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A Choice of r(·, ·) to ensure µP 2 Hk

We need to choose an appropriate covariance function r, such that µP 2 Hk, where µP ⇠ GP(0, r(·, ·)). In particular, it is
for infinite-dimensional RKHSs not sufficient to define r(·, ·) = k(·, ·), as draws from this particular prior are no longer in
Hk (Wahba, 1990) (but see below). However, we can construct

r(x, y) =

Z
k(x, z)k(z, y)⌫(dz) (8)

where ⌫ is any finite measure on X . This then ensures µP 2 Hk with probability 1 by the nuclear dominance (Lukić and
Beder, 2001; Pillai et al., 2007) for any stationary kernel k. In particular, Flaxman et al. (2016) provides details when k is
a squared exponential kernel defined by

k(x, y) = exp(�1

2
(x � y)>⌃�1

k (x � y)) x, y 2 Rp

and ⌫(dz) = exp
⇣
� ||z||22

2`2

⌘
dz, i.e. it is proportional to a Gaussian measure on Rd, which provides r(·, ·) with a non-

stationary component. In this paper, we take ⌃k = �2Ip, where �2 and ` are tuning parameters, or parameters that we
learn.

Here, the above holds for a general set of stationary kernels, but note that by taking a convolution of a kernel with itself,
it might make the space of functions that we consider overly smooth (i.e. concentrated on a small part of Hk). In this
work, however, we consider only the Gaussian RBF kernel k. In fact, recent work (Steinwart, 2017, Theorem 4.2) actually
shows that in this case, the sample paths almost surely belong to (interpolation) spaces which are infinitesimally larger
than the RKHS of the Gaussian RBF kernel. This suggests that we can choose r to be an RBF kernel with a length scale
that is infinitesimally bigger than that of k; thus, in practice, taking r = k would suffice and we do observe that it actually
performs better (Fig. 4).

B Framework for Binary Classification

Suppose that our labels yi 2 {0, 1}, i.e. we are in a binary classification framework. Then a simple approach to accounting
for uncertainty in the regression parameters is to use bayesian logistic regression, putting priors on �, i.e.

� ⇠ N (0, ⇢2)

yi ⇠ Ber(⇡i), where log

✓
⇡i

1 � ⇡i

◆
= �>µ̂i

however for the mean shrinkage pooling model, if we use the above yi | µi, ↵, we would not be able to obtain an analytical
solution for p(yi|xi, ↵). Instead we use the probit link function, as given by:

Pr(yi = 1|µi, ↵) = �
�
↵>µi(z)

�

where � denotes the Cumulative Distribution Function (CDF) of a standard normal distribution, with µi(z) =
[µi(z1), . . . , µi(zs)]>. Then as before we have

µi(z) | xi ⇠ N (Mi, Ci)

with Mi and Ci as defined in section 3.3. Hence, as before

Pr(yi = 1|xi, ↵) =

Z
Pr(yi = 1|µi, ↵)p(µi(z)|xi)dµi(z)

= c

Z
�(↵>µi(z)) exp{�1

2
(µi(z) � Mi)

>C�1
i (µi(z) � Mi)}dµi(z)

(with li = µi(z) � Mi) = c

Z
�(↵>(li + Mi)) exp{�1

2
(li)

>C�1
i (li)}dli

= Pr(Y  ↵>(li + Mi))
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Note here Y ⇠ N (0, 1) and li ⇠ N (0, ⌃i) Then expanding and rearranging

Pr(yi = 1|xi, ↵) = Pr(Y � ↵>li  ↵>Mi)

Note that since Y and li independent normal r.v., Y � ↵>li ⇠ N (0, 1 + ↵>Ci↵>). Let T be standard normal, then we
have:

Pr(yi = 1|xi, ↵) = Pr(
p

1 + ↵>Ci↵ T  ↵>Mi)

= Pr(T  ↵>Mip
1 + ↵>Ci↵

)

= �

 
↵>Mip
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!

Hence, we also have:

Pr(yi = 0|xi, ↵) = 1 � �

 
↵>Mip

1 + ↵>Ci↵

!

Now placing the prior ↵ ⇠ N (0, ⇢2K�1
z ), we have the following MAP objective:

J(↵) = log

"
p(↵)
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Since we have an analytical solution for Pr(yi = 0|xi, ↵), we can also use this in HMC for BDR.

C Some more intuition on the shrinkage estimator

In this section, we provide some intuition behind the shrinkage estimator in section 3.3. Here, for simplicity, we choose
⌃i = ⌧2I for all bag i, and m0 = 0, and consider the case where z = u, i.e. R = Rz = Rzz. We can then see that if R
has eigendecomposition U⇤UT , with ⇤ = diag(�k), the posterior mean is

U diag

✓
�k

�k + ⌧2/Ni

◆
UT (µ̂i),

so that large eigenvalues, �k � ⌧2/Ni, are essentially unchanged, while small eigenvalues, �k ⌧ ⌧2/Ni, are shrunk
towards 0. Likewise, the posterior variance is

U diag

 
�k � �2

k

�k + ⌧2

Ni

!
UT = U diag
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Ni
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!
UT ;

its eigenvalues also decrease as Ni/⌧2 increases.

D Alternative Motivation for choice of f

Here we provide an alternative motivation for the choice of f =
Pk

s=1 ↵sk(·, zs). First, consider the following Bayesian
model with a linear kernel K on µi, where f : Hk ! R:

yi | µi, f ⇠ N
�
f(µi), �

2
�
.
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Now considering the log-likelihood of {µ, Y } = {µi, yi}ni=1 (supposing we have these exact embeddings), we obtain:

log p(Y |µ, f) =
nX

i=1

� 1

2�2
(yi � f(µi))

2

To avoid over-fitting, we place a Gaussian prior on f , i.e. � log p(f) = �||f ||Hk + c. Minimizing the negative log-
likelihood over f 2 Hk, we have:

f⇤ = argminf2Hk

nX

i=1

1

2�2
(yi � f(µi))

2 + �||f ||Hk

Now this is in the form of an empirical risk minimisation problem. Hence using the representer theorem (Schölkopf et al.,
2001), we have that:

f =
nX

j=1

�jK(., µj)

i.e. we have a finite-dimensional problem to solve. Thus since K is a linear kernel:

yi | µi, {µj}nj=1, � ⇠ N

0

@
nX

j=1

�jhµi, µjiHk , �2

1

A .

where hµi, µjiHk can be thought of as the similarity between distributions.

Now we have the same GP posterior as in Section 3.3, and we would like to compute p(yi|xi, �). This suggests we need to
integrate out µ1, . . . µn. But it is unclear how to perform this integration, since the µi follow Gaussian process distributions.
Hence we can take an approximation to f , i.e. f =

Pk
s=1 ↵sk(·, zs), which would essentially give us a dual method with

a sparse approximation to f .


