric, positive definite), this is not the case in
TD. Of these differences we only consider (i) and (iii),
assuming that {(At, bt)}t≥1 is an independent, identi-
cally distributed (i.i.d.) sequence. For our results that
have a negative character there is no loss of generality
in making this assumption. The question as to what
extent our other results can be extended to the Markov
noise case remains for future work.

Regarding the quest to extend the analysis of Bach and
Moulines [1] to LVE we provide the following results:

1. Finite-time Instance Dependent Bounds
(Section 3): When E [At] is Hurwitz, we show that un-
der additional mild regularity assumptions there exists
a constant αP > 0 such that for any α ∈ (0, αP ), the

mean-squared error (MSE), E
[
‖θ̂t − θ∗‖2

]
is at most

C
t + C′

t2 with some positive constants C,C ′ that we
explicitly compute from P and α (Theorem 1). Our
result is an extension of the result by Polyak and Ju-
ditsky [14] who proved a similar result for the case
when At = A. We also show that our upper bound
is essentially tight up to a universal constant factor
(Theorem 2), thus Theorem 1 captures the instance-
dependent behavior of CALSA in a faithful manner.

2. Problem Landscape (Section 4): By means of
a simple example we establish that Hurwitzness and
uniform boundedness of {(At, bt)}t≥1 alone are insuf-
ficient for the existence of a single, universal stepsize
(Proposition 3). Here, a universal stepsize is one that
guarantees the convergence of the worst-case expected
squared error over the class of problems to zero as
t → ∞. This result is complemented by Theorem 4,
which distills the importance of various aspects of the
LS problem, such as the positive definiteness of A, that

the error is measured in norm ‖·‖A, or the so-called
“structured noise” property, in governing the worst-
case error. The strength of our results is that they
give the exact behavior of the worst-case error (i.e.,
matching lower and upper bounds).

3. Reinforcement Learning (Section 5): In the con-
text of reinforcement learning we establish that the
constant stepsize averaged TD(0) and a novel version
of GTD assume universal stepsizes in a number of cases
for various problem classes with bounded data (Theo-
rem 5). In particular, this is first shown for averaged
TD(0) for the “on-policy case”, which we define using
the so-called “second-order feature stationarity condi-
tion”. This change is partially necessary because we
consider the i.i.d. case. However, the new condition
can also be viewed as the “true” condition to guaran-
tee the stability of TD(0). Finally, we establish that
this condition can be dropped for the novel version
of GTD. The strength of these results is that a user
who is concerned with achieving the O(1/t) problem-
dependent rate over broad classes of LVE problems is
relieved from the burden of designing stepsize tuning
methods. In Section 6 we illustrate these theoretical
results by means of computer simulations.

After our results, we briefly discuss related work in
Section 7. In connection to this, we also wish to men-
tion that other computationally cheap methods such
as those based on matrix sketching idea [26], could be
a viable alternative to CALSA. However, regardless of
this, we believe that understanding a simple method
like CALSA remains an important and foundational
challenge.

Notation: The set of reals is denoted by R. The
d-dimensional vector space over R is denoted by Rd,
while Rp×q denotes the vector space of p× q matrices
over the reals. Vectors are column vectors (i.e., Rd is
identified with Rd×1). The transpose of a matrix C is
denoted by C> (and of course the same notation ap-
plies to vectors, as well). We will use 〈·, ·〉 to denote
inner products: 〈x, y〉 = x>y and use ‖x‖ = 〈x, x〉1/2
to denote the 2-norm. We call a matrix A ∈ Rd×d
Hurwitz (H) if all eigenvalues of A have strictly pos-
itive real parts. We call a matrix A ∈ Rd×d positive
definite (PD) if 〈x,Ax〉 > 0 for all nonzero x ∈ Rd. If
infx〈x,Ax〉 ≥ 0 then A is positive semi-definite (PSD).
We call a matrix A ∈ Rd×d to be symmetric posi-
tive definite (SPD) if it is symmetric i.e., A> = A
and PD. For C ∈ Rd×d SPD and x ∈ Rd, we let
‖x‖2C

·
= x>C x. The spectral norm of the matrix A is

given by ‖A‖ ·= supx∈Rd:‖x‖=1 ‖Ax‖. The spectral ra-
dius of A is ρ(A)

.
= max{|λ| : λ ∈ Λ(A)} where Λ(A)

is the set of (complex) eigenvalues of A. For symmet-
ric matrices ρ(A) = ‖A‖. We use κ(A) = ‖A‖‖A−1‖
to denote the condition number of a non-singular ma-
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trix A. We use λmin (A) to denote the minimum eigen-
value of a symmetric matrix A, while λmax (A) denotes
its maximum eigenvalue. We denote the identity ma-
trix in Rd×d by I. We use Z ∼ P to denote the fact
that Z (which can be a number, or vector, or matrix)
is distributed according to probability distribution P ;
E denotes mathematical expectation. For t ≥ 0 let
at, bt : X → (0,∞). We write at � bt when there ex-
ists constants 0 ≤ c1 ≤ c2 such that for any x ∈ X,
c1at(x) ≤ bt(x) ≤ c2at(x).

2 Problem Setup and Examples

In this section we define what we mean by the con-
stant stepsize averaged linear stochastic approximation
(CALSA) algorithm, state and discuss the assump-
tions under which we study CALSA and then present
two instance of learning problems where CALSA is ap-
plied. A CALSA algorithm sequentially processes the
data {(At, bt)}t≥1 ⊂ Rd×d ×Rd to produce in round t

the parameter vectors θt, θ̂t ∈ Rd using

LSA: θt = θt−1 + α(bt −Atθt−1) , (2a)

Average: θ̂t =
1

t+ 1

∑t

s=0
θs . (2b)

The value of the initial parameter vector θ0 ∈ Rd and
the stepsize α > 0 are left to be chosen by the user.
The iterate θt is treated as an internal state of the algo-
rithm, while θ̂t is the output in round t. The update of
θt alone is considered a form of constant stepsize LSA.

The data {(At, bt)}t≥1 is assumed to be an i.i.d. se-
quence with common distribution P . Throughout the
paper we will use Ft = σ(A1, b1, . . . , At, bt) to denote
the σ-algebra summarizing the history up to and in-
cluding time step t ≥ 1 and we let F0 denote the triv-
ial σ-algebra. We will also assume that AP

.
= E [At]

is nonsingular and let θ∗ = A−1
P bP where bP

.
= E [bt].

We are interested in the mean squared error (MSE) at

time t given by E[‖θ̂t − θ∗‖2Q] for some SPD matrix
Q. Our assumptions concerning {(At, bt)}t≥1 are as
follows:

Assumption 1.
1. {(At, bt)}t≥1 is an i.i.d. sequence with common dis-

tribution P . We further assume that AP = E [At]
is Hurwitz.

2. The “noise sequences” {Mt}t≥1, {Nt}t≥1, where
Mt = At − AP and Nt = bt − bP , have uniformly
bounded second conditional moments: For some
σ2
AP

and σ2
bP

constants, E[‖Mt‖2 | Ft−1] ≤ σ2
AP

,

E[‖Nt‖2 | Ft−1] ≤ σ2
bP

.

Note that E [Mt|Ft−1] = 0 and E [Nt|Ft−1] = 0, i.e.,
{Mt}t≥1 and {Nt}t≥1 are (Ft)t≥0-adapted martingale

difference sequences. In fact, this property could re-
place the assumption that {(At, bt)}t≥1 is an i.i.d. se-
quence without harming our results with the exception
of the results on RL where some additional assump-
tions would also be necessary was the i.i.d. assump-
tion removed. We stick to the i.i.d. assumption for
the sake of simplicity.

Since a Hurwitz matrix is necessarily nonsingular, AP
is nonsingular as promised. Note that the assumption
that AP is Hurwitz is necessary for the boundedness
of of the iterates {θt}t≥1 in any reasonable sense (e.g.,
in the sense that E[‖θt‖2] is bounded). In general,
Q is allowed to be dependent on the instance P . In
particular, this is the case in linear regression, which
we consider next.

Example 1 (Linear regression under squared loss and
bounded data (LS)). Let {(xt, yt)}t≥1 be an Rd × R-
valued i.i.d. sequence so that ‖xt‖ , |yt| ≤ B with some
B > 0 that is given to the algorithm designer. In linear
prediction under the squared loss criterion the prob-
lem is to find θ∗ ∈ Rd such that θ∗ = arg minθ∈Rd L(θ)

with L(θ) = E
[
(〈xt, θ〉 − yt)2

]
= c+‖θ − θ∗‖2A, where

A = E
[
xtx
>
t

]
, where c is a constant independent

of θ (but c can depend on the joint distribution of
(xt, yt)). The constant stepsize averaged least-mean
square (CALMS) algorithm analyzed by Bach and
Moulines [1] is given by θt = θt−1+α(xtyt−xtx>t θt−1),

θ̂t = 1
t+1

∑t
s=0 θs.

Example 2 (Linear value-function estimation (LVE)).
The reader interested in the background of LVE can
consult, e.g., [19, 22]. In i.i.d. discounted LVE the
algorithm designer is given a so-called discount fac-
tor γ ∈ (0, 1), while the data is an i.i.d. sequence
{(φt, φ′t, rt)}t≥1 ⊂ Rd ×Rd ×R and the goal is to find
a solution θ∗ ∈ Rd to the equation Aθ = b where
A = E

[
φt(φt − γφ′t)>

]
and b = E [φtrt]. Note that

when γ = 0, the equation defining θ∗ is the same as
∇L(θ) = 0 in LS. Hence, in this sense LVE generalizes
LS. Again, it is customary to assume that the data
is bounded: ‖φt‖ , ‖φ′t‖ , |rt| ≤ B almost surely (a.s.)
with some known constant B > 0. Commonly, the loss
of a parameter vector θ ∈ Rd is either measured using
‖θ − θ∗‖2E[φtφ>t ], which can be thought of as a gener-

alization of L(θ), or just by the unweighted 2-norm,

‖θ − θ∗‖2. While it is not the purpose of this article
to discuss these choices, we note in passing that these
losses are nowhere near as natural as the squared loss
in LS. In this paper we consider the constant stepsize
version of Sutton’s TD(0) [18], and a constant step-
size version of a novel variant of the so-called GTD
algorithm [21, 20]. The novelty of our variant is that
it updates the parameter vector θt using the updates
auxiliary parameter yt, rather than using yt−1 as in
the original version. This small change will be instru-
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CATD(0) CAGTD

θt = θt−1 + α(bt −Atθt−1),

θ̂t =
1

t+ 1

t∑
s=0

θs

yt = yt−1 + β(bt −Atθt−1 − yt−1),

θt = θt−1 + αA>t yt

θ̂t =
1

t+ 1

t∑
s=0

θs, ŷt =
1

t+ 1

t∑
s=0

ys,

Table 1: In the table At = φt(φt − γφ′t)>, and bt =
φtrt. The left column shows the updates of CATD(0),
the constant stepsize averaged TD(0) algorithm, while
the right column shows the updates of CAGTD, our
variant of GTD that is combined with constant step-
sizes and averaging. In this paper, we let β = α in
CAGTD. It is straightforward to write the algorithms
in the form given in (2). Both updates can be imple-
mented in O(d) time and space.

mental for our results in Section 5. The algorithms are
summarized in Table 1.

3 Instance Dependent Bounds

Let êt = θ̂t − θ∗ be the error of estimating θ∗. To
provide the foundation for the next sections, in this
section we consider instance-dependent bounds on the
expected squared parameter estimation error E[‖êt‖2].
The consideration of weighted norms is postponed un-
til later. While the results presented here may not
have appeared in the literature in exactly the form
presented here and has some novelty in dealing with
the general Hurwitz case, we borrow much from pre-
vious papers (e.g., [1, 14]).

For the next result fix an instance P so that (At, bt) ∼
P . To minimize clutter, we let A = E [At] and
b = E [bt], dropping the subindex P from AP and
bP . Straightforward calculation gives that êt =

1
t+1

∑t
s=0 es, where es

·
= θs − θ∗ is the error of the

sth un-averaged iterate. Further algebra shows that

et = Ft,1e0 + α

t∑
i=1

Ft,i+1ζi (3)

where for 1 ≤ i ≤ t, Ft,i = (I−αAt)(I−αAt−1) . . . (I−
αAi+1)(I − αAi) and ζi = bi − b − (Ai − A)θ∗ is the
“noise component” in (Ai, bi).

Focusing on Ft,1e0, using repeated conditioning one
can see that φ

.
= ‖E

[
(I − αA1)>(I − αA1)

]
‖ < 1 is

sufficient to guarantee that E
[
‖Ft,1e0‖2

]
vanishes as

t→∞. Here, we can use A1, because (At)t is an i.i.d.
sequence. Let R

.
= E

[
(I − αA1)>(I − αA1)

]
. From

the definition of R we see that, on the one hand, R is
positive definite, while, on the other hand, R = I −
α
{

(A+A>)− αE
[
A>1 A1

]}
. Hence the eigenvalues of

R are all real, nonnegative and are of the form 1−αλ

for λ ∈ Λ(S) ⊂ R, S = (A+A>)−αE
[
A>1 A1

]
. Hence,

if all eigenvalues of S are positive, we have φ < 1.
Let PA denote the distribution of A1 and note that
λmin(S) > 0 is equivalent to

ρs(α, PA)
.
= λmin((A+A>)− αE

[
A>1 A1

]
) > 0 . (4)

Now, ρs(α, PA) ≥ λmin(A+A>)− αλmax(E
[
A>1 A1

]
).

Thus, if λmin(A+A>) > 0 then for α > 0 small enough,
ρs(α, PA) > 0 is guaranteed to hold. While A being
Hurwitz is insufficient to guarantee λmin(A+A>) > 0,
one can show that every Hurwitz matrix is similar
to a real matrix B such that B + B> is SPD (cf.
Appendix A.1). Now, if U is the underlying sim-
ilarity transformation, so that B = U−1AU , one
can check that zt = U−1et satisfies (3) with As re-
placed by Bs

.
= U−1AsU and ζi replaced by U−1ζi.

Let PU to denote the common distribution of {Bs}s.
Thanks to E [Bs] = B, the expected squared norm
of the first term in the analog of (3) can be shown

to be bounded by (1 − αρs(α, PU ))t ‖e0‖2, while the
expected squared norm of the second term can be
shown to be bounded by cα/ρs(α, PU ) with some P -
dependent constant c > 0. One can also show that

E
[
‖êt‖2

]
≤ (1+4/αρd(α, PU ))

∑t
i=0 E

[
‖ei‖2

]
, where

ρd(α, PU )
.
= λmin

(
B +B> − αB>B

)
≥ ρs(α, PU ).

Putting things together, we get the following result:

Theorem 1. Let P be a distribution over Rd×d ×Rd
satisfying Assumption 1. Then, for any U ∈ Rd×d and
PU as in the previous paragraph there exists αPU

> 0
such that for all α ∈ (0, αPU

) and for all t ≥ 0,

E
[
‖θ̂t − θ∗‖2

]
≤ ν

{
‖θ0 − θ∗‖2

(t+ 1)2
+

v2

t+ 1

}
,

where ν =
(

1 + 4
αρd(α,PU )

)
2κ(U)2

αρs(α,PU ) and v2 =

2α2(σ2
AP
‖θ∗‖2 + σ2

bP
).

Thus, the MSE in round t is bounded by a sum of

two terms. The first, bias term, is given by ν ‖θ0−θ∗‖
2

(t+1)2 ,

bounding how fast the initial error ‖θ0 − θ∗‖2 is for-

gotten. The second, variance term, ν v2

t+1 captures the
rate at which noise is rejected. Note that ν depends
on U , PU and α.

As α→ 0, the bias term blows up, due to the presence
of α−1 there. This is unavoidable (see also Theorem 2
below) and is due to the slow forgetting of initial con-
ditions for small α. Small step-sizes are however useful
to suppress noise, as seen from that in our bound α2 is
seen to multiply the variances σ2

AP
and σ2

bP
. In quan-

titative terms, we can see that the α−2 and α2 terms
are trading off the two types of errors. As α is in-
creased to a critical value αPU

, ρs(α, PU )→ 0 and the



Chandrashekar Lakshminarayanan, Csaba Szepesvári

bounds blow up again. Indeed, too large stepsizes can
lead to instability, though the upper bound of Theo-
rem 1 is a bit loose in this respect. Finally, note that
one can always take U in the result that leads to the
smallest bound (including a U with complex entries,
in which case, the analysis goes through with appro-
priate technical modifications). As promised, the next
result shows that the bound of Theorem 1 is tight, at
least for t large and α small:

Theorem 2 (Lower Bound). There exists
a distribution P over Rd×d × Rd satisfying
Assumption 1 and a constant αP > 0 so
that (ρd(α, P ) ≥) ρs(α, P ) > 0 holds for all

0 < α < αP and for any t ≥ 0, E
[
‖θ̂t − θ∗‖2

]
≥

1
α2 ρd(α,P )ρs(α,P )

{
β2
t+1‖θ0−θ∗‖

2

(t+1)2 +
α2σ2

bP

∑t
s=1 β

2
s

(t+1)2

}
,

where βt = 1− (1− 1
2αρs(α, P ))t.

Note that βt ≥ 1/2 when t ≥ 2 log(2)/(αρs(α, P )).
Thus, for such t, Theorem 2 the coefficients of both
the 1/t and 1/t2 terms inside {·} match the corre-
sponding terms of Theorem 1 (here U = I). While
(ρd(α, P )ρs(α, P ))−1 appears in the lower bound, care-
ful inspection of the proof reveals that αP is chosen in
a conservative way and as a result this term fails to
blow up as α approaches αP from below.

4 Problem Landscape

While the previous section considered individual prob-
lem instances, in this section we start to consider
classes P of problem instances. The first question
that arises then is whether for a given class P it is
possible to find a single universal stepsize that guar-
antees that the worst-case expected squared error,
supP∈P EP [‖êt‖2], vanishes as t → ∞. Here, EP [·]
is used to signify that the randomness underlying E[·]
is governed by the instance P .

As can be seen from Theorem 2, a universal stepsize
may fail to exist for multiple reasons: First, it will fail
to exist if the noise variance is not uniformly bounded,
e.g., when supP∈P σ

2
bP

= +∞ (while Theorem 2 does
not show it, we believe that supP σ

2
AP

= +∞ will also
lead to the same conclusion). Hence, in what follows,
we assume that the variance is uniformly bounded; in
fact, we will often assume that the data {(At, bt)}t≥1

itself is uniformly bounded. We consider this as a mild
assumption. The second mode of failure is more in-

teresting: This happens because E
[
‖Ft,1e0‖2

]
is un-

controlled. In fact, when At = A, Ft,1 = (I − αA)t

and so a necessary condition for controlling ‖Ft,1‖ is
that ρ(I − αA) < 1. A simple example this cannot be
satisfied uniformly over all instances regardless of the
choice of α is the case of the ROT(2, B) class: which

we define as the class when d = 2, B > 0 is a constant,
and every instance P in ROT(2, B) is a Dirac distri-
bution, putting a point mass on a pair (A, b), where

‖b‖2 ≤ B and A is a 2 × 2, scaled rotation matrix:

A =

[
u v
−v u

]
such that u2 + v2 ≤ B and u > 0. Note

that u > 0 guarantees that A is a Hurwitz matrix.

Proposition 3. For any α > 0, B > 0,
supP∈ROT(2,B) ρ(I − αAP ) = 1 +B > 1.

Proof. Let A be the scaled rotation matrix given by
u, v as in the description of ROT(2, B). Since ρ(I −
αA) = (1−αu)2+v2, we see that as u→ 0+, we can let
v2 → B. Thus, supP∈ROT(2,B) ρ(I−αAP ) ≥ 1+B.

Next, we consider the following classes:

SPD : P is such that AP is SPD , ‖AP ‖ ≤ 1, At = AP ,

bP = 0, σ2
bP ≤ σ

2
b ;

SPDSN : P is in SPD and in addition E
[
btb
>
t

]
� AP .

Here, A � B is B −A is PSD. The abbreviation SPD
stands for symmetric positive definite (the property
of AP ), while SPDSN stands for symmetric positive
definite with structured noise.

For the next result define εt(P) = supP∈P EP [‖êt‖2]

and ε′t(P) = supP∈P EP [‖êt‖2AP
].

Theorem 4. Any α ∈ (0, 1) is a universal stepsize
for both SPD and SPDSN. Furthermore, for any fixed
α ∈ (0, 1), θ0 ∈ Rd,

εt(SPD) � ‖e0‖2 + α2σ2
b t , ε′t(SPD) � ‖e0‖2

αt
+ σ2

bα ,

and ε′t(SPDSN) � ‖e0‖2

αt
+
d

t
.

From the result stated for εt(SPD), it follows that
the SPD class is too broad in the sense that although
any α ∈ (0, 1) leads to an asymptotic O(1/t) decrease
of the error, for any choice of α, the class contains
an instance which makes the error grow linearly with
t. Intuitively, this happens because an adversary can
choose AP to be near zero, in which case CALSA ac-
cumulates the noise due to the randomness in {bt}.
When α = 0, the linear term would vanish, but the
initial error remains.

When the error is measured with respect to the SPD
matrix AP (as is the case in LS), the worst-case er-
ror, ε′t(SPD) is dramatically improved. This is be-
cause the adversarial choice of letting AP approach
zero also automatically reduces the error. Note that
in this case for a fixed time step t, the best possi-
ble (‖e0‖-independent) choice for α is α = 1/(σb

√
t)
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and this choice gives the error 2 ‖e0‖2 σb/
√
t, which

decreases over time.

In the structured noise case and when the error is also
scaled with AP , the worst-case error improves to scale
with 1/t. This is because here the magnitude of the
noise on a per-instance bases is also constrained by
AP . Thus, scaling down AP will not hurt the CALSA
algorithm anymore.

We note in passing that the results of Bach and
Moulines [1] are very similar to this last result, in that,
they use weighted-norm with respect to the AP and
the structured noise property. In fact, our intention
was to capture the effect of various properties that
are available in LS instances on the error of CALSA.
Furthermore, it is clear that the special structures that
helped us to achieve the O(1/t) worst-case rate are not
present in the case of TD algorithms for LVE problems.

5 Universal stepsizes in LVE

We now turn to the question of the existence of univer-
sal stepsizes for CATD(0) and CAGTD (cf. Table 1).
In what follows, we define what we call admissibility,
a sufficient condition for the existence of a universal
stepsize.

Definition 1. Call a problem class P admissible if
there exists a unique U and αPU

> 0 such that
ρs(α, PU ) > 0 holds for all P ∈ P and α ∈ (0, αPU

).

If P is admissible, it follows from Theorem 1 that an
asymptotic “fast” rate of O( 1

t ) is achieved for any P ∈
P. We now define three LVE problem classes. For
the definitions introduce the entrywise max-norm for
matrices: ‖A‖max = maxi,j |Aij |. Recall that an LVE
problem is given by the joint distribution of the i.i.d.
sequence {(φt, φ′t, rt)}t≥1 ⊂ Rd × Rd × R. The classes
we define are as follows:

SOFS(B): E[φtφ
>
t ] = E[φ′t(φ

′
t)
>], ‖φt‖ ≤ B , t ≥ 1 .

GTDOFF(B): ‖At‖max ≤ B, t ≥ 1 .

Here, SOFS stands for second-order feature stationar-
ity, while GTDOFF stands for “off-policy”, a specific
nomenclature borrow from the RL literature. Note
that the “second order feature stationarity” condition
E[φtφ

>
t ] = E[φ′t(φ

′
t)
>] will hold when sampling (in the

underlying Markov reward process) is started from the
stationary distribution. Note that the constants B ap-
pearing in the two classes constraint the data in dif-
ferent ways.

Theorem 5. Let B ≥ 1. The following hold: i)
CATD(0) has a universal stepsize of αtd = 1

B2 for the
class SOFS(B). ii) CAGTD has a universal stepsize
of αgtd = 1

2B2d for the class GTDOFF(B).

In the proof we show that the two classes are admissi-
ble for the respective algorithms.

From Table 1, the matrix At = φt(φt−γφ′t)> is key to
both CATD(0) and CAGTD. In the case of CATD(0),
the expression for ρs(α, P ) involves αtdA

>
t At and un-

der the said assumptions here we have αtdA
>
t At �

Qt
.
= (φt − γφ′t)(φt − γφ′t)>. Now, the proof for the

CATD(0) case, follows by using the stationary prop-
erty on top of simple algebra with matrices Qt and At.
In the case of CAGTD, owing to its composite struc-
ture with primal and dual variables, the expression for
ρs(α, P ) involves A>t At, (A>t At)

2 and (A>t At)
3, and

hence the proof uses a bound on ‖At‖max. This small
stepsize for CAGTD seems to be the price paid for
off-policy stability. Note that the above result in par-
ticular implies that the respective algorithms with the
proposed stepsizes achieve the instance-dependent er-
rors O( 1

t ) on these three classes of LVE problems.

6 Numerical Experiments

Worst-case Error: The goal here was to illus-
trate Theorem 4, which proved results for the behav-
ior of the worst-case errors εt(SPD), ε′t(SPD), and
ε′t(SPDSN). To validate this result, we chose d = 2
and define the classes USN (“unscaled noise”) and SN
(“scaled noise”) as subsets of SPD and SPDSN, re-
spectively. To define these classes let {ut}t≥1 ⊂ R2

be in i.i.d. sequence so that ut,1 and ut,2 are also in-
dependent and they are both uniformly distributed in

[−1, 1]. Now, P is in USN when AP =

[
1 0
0 aP

]
for

some aP ∈ (0, 1), At = AP for all t ≥ 1 and bt = ut.
Further, P is is in SN when AP and {At}t≥1 are as
in USN and bt = APut. The upper left subfigure in
Figure 1 shows lower bounds on εt(USN), ε′t(USN),
and ε′t(SN) as a function of the number of rounds, or
iterations. The stepsize for producing εt(USN) is cho-
sen to be α = 0.9, while to obtain a lower bound on
εt(USN) we let aP = 1/t. We can observe that the
lower bound increases linearly with t. For producing
a lower bound on ε′t(USN), we let aP = 1/

√
t and also

α = 1/
√
t. Observe that the lower bound decreases as

1/
√
t, as expected. Finally, to produce a lower bound

on ε′t(SN), we chose α = 0.9 and aP = 1
t . The lower

bound decreases as 1/t, as expected.

Mountain Car (setup): The mountain car is a
widely used domain for illustrating control learning
in RL. However, here, we use it for illustrating lin-
ear value estimation only. The domain consists of an
underpowered car, that needs to swing from the bot-
tom of a valley to the top by performing either one of
the three possible actions: forward, reverse, no throt-
tle. Since the car is underpowered, it cannot directly
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accelerate to the top from the bottom and needs to
swing back and forth to reach the top. The state
of the system is described by the position p and the
velocity v of the car at a given time. For the pur-
pose of on-policy evaluation, we sample from the pol-
icy π that accelerates in the direction of the velocity
with probability 298

300 and the other two actions with
probability 1

300 each. Since, we are also interested in
the off-policy case, we sampled using a behavior pol-
icy πb that accelerates in the direction of the velocity
with probability 8

10 and chooses the other two actions
with probability 1

10 each. We used tile coding and
Fourier basis (un-normalized and normalized). We
used 4 different tiling (4 × 4 and 7 × 7 grid for the
two state-variables permuted with 5 and 10 tiles), and
we also tried 4 different mth Fourier basis function
(m = 3, 5, 7, 9), with d = (m + 1)2. For a given state
s = (p, v),1 the Fourier feature is given by φ(p, v) =(

cos(π[c1p + c2v])
)
c1,c2=0,1,...,m

∈ R(m+1)2 . The nor-

malized features were obtained by letting ‖φ(s)‖2 = 1.
We generated 100 trajectories for the on/off -policies,
and the discount factor we used was γ = 0.999.

Before discussing the observations, we digress, to men-
tion two important aspects related to LSA algorithms,
which, while being out of the scope of this paper, nev-
ertheless are important in practice.

Singularity: In Assumption 1 we assumed that the
matrix AP is Hurwitz and hence invertible. When the
underlying matrix is singular, there could be two sce-
narios: either AP θ = bP has infinitely many solutions,
or it has no solutions. In the former scenario, and
under a further assumption that the null-space of AP
is diagonalizable (see [25]), the null space can be dis-
carded after applying an appropriate linear transfor-
mation U (as in Theorem 1) to a obtain a reduced
linear system ÃP θ̃ = b̃P . This reduced linear system
has a unique solution so that Theorem 1 applies.

Design of Updates: Note that the CATD(0)
and CAGTD have different underlying linear sys-
tems. This is evident by writing down (bP , AP ) for
TD(0) and GTD respectively. Let At = φt(φt −
γφ′t)

>, bt = rtφt. Then, for CATD(0), ATD =
E [At] and bTD = E [bt]. For CAGTD we have

AGTD =

[
I ATD

−(1− α)A>TD αA>TDATD

]
and bGTD =

[b>TD, αb
>
TDATD]>. For CAGTD, the eigenvalues in-

volve A>TDATD, i.e., a small eigenvalue of ATD gets
squared. Consequently CAGTD can be poorly condi-
tioned compared to CATD(0).

1We scale the states by subtracting the minimum value
and dividing it by its range, so that p, v ∈ (0, 1) after scal-
ing.
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Figure 1: Experimental results. T, FUN, FN stand for
tile coding, Fourier un-normalized and normalized, respec-
tively. In the bottom left plot, the CAGTD curve is
rescaled as shown on the label of the x axis.

• Stability: For CATD(0), we ran on-policy with all
the three features and off-policy with normalized
features. For CAGTD, we ran with all the features
and both on/off-policy. In all the experiments, we
chose the stepsize dictated by Theorem 5. All the
experiments were stable (bottom two rows of Fig-
ure 1). The values are averaged over 10 runs and
since the variance was observed to be small, to re-
duce clutter, error bars are not shown.

• Near Singularity: We observed in the case of
tile coding and normalized Fourier basis functions
that the underlying ATD matrices were nearly sin-
gular, i.e., they had eigenvalues with positive real-
parts close 0. However, we observed that the error

(in the case of CATD(0)) E
[
‖ATD θ̂t − bTD‖2

]
con-

verges to 0 (left plot in the second row of Figure 1).
We also observed that, in the case of CAGTD,
E
[
‖AGTD ẑt − bGTD‖2

]
converges to 0 (right plot in

the second row of Figure 1), where ẑt = [ŷ>t , θ̂
>
t ]>.

Here, θ̂t is the primal variable and ŷt is the dual vari-

able. However (in CAGTD), E
[
‖ATD θ̂t − bTD‖2

]
does not always converge to 0 (tile coding in right
plot in the third row of Figure 1). This might be due
to the fact that linear systems underlying CATD(0)
and CAGTD are different.

• Slowness of GTD: Unnormalized Fourier basis
were better conditioned in comparison to the other
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basis choices. In this case, for CATD(0) and

CAGTD E
[
‖ATD θ̂t − bTD‖2

]
converges to 0. How-

ever, CAGTD is slower in comparison to CATD(0)
(left plot in the third row of Figure 1).

BAIRD: In this domain there are S = {s1, . . . , s7}
states and A = {a1, a2} actions. Under, a1 we have
pa1(s, s1) = 1 for all s ∈ S and under a2 we have
pa2(s, s′) = 1

6 for all s ∈ S, s′ = 2, . . . , 7. The samples
are collected using a behaviour policy πb that performs
action a2 with probability 6

7 and action a1 with prob-
ability 1

7 , and the target policy that we are interested
is π which performs action a1 in all the states. The
feature vector we chose was: φ(s1) = [ 1

2 0 0 0 0 0 0 1],
φ(si) = ei + [0 0 0 0 0 0 0 1

2 ], i = 2, . . . , 7, where ei is
the standard basis with ith co-ordinate 1 and rest
of the co-ordinates 0. Since φ′t always corresponds
to state 1 and is different from φt, in this example
E[φtφt] 6= E[φ′tφ

′
t
>

]. We compared the performance
of CAGTD with α = 0.005 (and β = 0.08, see [12])
with the choice of α = 1

2×2 (2 is to normalize the fea-
tures) and initial condition θ0 = [1 1 1 1 1 1 10 1]. The
identical stepsize of 1

4 performed better than choosing
different stepsizes for the primal and dual variables.
Please refer to the top right plot of Figure 1.

7 Related Work

Other stepsize methods: It is clear that for the LSA
in (1) to be stable αt should be non-increasing. In this
paper, we showed the results for LSA with a constant
stepsize and averaging of the iterates. This brings us
to a brief discussion on the other two non-increasing
choices for stepsize strategies namely the diminishing
and adaptive strategies. An immediate choice could be
αt = 1

t . However, this is a poor choice because even
for bounded 1-dimensional problems with no noise it
leads to constant worst-case error for any finite time
step t. Various heuristic methods exist for “adapting”
the stepsize sequence; see, e.g., [4] and the references
therein. The methods proposed do not have guaran-
tees and given how difficult it is to experimentally val-
idate a method whose main purpose is robustness, it is
hard to assess how good these methods are (e.g., the
method of Dabney and Barto [4] seemed to perform
well in their experiments, but one can show that for
finite state spaces it eventually settles on a constant
step-size and hence it will fail to guarantee conver-
gence).

Error bounds for GTD/TD The initial conver-
gence analysis for GTD/GTD2/TDC was only asymp-
totic in nature [21, 20] with diminishing stepsizes. In
the case of GTD/GTD2 diminishing stepsizes αt =
O( 1√

t
), projection of iterates and PR-averaging leads

to a rate of O( 1√
t
) for the prediction error ‖AP θ̂t−bP ‖2

with high probability [12]. Liu et al. [12] also sug-
gest a new version of GTD based on stochastic mirror
prox ideas, called the GTD-Mirror-Prox (GTDMP),
with identical guarantees. Inspired by TD algorithms,
Dalal et al. [5] provide a stochastic boundedness result,
which does not even guarantee that the error vanishes
as t increases.

CALSA analysis: Analysis of CALSA goes back to
the work by Polyak and Juditsky [14], wherein they
considered the additive noise setting i.e., At = A for
some deterministic Hurwitz matrix A ∈ Rd×d. A key
improvement in our paper is that we consider the ‘mul-
tiplicative’ noise case, i.e., At is non-constant random
matrix. To tackle the multiplicative noise we build on
the newer analysis introduced by Dieuleveut et al. [7].
However, due to the generality of our setting (with
Hurwitz assumption), diverging from the analysis of
Dieuleveut et al., we make use of Lyapunov’s equation
and a similarity transformations in a critical way to
prove our results.

Conclusion: Stepsize choice is critical in LSA algo-
rithms, and especially in the case of TD algorithms.
Stepsizes are often treated as hyper-parameters that
need to be tuned in a problem instance specific man-
ner. To avoid this tuning, it is desirable to choose a
single universal stepsize rule that works for all the in-
stances in a problem class. This paper investigated the
promise of an approach called CALSA (constant step-
size averaged linear stochastic approximation), based
on an idea that goes back to Ruppert [15] and Polyak
and Juditsky [14]. For a given problem class, we asked
i) whether a universal constant stepsize can be cho-
sen and ii) whether a uniform rate of convergence
for the MSE can be achieved, across the class. We
showed that answers to these questions in general is
no. However, we showed (under our assumptions) that
any CALSA achieves an MSE of CP /t, where the con-
stant CP > 0 is instance dependent. We then showed
that TD algorithms with a problem independent uni-
versal constant stepsize and iterate averaging, achieve
a problem-dependent error that decays as O( 1

t ) with
the number of iterations t.
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