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A Supplementary Material

A.1 Relaxation on Local Polytope

The relaxation of (1) over the local polytope is given
by:

tin Y > p(i)e(u, i) +
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Ve = (u,v) € E,j € L.
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we(ig) >0, Vee E, i,j € L.
For a Ferromagnetic Potts Model, the objective be-
comes:
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subject to the constraints
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Because w(u,v) > 0 and pe(ij) > 0, we want to put
as much mass on . (i1) as possible without violating a
constraint, since those terms do not appear in the ob-
jective. To that end, we set pe(41) = min g, (4), p (7)).
Then using the first constraint, the objective becomes:
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where we use multiple times that ), p,(z) = 1. The
LP objective is thus:
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Identifying p,, with @ and p, with v, we obtain the LP

(3).
A.2 Proof of Lemma 1

Proof. This argument is similar to the one in Angel-
idakis et al. (2017). First, we verify the last two
conditions in Lemma 1. Let a = % = % and
6=k = g. The algorithm clearly returns a feasi-
ble solution (i.e. a valid labeling). Consider any two
vertices u and v, and let A = d(u,v). There are two
cases: j(u) = j(v) and j(u) # j(v). In the first case,
let j = j(u) = j(v). We have P(u) # P(v) exactly
when r € (min(u;,7;), max(@;,v;))] and @ # j. r is
uniformly distributed in (0,0), so the probability of
this occurring is

P[P(u) #

U; — U i
=7 g @ ed(u v) = aA.
RES

Note that we used u; < € < 6 for i # j and for all
u. Now consider the case where j(u) # j(v). Here
d(u,v) > d(ejw), ejw)) — d(u, ej)) —d(v, ;) by the
triangle inequality (e; is the ith standard basis vector
in R¥). So d(u,v) > 1—2 >1-2/30 for k > 3.
So d(u,v) > 14/15, and o = 5/3 so aA > 1 and the
bound trivially applies.

Next we verify the “co-appoximation” condition. First
consider the case where j(u) = j(v) = j. Then
d(u,v) d(u, ej) + d(ej,v) < 2¢ < 1/15. As we
showed, P[P(u) # P(v)] < aA. So P[P(u) = P(v)] >
1- aA 1( — A), where the last inequality is

B~
because g = M6 _ 1 > A. Now assume
Ju) #

= 5/3-5/6 5
are both added to P;. So
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v). Note that if @; > r and v; > r, v and v

P[P(u) = P(v)] = Plu; > r,v; > 7]
1 k min(ﬁi,ﬁi)
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Here we used that for all 4, min(@;, ;) < & < 6 since

j(u) # j(v). Then
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ké)( Y1 = d(u,v)).

The approximation conditions hold.
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Finally, we check the first two conditions of Lemma
1. First consider P[P(u) = 4,7 # j(u)]. This can only
occur when 1 is selected and u is assigned to P;. So
1 1a; S _
P[P(u) = i,i # j(u)] = >r)=2 =2
Now we compute P[P(u) # j(u)]. A vertex u clearly

can only be assigned a label ¢ # j(u) if such an i is
selected and u is assigned to it; namely,

. 1 U; 1 _
PIP(w) £ )] = 1 3 = (= i)
i (u)
5 _
= 6(1 — Uj(u))-
This concludes the proof. O

A.3 Full Proof of Theorem 1

Here we reproduce the proof of Theorem 1 in more
detail.

Theorem. On a (2,1)-stable instance of UNIFORM
METRIC LABELING with optimal integer solution g,
the LP relazation (3) is tight.

Proof. Assume for a contradiction that the optimal
LP solution {aX?'} of (3) is fractional. To construct a
stability-violating labeling, we will run Algorithm 2 on
a fractional labeling {u} constructed from {@ff} and
the optimal integer solution g. We then use Lemma
1 to show that in expectation, the output of R({u})
must be better than the optimal integer solution in a
particular (2, 1)-perturbation, which contradicts (2, 1)-
stability.

Let {@9} be the solution to (3) corresponding to g, and
define the following e-close solution {a@}: for every u
and every i, set 4; = (1 —e)uf + eul?. Note that {u}
is fractional and j(u) = g(u) for all w.

Recall that F is the set of edges cut by the optimal
solution g. Define the following (2, 1)-perturbation w’
of the weights w:

w/(u, U) — ’LIU(’LL,’U) (’U,, ’U) € Eg

sw(u,v) (u,v) € B\ E.

We refer to the objective with modified weights w’ as
Q' (that is, @’ is the objective in the instance with
weights w’ and costs c).

Now let h = R({a}). To compare g and h, we will
compute E[Q'(g) — Q'(h)], where the expectation is
over the randomness of the rounding algorithm. By
definition,

E[Q'(9) — Q'(h)|h = g]Pr(h = g)

Q'(h)|h # g Pr(h # g).

Q'(h)] = E[Q'(9) —
E[Q'(g) —

+

The first term of the sum above is clearly zero. Fur-
ther, as {@} is fractional, the guarantees in Lemma
1 imply that Pr(h # g) > 0. By (2,1)-stability
of the instance, any labeling h # ¢ must satisfy
Q'(h) > Q'(g). So stability and fractionality of the

LP imply E[Q'(9) — @'(h)] <0.
If we compute E[Q'(g) — Q'(h)] and simplify using
Lemma 1 and the definition of w’ (see the appendix
for a full derivation), we obtain:

Ql(g)_Q/(h)Z Z )—l—Zw (u,v)

u€Va (u,v)EEG\Ep
- o) -
u€Va (u,v)EER\E,

Taking the expectation, we obtain:

E[Q'(9) — Q'(W)] = c(u, g(u)) Pr(h(u) # g(u))
ueV
+ Z w' (u,v) Pr((u,v) not cut)
(u,v)€E,
- Z Z c(u, 1) Pr(h(u) = 1)
u€V i#g(u)
— Z w'(u, v) Pr((u,v) cut).
(u,v)EE\E,
Applying Lemma 1 with j(u) = g(u),

EIQ'(9) - Q'(W)] 2 (Z e(ut, 9()) (1 = Ty(a)

ueV

+ Zw’(u,v)(l —d(u,v))

(u,v)EE,

- Z Z c(u,i)u

u€V i#£g(u)
- Z 2w’ (u, v)d(u,v)
(u,v)EE\E,

Using the definition of w’,

E[Q'(9) — Q'(h)] > % Z c(u, g(u)) + Zw(u,v)
ueV (uw)EE,
- Z Zc(u’i)ﬂi - Zw(u,v)d(u,v)
u€eV icL (u0)EE

The first two terms are simply Q(g), and the last two
are the objective Q({@}) of the LP solution @. Since
i = (1- et +eab” and Q")) < Q({af}),
the convexity of the LP objective implies Q({a}) <
Q{u}) = Q(g). So E[Q'(9) — Q'(h)] = 0. But stabil-
ity of the instance and fractionality of the LP solution
implied E[Q’(g) — Q' (h)] < 0. O
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A.4 Generating Counterexamples

The following procedure can be used to find (5,7)-
stable instances.

1. Given a fixed number of nodes n and labels k,
randomly generate a graph G as follows:

(a) Connect any two nodes (u,v) with an edge
with probability connectProb.

(b) When connecting two nodes, choose the edge
weight w(u, v) uniformly at random from ZnN
[0, weightMax].

2. For each node u, choose an index ¢ uniformly at
random from {1...k}. Draw c(u,) uniformly at
random from Z N [0, costMax]. Set ¢(u,j) = 0 for
j#i.

3. Find the optimal solution g to the instance
(G,w,c, L).

4. Let E, be the set of edges cut by g, and consider
the following adversarial perturbation w’ of w:

u,v) € E\ E,
yw(u,v) (u,v) € Eg4

Let @' be the objective with these modified
weights.

5. Enumerate the k™ — 1 possible labelings not equal
to g. If any of them have Q'(h) < Q'(g), return
to step 1. Otherwise, print V, F, w, c.

Following this procedure, we can also enforce addi-
tional properties of the instance in step 5 before print-
ing it out. For instance, we can enforce that the LP
must be fractional on the instance, or that a-expansion
must not find the optimal solution. If these additional
conditions fail to hold, we return to step 1.

The examples in Section 6 were found with
connectProb = 0.5, weightMax = 4, costMax = 20,
and then modified for simplicity. Steps 3-5 were re-
peated for each modification to ensure the resulting
instances satisfied the correct stability conditions. In
Section 6, 8 = 1 and v = 2; in Section 6, § = 2 and
v=1.

The following lemma proves that steps 3-5 are suffi-
cient to verify stability.

Lemma A.1. Let w* be an arbitrary (5,7)-
perturbation of the weights w, and let w' be the adver-
sarial perturbation for the optimal solution g. Then for
any labeling h, Q*(h) < Q*(g) implies Q'(h) < Q'(g)-
In other words, if a labeling h violates stability in any
perturbation, it violates stability in the adversarial per-
turbation w’.

Proof. We show that Q*(g) — Q*(h) < Q'(g) — Q'(h).
Let VA = {u eV | g(u) # h(u)}. Recall that E,; and
E}, are the sets of edges cut by g and h, respectively.
We compute

Q'(9) = Q'(h)

Z )—I—Zw U, V)

u€Va (u,v)EEG\Ep
- E u)) — E w'(u, )
u€Va (u,v)EER\E,

Using the definition of w’,

Q) —Q(h) = > clug(w)+ > yw(u,v)

ueVa (u,v)EEG\E}p

=S efu, hw) - Z“’(;’U).

u€Va (u,v)EER\Ey

Since w* is a valid (B, y)-perturbation, %w(u,v) <
w*(u,v) < yw(u,v). Then since all the ¢’s and w’s

are nonnegative,

Q'(9) —Q'(h) > Z )—|—Zw U, v)
u€EVa (u,v)EEG\Ep
- Z u)) — Zw U, v)
ueVa (u,v)EER\E,
=Q"(9) —Q"(h).



