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Abstract

Traditionally, ODE parameter inference re-
lies on solving the system of ODEs and as-
sessing fit of the estimated signal with the ob-
servations. However, nonlinear ODEs often
do not permit closed form solutions. Using
numerical methods to solve the equations re-
sults in prohibitive computational costs, par-
ticularly when one adopts a Bayesian ap-
proach in sampling parameters from a pos-
terior distribution. With the introduction of
gradient matching, we can abandon the need
to numerically solve the system of equations.
Inherent in these efficient procedures is an
introduction of bias to the learning problem
as we no longer sample based on the exact
likelihood function. This paper presents a
multiphase MCMC approach that attempts
to close the gap between efficiency and accu-
racy. By sampling using a surrogate likeli-
hood, we accelerate convergence to the sta-
tionary distribution before sampling using
the exact likelihood. We demonstrate that
this method combines the efficiency of gradi-
ent matching and the accuracy of the exact
likelihood scheme.

1 Introduction

Nonlinear ordinary differential equations (ODEs) are
used in all branches of science to model the evolution
and interaction between different dependent variables
over some independent variable. Their use ranges
from ecology [1] to biophysics [2, 3] and systems bi-
ology [4]. Although these systems are so commonly
implemented, there is still not a universally accepted
method of inferring their parameters, limiting our un-
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derstanding of the associated systems and our abil-
ity to make predictions. Given the high level of un-
certainty involved in the early phases of these pro-
cesses, it makes sense that we propagate this uncer-
tainty through to the parameter estimates. A Bayesian
approach allows us to naturally account for the uncer-
tainty in a posterior distribution.

Traditionally, ODE parameter inference methods ig-
nored efficiency and any MCMC parameter inference
approaches aimed only to accurately infer parameters
of the ODEs [5]. With no upper bound on the run
time, ergodicity of MCMC guarantees convergence to
the correct posterior distribution. Recently, surrogate
methods based on gradient matching have been pro-
posed that allow us to circumvent the numerical in-
tegration step by finding a smooth interpolant to the
noisy data. This then allows computation of a gra-
dient of our estimated signal, which can be matched
with that obtained from the ODEs. Instead of quanti-
fying how well the solution of the ODEs matches the
data, we quantify how well the derivatives predicted
by the ODEs match the derivatives obtained from an
interpolant to the data [6, 7, 8, 9]. Problematically,
our improvement in efficiency comes at the expense of
accuracy which is limited by the simple fact that we
no longer adopt the exact likelihood for the ODEs.

The method proposed in this paper aims to close the
gap between accuracy and efficiency, where we hope
to sample based on the exact likelihood function after
using the surrogate gradient matching likelihood func-
tion for accelerated convergence. We begin by giving
an outline of the general ODE inference problem in
Section 2 as well as the properties of these systems
that lead to a more difficult parameter learning pro-
cess. This provides motivation for the use of Gaus-
sian processes in parameter inference as outlined in
Section 3, leading to the introduction of a multiphase
sampling technique that will be tested on four different
benchmark ODE systems.
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2 The ODE Inference Problem
2.1 Standard MCMC Parameter Inference

In the standard parameter inference problem, we have
observed some noisy data y(t) = x(t)+€(t) over a spe-
cific timeframe where x corresponds to the true signal
governed by the ODEs:

dx

E = f(Xa ovt) (1)

Assuming additive iid Gaussian noise, we have the neg-
ative log-likelihood given by:

mn KU i(t;) —x(0,t;))?

—Inp(y|8,0) = 5 ln02+zz (y;(t:) 20;( 1))
Jj=11:i=1

where m is the number of variables and n is the num-
ber of time points. The constant term 7 In27 has
been suppressed for ease of representation. The lack
of closed-form solutions in nonlinear ODEs requires
the application of numerical integration methods, like
the Runge-Kutta method. Considering Bayes theo-
rem, intractability in the denominator necessitates the
use of MCMC sampling techniques that allow us to
sample from the distribution p(0|y) without evaluat-
ing a marginal distribution. To the detriment of this
approach is the repeated numerical integration of the
ODEs, which is a computationally onerous procedure.

2.2 Difficulties in MCMC Inference

Although underpinned by asymptotic theory of ergod-
icity, MCMC sampling applied to the exact likelihood
function faces substantial computational costs, due to
the need for a numerical integration in every step of
the iteration. This is aggravated by potential multi-
modality and entrapment in local optima. Resultantly,
the length of time required to achieve convergence to
the stationary distribution makes these methods prac-
tically not viable. In addition, problems such as stiff-
ness of ODE systems compound this inefficiency, mak-
ing the inference problem intractable in any realistic
timeframe except for simple toy problems.

The solution to our problem is to find an alternative
method of sampling from the posterior distribution
that minimizes the number of numerical integrations.
The most immediate leap in this direction would be
consideration of procedures for estimating the under-
lying signal of the ODEs from the noisy observations.

3 Using Gaussian Processes to
Reformulate the Inference Problem
3.1 Gaussian Process Smoothing

Assuming a zero mean GP prior for the latent signal
vector x, x ~ N(0,K) with entries of K given by the

evaluation of some predefined kernel over the space 7T x
T, the Gaussian likelihood and prior enable analytic
derivation of the GP posterior distribution:

p(xly, ¢.0) o p(y|x, o)p(x|¢) = N (y[x, " DN (x]0, K)( )

2
where x is our latent signal vector, ¢ is the vector of
GP hyperparameters and o is the observational noise
standard deviation. Using Gaussian and matrix iden-
tities, we obtain:

N(y|x, DN (x|0, K) o< N (x|m, ) (3)
with (this time making time dependence explicit):

m(t) =k(t, T)(K+°T) "'y T =c’KK+7°T)"!

(1)
where k(¢, T') is a GP kernel function evaluated at time
point t over the entire training set (7). The posterior
mean expression is a linear transformation of the ob-
servations (a linear smoother [10]) averaging over the
noise to smooth the observed data.

It appears that the Gaussian process smoothing ap-
proach could help us bypass the expensive numeri-
cal integrations of the traditional method. However,
choice of a suitable metric for assesment of different
points in parameter space is non-trivial. Assuming
differentiability of the kernel function, differentiabil-
ity of GPs [11] may be exploited in a reformulation of
the inference problem from a matching of signals with
noisy observations to a matching of the interpolants’
gradients with the gradients from the ODEs [12, 6, 13].

3.2 Gradient Matching with Random
Interpolants

Implementing an alternative method, such as Gaussian
process smoothing [11], allows us to neglect the numer-
ically expensive Runge-Kutta methods. The method
of Calderhead et al [6] treats the hyperparameters as
random and samples these in each MCMC step. Using
a distribution from the GP and the ODEs, the method
relies on a product of experts approach to make the
following integral tractable:

p(e,’Y‘X7¢) = /p(X70,’y‘X7¢)dX (5)

where X has entries x;; (the smoothed signal of the ith
species at time j), 0 is the vector of ODE parameters
and 7 is a gradient mismatch hyperparameter to be de-
fined in Section 3.3. Wang and Barber [14] observed
the lack of motivation for this marginalization as it
encourages a matching of modes rather than distribu-
tions. Dondelinger et al [7] alleviate this problem by
introducing a regularizer—making the interpolant con-
sistent with the ODEs—and sampling the parameters
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from a proper posterior distribution. See Macdonald
and Husmeier [13] for an overview.

The common problem with these random hyperparam-
eter approaches is the reliance on innefficient Gibbs
sampling in combination with GP sampling requiring
O(T?) computations to sample from a surrogate dis-
tribution that introduces bias to our posterior sam-
ples. We propose an extension of the gradient match-
ing paradigm to exact likelihood MCMC methods.

3.3 Fixed Interpolant Gradient Matching

Taking the mean of this posterior distribution as de-
fined in eq. (4) as a fixed interpolant of the data in a
gradient matching scheme would fail to account for the
same level of uncertainty as the methods discussed in
Section 3.2. However, rather than accounting for un-
certainty we aim for fast convergence to a stationary
distribution close to the true posterior. It is in this
true likelihood space that we wish to account for our
uncertainty about the parameters of the ODEs.

The paradigm of fixed interpolants results in a devi-
ation from the method of Calderhead et al [6] who
treat the GP and ODE gradients as random variables.
The proposed gradient matching scheme fixes the GP
hyperparameters and interpolant based on maximum
likelihood estimates. This is computationally cheaper
than sampling from the posterior, as in [6, 7], allowing
the computational resources to be used for a longer
burn-in phase. We assume the derivative of the inter-
polant x to be determined by the ODEs subject to a
Gaussian-distributed mismatch error with variance v2,
fli—’;‘ ~ N (f(%,0,t),4?), and we represent this distribu-
tion by its conditional mean:
dx

X = - =¥ (t, T)(K+°T) 'y (6)

where k/'(t,T) = %. The resultant likelihood
function for the MCMC is the negative log-likelihood
of a multivariate Gaussian distribution:

: 1 || dx(t
~tupio,) = n e | 0 k(o). 0)

2
+C.

where || - || corresponds to the Euclidean norm. Intro-
duction of a prior distribution over the parameters, 6
and the mismatch term, v, will provide the posterior

distribution of our MCMC sampler, p(0, 7|X, X) For
the purposes of this work, the mismatch parameter
was assumed constant over time and across different
states and is sampled from the posterior using MCMC.
However, the likelihood function is easily adjusted in
order to account for varying ~ across these variables.

Inherent in a fixed interpolant gradient matching
scheme is an obvious reduction in computational com-
plexity of each MCMC step since we no longer require

numerical integrations of the ODEs. However, as a
beneficial side-effect, the gradient matching surrogate
likelihood also leads to a smoother likelihood surface,
as shown in Figure 1 where we observe the ability to
smooth over the local optima of the exact likelihood
surface, similarly to an annealing approach [15]. Thus,
the benefit of the fixed interpolant gradient matching
surrogate likelihood is twofold since it reduces com-
putational complexity of each step and avoids entrap-
ment in local optima of the log likelihood surface.

3.4 Multiphase MCMC Sampling

Used alone, the fixed interpolant likelihood function
will not permit sufficient coverage of the uncertainty
in our parameter values, and will cause bias in the
parameter estimates. As such, we propose the use of
the fixed interpolant gradient matching surrogate like-
lihood in a burnin phase of a three-phase scheme. Be-
low, we detail the multiple phases of the algorithm,
where a corrective phase aims to correct the bias in-
troduced in the surrogate burnin phase.

Surrogate burnin phase We begin with a surrogate
burnin phase initiated from some initial point in pa-
rameter space. This phase, corresponding to lines 2-5
of Algorithm 1, is continued until some target poten-
tial scale reduction factor (PSRF) (see Chapter 8 of
the book by Gilks et al. [16]) is achieved or until
some maximum number of MCMC steps have been
performed. The numerical efficiency in the gradient
matching phase enables fast convergence to a region
close to the true stationary distribution, avoiding lo-
cal optima of the true likelihood function as illustrated
in Figure 1.

Corrective phase Beginning from the last point sam-
pled in surrogate space, fix the noise variance pa-
rameter and sample the ODE parameters for Np,ecorr
steps, initiated at some estimate obtained during the
smoothing process. Effectively, we aim to estimate
reasonable signals for the time-varying state variables
at this stage, avoiding a sub-optimal attractor state
that corresponds to a large variance and only learning
the global mean of the data. Beginning from the fi-
nal point of this precorrective phase, sample using the
exact likelihood until a target PSRF value PSRF5 is
achieved or a preselected number of corrective steps
Neorr, have been performed. This can be found in
lines 6-13 of Algorithm 1.

Sampling phase The MCMC steps performed until
now have been used to drive us towards the correct
stationary distribution. We now initiate a sampling
phase at the last sampled point from the corrective
phase. The sampling phase is continued until a target
PSRF3 is reached or some number of steps, Nyamp,
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Figure 1: Top: the two-dimensional true likelihood
surface of the Lotka-Volterra system. MCMC trajecto-
ries obtained with DRAM get trapped in local optima.
Middle: unimodal gradient matching surrogate likeli-
hood surface of the Lotka-Volterra system with gradi-
ent matching MCMC chains superimposed. Bottom:
superimposing the gradient matching MCMC chains
onto the true likelihood surface shows the accelera-
tion of convergence to the stationary distribution as
we smooth over local optima from the exact likelihood
surface. Points denote start points and crosses indi-
cate end points of the MCMC trajectories.

have been completed. This phase, given by lines 14-16
in Algorithm 1, provides samples from the posterior
distribution for the parameters of the ODEs.

Algorithm 1 provides pseudocode for the multi phase
scheme where the following nomenclature is adopted:

P10’ 7)m(8")m(v')d(0,716",7")

P[0, 7)7(0)7(7)§(6',~'10,7)

p(y|0', O’/)TF(OI)W(O’Q,)q(e, a|0/, a’)
p(y|6,0)7(0)7(02)q(8’, 0716, 0)

A1(0,7:0",7)=1A

A3(0,0:0",0")=1A

where p,p are the exact and surrogate likelihoods, 7
is a prior and ¢, ¢ are Gaussian proposal distributions
with adaptive covariance.

Algorithm 1 Multi-phase MCMC Sampling

1: Assign initial parameters 8y and select cheap sur-
rogate likelihood function ﬁ(f'c|9, ), an approxima-
tion of p(y|@,0) (our computationally expensive
likelihood function).

2: repeat

3:  Sample ; and v from G(04,v¢|0t—1,Vi—1)-

4:  Accept proposed point based on A;(0,v;6’,~")

5: until PSRF; or N, reached

6: repeat

7:  Beginning from the last point sampled in surro-
gate space, keep o2 fixed at some estimate and
sample 0; from q(6:]0;_1).

8:  Accept proposed point based on A3(0,0;86',0)

9: until Until N, reached

10: repeat

11:  Beginning from the last point sampled in the
pre-corrective phase, sample 6, and o; from
q(0s,04|01-1,00-1).

12:  Accept proposed point based on A3(0,0;0' ")

13: until PSRF5 or N, reached

14: repeat

15:  Beginning from the last point sampled in correc-
tive phase, sample 8; and o; from some proposal
distribution ¢(0;,0¢|0;—1,0¢—1) (this will differ
from those of the previous two phases).

16:  Accept proposed point based on A3(0,0;0',0”)

17: until PSRF3 or Ngqpm, reached

3.5 Delayed Acceptance Metropolis-Hastings

One of the implementations of the gradient matching
surrogate likelihood will be in a delayed acceptance
Metropolis-Hastings (DAMH) sampling scheme. The
general technique was introduced by Sherlock et al.
[17]. The idea is to propose new moves in the surro-
gate space prior to their proposal in the exact likeli-
hood space. This saves computation time by limiting
the number of exact likelihood evaluations for rejected
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points since, assuming similarity between the two like-
lihoods, proposals are filtered out by rejection based on
the initial acceptance criterion; see eq.7. The method
still depends on acceptance via evaluation of the exact
likelihood, but the ability to reject based only on a
cheap proxy reduces computational complexity.

We implemented DAMH with a gradient matching
likelihood as the cheap initial likelihood. This will be
used for sampling in a multiphase scheme with a surro-
gate burnin phase (use Algorithm 1 with steps 10 to 17
replaced by DAMH with gradient matching likelihood
function). The choice of acceptance criterion is based
on the property of detailed balance where we may take
a product of surrogate and true likelihood acceptance
expressions «a(z,y) = a1 (x, y)as(z,y) such that:

P(Y) /p(y)

ai(z,y) =1A 7@ /p(a)

aQ(Iay) =1A

where z Ay = min(z, y). Banterle et al. [18] show that
the generated Markov chain is reversible with respect
to p and so, assuming ergodicity, p is the limiting dis-
tribution of the Markov chain. An inefficiency is intro-
duced by the fact that apa(z,y) < arpp(z,y) where
apy g (z,y) is the acceptance criterion in Metropolis-
Hastings and ap 4 (z, y) the acceptance criterion of de-
layed acceptance. However, this inefficiency by effec-
tive sample size will hopefully be overcome by compu-
tational efficiency that will enable more samples from
the posterior distribution. To alleviate this problem,
we take at each iteration a standard MH step on the
expensive likelihood with probability 3.

4 Benchmark ODE Systems

This section presents the four systems of ODEs that
will be used for comparison of the proposed method
with 4 other benchmark MCMC sampling techniques.

Lotka-Volterra (LV) The equations model the in-
teraction between predator (y) and prey (x) variables
over time. This system exhibits periodic population
evolution resulting from the interactions between the
two variables of the system. Parameter values used
were a = 0.76,8 = 0.5,y = 04 and 6 = 0.3. 100
points were simulated between times 0 and 100.

dzr

dy
5 = o= Pry, o= —yy + by (8)

FitzHugh-Nagumo (FHN) The ODEs model [2,
3] the movement of signals along excited cells. V de-
notes the voltage of the signal, which accounts for self-
excitation of the membrane, and R is a recovery vari-

able acting as a negative feedback mechanism.

av V3 dR V—-—a+ B8R
dt_’y(v_3+R>’dt__7 (9)

Motivated by the literature [19], parameter values used
were « = 0.2, = 0.2and vy = 3. The observed
dataset consists of 100 points measured at equal in-
tervals between times 0 and 20.

Goodwin Oscillator (GO) The ODEs, first intro-
duced by Goodwin [4], models the concentration of
an enzymatic protein and messenger ribonucleic acid
(mRNA) of some species. Production of mRNA p; is
met by a binding of mRNA with ribosomes, forming a
enzymatic protein ps with feedback, inhibiting mRNA
transcription. Constant decay terms, although biolog-
ically inconsistent, encourage periodicity in the signals
of the species, a trait that is more difficult to induce
under a more accurate system configuration [20].

dp1 k1 dps

E—m— 35 E—k&pl—ks (10)
Parameters used were motivated by the literature [21],
taking ]{31 = 72, kz = 1,/€3 = 27]{74 = 1,k5 = 1. For
observations, we simulated 120 data points between
times 0 and 60 at equally spaced time intervals. The
various local optima of the resultant likelihood surface
in two dimensions, as shown in Figure 3 of the sup-
plementary material (SM), lead to a more challenging
parameter learning problem.

=

0.6
1

Concentration
0.4
!

0.0

Time

Figure 2: Pre-equilibrium observed data from the STC
model. The data measured between times 0 and 100
is given in Figure 1 of the SM where we observe the
system entering into equilibrium.

Signal Transduction Cascade (STC) The final
system models the signal transduction cascade with
input enzymatic protein S. This binds to protein R,
forming protein complex RS, inducing phosphoryla-
tion of protein R into R, from which state the protein
may be deactivated. Additionally, the system below
also describes the degradation of the input S into Sd.
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Figure 3: Top: The boxplots show the inferred parameter distributions obtained by combining the posterior
distributions from 10 independent data instantiations using propDRAM (A) and traditional DRAM with the
exact likelihood function (B) for each of the 4 ODE models. We observe the advantage of the surrogate burnin
as this allows us to evade various local optima; compare with Figure 1. Bottom: Boxplots showing functional
RMS of posterior samples for each of the four models using the three phase proposed scheme. The proposed
method outperforms DRAM on all benchmark data (indicated by the abbreviation on top of the panels).

Variables inside [] correspond to the concentrations of
the different species.

U] kals] ~ kalSIIB] + ko[RS

diSa] _ k1 [S]

dt

d[R] VIR

o = ~halS[R] + ka[RS] + Kot [R] (11)
@ = ko[S][R] — k3[RS] — ka[RS]
d[Rpp] _ V[Rpp]

dat kal RS - K+ [Rpp

Our parameter value choice is as chosen in the lit-
erature [7] with parameter values as follows: k; =
0.07,ky = 0.6,ks = 0.05,k4 = 0.3,V = 0.017, K,,, =
0.3. Due to practical nonidentifiability issues, the
noisy data consists of 20 data points between times
0 and 10. This corresponds to the period prior to the
data reaching equilibrium, as displayed in Figure 2.

5 Results
5.1 Comparison of Methods

We present parameter inference results using four
alternative methods on each of the ODE systems
above. For compactness, the following nomenclature is
adopted: PropDRAM is our proposed scheme from
Algorithm 1 with gradient matching surrogate like-
lihood and sampling using DRAM [22] with the ex-
act likelihood function. PopMCMC uses the exact
likelihood function in population MCMC [23], a com-
petitive MCMC method for inference in multimodal
likelihood spaces. DRAM corresponds to Delayed
Rejection Adaptive Metropolis with the exact likeli-
hood function [22]. PropDAMH is our proposed
scheme with surrogate burnin phase and DAMH sam-
pling phase (see Section 3.5) with gradient matching
filter step in the first phase of eq. 7.

Considering the setup for sampling using the pro-
posed scheme, we refer to Algorithm 1 with the fol-
lowing values: PSRF; = 1.1, Ngy,r = 10000, Npre =
200, PSRF; 1.05, Neorr 10000, Nsgmyp
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Figure 4: Top: The figure shows the RMS scores obtained by combining the posterior distributions from 10

independent data instantiations versus number of numerical integration steps.

This allows consideration of

accuracy (horizontal axis) relative to computational complexity (vertical axis) for each of the four methods.
Good performance is signified by a method appearing in the bottom left corner (with the exception of the STC
data since RMS differences are so small). The multi phase proposed scheme (propDRAM) is the only method
consistently appearing in the bottom left corner. Bottom: Plots of number of numerical integration steps (vertical

axis) versus functional RMS (horizontal axis).

5000, PSRF3 = 1.01. The benchmark methods had
stopping rule PSRF=1.01 or 50000 MCMC steps. In
all cases, initial conditions were assumed known, pro-
viding optimal conditions for DRAM and popMCMC
since these no longer have to infer the initial condi-
tions and parameters simultaneously. For each ODE
system, we simulated ten datasets and perform param-
eter inference for each.

Figure 3 allows consideration of the accuracy of the
proposed method compared with traditional DRAM
MCMC with the exact likelihood. In the first 3 ODE
models, periodicity in the signal means the proposed
propDRAM outperforms DRAM. For the STC data, a
lack of identifiability leads us to infer the ratio k3/ko
instead of each parameter individually. The lack of pe-
riodicity in the signal results in a smoother likelihood
surface and so accuracy of the two methods is very sim-
ilar. However, Figure 4! shows the reduction in com-
putational expense when using the proposed scheme.

Multimodality of likelihood surfaces (see Figure 1 and
Section 1.2 of the SM) makes it important for us to
consider algorithms designed for evading these local
optima (detailed bias boxplots for each of the meth-

1'We used 8 = 0.2, as suggested by one of the reviewers.
Our orginal results with § = 0 can be found in the SM.

ods across the four models are given in Section 1.3
of the SM)2. We aim for efficiency and accuracy in
the inference scheme, leading to consideration of accu-
racy relative to computational complexity. Figure 4
presents root mean square deviation (RMS) in pa-
rameter space versus number of numerical integra-
tions of the ODEs. Appearance in the bottom left
corner of the plot indicates good performance of the
method. With the exception of the signal transduc-
tion cascade, PropDRAM is the only method con-
sistently displaying this trait. However, for the sig-
nal transduction cascade, RMS difference between the
right and left corners of the plot is relatively small
(0.012) in comparison to the average parameter value
of 0.2074 (6%) and popMCMC incurs far greater com-
putational cost. A legend is provided for indication
of convergence in each of the different models. Prop-
DRAM was the only method to converge in all cases.
Considering function space performance, we evaluated
the functional RMS value based on posterior samples

RM S func
nal and X; is the signal at the ith posterior sample

= \/m, where x is the true sig-

’In all cases, we use uninformative gamma priors for
the ODE parameters to satisfy their positivity constraints
and conjugate inverse-gamma priors for the noise variance
parameters.
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obtained by solving the ODE at our samples. The
bottom row of Figure 4 shows number of numerical
integrations versus Functional RMS. As before, ap-
pearance in the bottom left means good performance.
PropDRAM is the only method to consistently achieve
this.

6 Discussion

This paper has presented, in detail, two alternative
implementations of gradient matching. One of them
is based on delayed acceptance [17] (propDAMH).
Considering eq. 7, it becomes apparent that certain
properties of the surrogate distribution lead to ineffi-
cient sampling from the posterior. In cases where the
surrogate has heavier tails than the exact likelihood,
a1(z,y) is high and so points pass the filter step and
require a decision be made based on the exact likeli-
hood with a high rejection rate. More explicitly, use of
the DAMH algorithm moves towards an inefficient, low
acceptance rate, Metropolis-Hastings algorithm. The
situation with weak tails manifests itself differently to
the scenario above. a;(x,y) will be low, resulting in a
low proportion of points making it through the initial
filter step, giving a poor representation of the exact
posterior distribution as we fail to sample from the
tails of the distribution.

The key result was the proposal of a multiphase
approach to parameter inference that extends the
paradigm of gradient matching to sampling from the
correct posterior distribution. Using a gradient match-
ing likelihood function, we efficiently sample from
an approximation of the exact posterior distribution,
driving us towards the posterior mode (as displayed in
Figure 1). This minimizes the number of evaluations
of the exact likelihood function required to converge
to the stationary distribution. We compared the ac-
curacy of the proposed method relative to the compu-
tational expense in Figure 4. Providing a more thor-
ough exploration of the performance compared with
traditional DRAM allowed us to observe the proposed
scheme’s ability to avoid local optima.

7 Conclusion

Parameter inference in systems of coupled ODEs is in-
trinsically computationally expensive due to the need
for a numerical integration at every parameter adap-
tation. The methodological framework of gradient
matching systematically bypasses this computational
bottleneck by inferring gradients from a smooth in-
terpolant. To reduce the bias inherent in this frame-
work, past approaches have tried to use the ODEs as a
regularizer, but this is computationally expensive and
never eliminates the bias completely. The approach we

have proposed here is to use a surrogate function based
on gradient matching only in the burn-in phase of a
multi-phase MCMC scheme, and use the correct likeli-
hood obtained from a (computationally expensive) nu-
merical integration of the ODEs as a final adjustment.
Our simulation studies, based on four standard bench-
mark ODE systems, suggest that the novel approach
achieves similar accuracy as the standard scheme that
is entirely based on the true likelihood, but at substan-
tially reduced computational costs. We have obtained
insight into the source of the improvement from log
likelihood contour plots, like Figure 1. The surrogate
log likelihood tends to have its probability mass close
to the mode of the true log likelihood, with a much
smoother surface akin to what could have been ob-
tained (at higher computational costs) with an anneal-
ing scheme. Consequently, the burn-in phase achieves
two objectives simultaneously: an increase in the com-
putational efficiency (due to bypassing the numerical
integration), and an avoidance of entrapment in local
optima (due to the smoother surface). These enable
improved accuracy in the final posterior samples, as
shown in Figures 3 and 4.

It appears natural to combine the proposed method
with the delayed acceptance MCMC scheme recently
proposed by Sherlock et al. [17], as the surrogate like-
lihood from gradient matching appears to provide the
natural function for the first-stage rejection step in this
algorithm. This has turned out to be counterproduc-
tive, though, as the mismatch between the two likeli-
hood functions, which is illustrated in Fig. 1, leads to
a systematic undersampling from the tails of the true
posterior distribution, resulting in a net loss of com-
putational efficiency. From this, we would argue that
the critical dependence on a close match between the
true and the surrogate likelihood is an intrinsic limi-
tation of the delayed acceptance MCMC scheme per
se, which does not become immediately clear from its
mathematical formulation, and our study is therefore
also of interest to current methodological research in
MCMC beyond the particular settings of ODE param-
eter estimation.
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