
Nonlinear Weighted Finite Automata

Tianyu Li Guillaume Rabusseau Doina Preup
McGill University McGill University McGill University

Abstract

Weighted finite automata (WFA) can expres-
sively model functions defined over strings but
are inherently linear models. Given the re-
cent successes of nonlinear models in machine
learning, it is natural to wonder whether ex-
tending WFA to the nonlinear setting would
be beneficial. In this paper, we propose a
novel model of neural network based nonlinear
WFA model (NL-WFA) along with a learning
algorithm. Our learning algorithm is inspired
by the spectral learning algorithm for WFA
and relies on a nonlinear decomposition of
the so-called Hankel matrix, by means of an
auto-encoder network. The expressive power
of NL-WFA and the proposed learning al-
gorithm are assessed on both synthetic and
real world data, showing that NL-WFA can
lead to smaller model sizes and infer complex
grammatical structures from data.

1 Introduction

Many tasks in natural language processing, computa-
tional biology or reinforcement learning, rely on estimat-
ing functions mapping sequences of observations to real
numbers. Weighted finite automata (WFA) are finite
state machines that allow one to succinctly represent
such functions. WFA have been widely used in many
fields such as grammatical parsing [Mohri and Pereira,
1998], sequence modeling and prediction [Cortes et al.,
2004] and bioinfomatics [Allauzen et al., 2008]. A
probabilistic WFA (PFA) is a WFA satisfying some
constraints that computes a probability distribution
over strings; PFA are expressively equivalent to Hidden
Markov Models (HMM) [Dupont et al., 2005], which
have been successfully applied in many tasks such as

Proceedings of the 21st International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2018, Lanzarote,
Spain. PMLR: Volume 84. Copyright 2018 by the author(s).

speech recognition [Gales and Young, 2008] and hu-
man activity recognition [Nazábal and Artés-Rodríguez,
2015]. Recently, the so-called spectral method has been
proposed as an alternative to EM based algorithms to
learn HMM [Hsu et al., 2009], WFA [Bailly et al., 2009],
predictive state representations [Boots et al., 2011], and
related models. Compared to EM based methods, the
spectral method has the benefits of providing consistent
estimators and reducing computational complexity.

Although WFA have been successfully applied in vari-
ous areas of machine learning, they are inherently linear
models: their computation boils down to the composi-
tion of linear maps. Recent positive results in machine
learning have shown that models based on composing
nonlinear functions are both very expressive and able
to capture complex structure in data. For example, by
leveraging the expressive power of deep convolutional
neural networks in the context of reinforcement learn-
ing, agents can be trained to outperform humans in
Atari games [Mnih et al., 2013] or to defeat world-class
go players [Silver et al., 2016]. Deep convolutional
networks have also recently led to considerable break-
throughs in computer vision [Krizhevsky et al., 2012],
where they showed their ability to disentangle the com-
plex structure of the data by learning a representation
which unfold the original complex feature space (where
the data lies on a low-dimensional manifold) into a
representation space where the structure has been lin-
earized. It is thus natural to wonder to which extent
introducing non-linearity in WFA could be beneficial.
We will show that both these advantages of nonlinear
models, namely their expressiveness and their ability
to learn rich representations, can be brought to the
classical WFA computational model.

In this paper, we propose a nonlinear WFA model (NL-
WFA) based on neural networks, along with a learning
algorithm. In contrast with WFA, the computation of a
NL-WFA relies on successive compositions of nonlinear
mappings. This model can be seen as an extension of dy-
namical recognizers [Moore, 1997] — which are in some
sense a nonlinear extension of deterministic finite au-
tomata — to the quantitative setting. In contrast with
the training of recurrent neural networks (RNN), our

Nonlinear Weighted Finite Automata

learning algorithm does not rely on back-propagation
through time. It is inspired by the spectral learning
algorithm for WFA, which can be seen as a two-step
process: first find a low-rank factorization of the so
called Hankel matrix leading to a natural embedding
of the set of words into a low-dimensional vector space,
and then perform regression in this representation space
to recover the transition matrices. Similarly, our learn-
ing algorithm first finds a nonlinear factorization of the
Hankel matrix using an auto-encoder network, thus
learning a rich nonlinear representation of the set of
strings, and then performs nonlinear regression using a
feed-forward network to recover the transition opera-
tors in the representation space.

Related works. NL-WFA and RNN are closely re-
lated: their computation relies on the composition of
nonlinear mappings directed by a sequence of observa-
tions. In this paper, we explore a somehow orthogo-
nal direction to the recent RNN literature by trying
to connect such models back with classical compu-
tational models from formal language theory. Such
connections have been explored in the past in the non-
quantitative setting with dynamical recognizers [Moore,
1997], whose inference has been studied in e.g. [Pollack,
1991]. The ability of RNN to learn classes of formal lan-
guages has also been investigated, see e.g. [Avcu et al.,
2017] and references therein. It is well know that predic-
tive state representations (PSR) [Littman and Sutton,
2002] are strongly related with WFA [Thon and Jaeger,
2015]. A nonlinear extension of PSR has been pro-
posed for deterministic controlled dynamical systems
in [Rudary and Singh, 2004]. More recently, building
upon reproducing kernel Hilbert space embedding of
PSR [Boots et al., 2013], non-linearity is introduced
into PSR using recurrent neural networks [Downey
et al., 2017, Venkatraman et al., 2017]. Closely related
to this line of work, Hefny et al. [2015] proposed a two-
stage regression algorithm with nonlinear components
for linear dynamical systems. Based on this idea, Sun
et al. [2016] introduced predictive state inference ma-
chines (PSIMs) which directly train models to perform
inference under a nonlinear setting. The major differ-
ence between our methods with [Downey et al., 2017,
?] is that the latter mainly relies on back-propagation
through time, while we investigate how the spectral
learning method for WFA can be beneficially extended
to the nonlinear setting. Moreover, although our meth-
ods bear some similarities with [Hefny et al., 2015]
and [Sun et al., 2016], we focus more on building a
nonlinear model for sequential data while they tend to
focus on filtering and prediction tasks (i.e. the model
is not the actual goal).

2 Preliminaries

We first introduce notions on weighted automata and
the spectral learning method.

2.1 Weighted finite automaton

Let Σ∗ denote the set of strings over a finite alphabet Σ
and let λ be the empty word. A weighted finite automa-
ton (WFA) with k states is a tuple A = 〈α0,α∞, {Aσ}〉
where α0,α∞ ∈ Rk are the initial and final weight
vector respectively, and Aσ ∈ Rk×k is the transi-
tion matrix for each symbol σ ∈ Σ. A WFA com-
putes a function fA : Σ∗ → R defined for each word
x = x1x2 · · ·xn ∈ Σ∗ by

fA(x) = α>0 Ax1Ax2 · · ·Axn
α∞.

By letting Ax = Ax1Ax2 · · ·Axn
for any word x =

x1x2 · · ·xn ∈ Σ∗ we will often use the shorter notation
fA(x) = α>0 Axα∞. A WFA A with k states is minimal
if its number of states is minimal, i.e., any WFA B
such that fA = fB has at least k states. A function
f : Σ∗ → R is recognizable if it can be computed by
a WFA. In this case the rank of f is the number of
states of a minimal WFA computing f . If f is not
recognizable we let rank(f) =∞.

2.2 Hankel matrix

The Hankel matrix Hf ∈ RΣ∗×Σ∗ associated with a
function f : Σ∗ → R is the bi-infinite matrix with
entries (Hf)u,v = f(uv) for all words u, v ∈ Σ∗. The
spectral learning algorithm for WFA relies on the fol-
lowing fundamental relation between the rank of f and
the rank of the Hankel matrix Hf [Carlyle and Paz,
1971, Fliess, 1974]:
Theorem 1. For any f : Σ∗ → R, rank(f) =
rank(Hf).

In practice, one deals with finite sub-blocks of the
Hankel matrix. Given a basis B = (P,S) ⊂ Σ∗ × Σ∗,
where P is a set of prefixes and S is a set of suffixes,
we denote the corresponding sub-block of the Hankel
matrix by HB ∈ RP×S . Among all possible basis,
we are particularly interested in the ones with the
same rank as f . We say that a basis is complete if
rank(HB) = rank(f) = rank(Hf).

For an arbitrary basis B = (P,S), we define its p-
closure by B′ = (P ′,S), where P ′ = P ∪ PΣ. It turns
out that a Hankel matrix over a p-closed basis can be
partitioned into |Σ|+ 1 blocks of the same size [Balle
et al., 2014]:

H>B′ = [H>λ |H
>
σ1
| · · · |H>σ|Σ|]

Tianyu Li, Guillaume Rabusseau, Doina Preup

where for each σ ∈ Σ ∪ {λ} the matrix Hσ ∈ RP×S is
defined by (Hσ)u,v = f(uσv).

2.3 Spectral learning

It is easy to see that the rank of the Hankel ma-
trix Hf is upper bounded by the rank of f : if A =
〈α>0 ,α∞, {Aσ}〉 is a WFA with k states computing f ,
then Hf admits the rank k factorization Hf = PS
where the matrices P ∈ RΣ∗×k and S ∈ Rk×Σ∗ are
defined by Pu,: = α>0 Au and S:,v = Avα∞ for all
u, v ∈ Σ∗. Moreover, one can check that Hσ = PAσS
for each σ ∈ Σ. The spectral learning algorithm relies
on the non-trivial observation that this construction can
be reversed: given any rank k factorization Hλ = PS,
the WFA A = 〈α>0 ,α∞, {Aσ}〉 defined by

α>0 = Pλ,:, α∞ = S:,λ, and Aσ = P+HσS+,

is a minimal WFA computing f [Balle et al., 2014,
Lemma 4.1], where Hσ for σ ∈ Σ ∪ λ denote the finite
matrices defined above for a prefix closed complete
basis B.

3 Nonlinear Weighted Finite
Automata

The WFA model assumes that the transition opera-
tors Aσ are linear. It is natural to wonder whether
this linear assumption sometimes induces a too strong
model bias (e.g. if one tries to learn a function that is
not recognizable by a WFA). Moreover, even for rec-
ognizable functions, introducing non-linearity could
potentially reduce the number of states needed to
represent the function. Consider the following ex-
ample: given a WFA A = 〈α0,α∞, {Aσ}〉, the func-
tion (fA)2 : u 7→ fA(u)2 is recognizable and can be
computed by the WFA A′ = 〈α′0,α′∞, {A

′
σ}〉 with

α′0 = α0 ⊗α0, α′∞ = α∞ ⊗α∞ and A′σ = Aσ ⊗Aσ,
where ⊗ denotes Kronecker product. One can check
that if rank(fA) = k, then rank(fA′) can be as large as
k2, but intuitively the true dimension of the model is k
using non-linearity1. These two observations motivate
us to introduce nonlinear WFA (NL-WFA).

3.1 Definition of NL-WFA

We will use the notation g̃ to stress that a function
g may be nonlinear. We define a NL-WFA Ã of with
k states as a tuple 〈α0, G̃λ, {G̃σ}σ∈Σ〉, where α0 ∈
Rk is a vector of initial weights, G̃σ : Rk → Rk is a
transition function for each σ ∈ Σ and G̃λ : Rk → R

1 By applying the spectral method on the component-
wise square root of the Hankel matrix of A′, one would
recover the WFA A of rank k.

is a termination function. A NL-WFA Ã computes a
function fÃ : Σ∗ → R defined by

fÃ(x) = G̃λ(G̃xt
(· · · G̃x2(G̃x1(α0)) · · ·))

for any word x = x1x2 · · ·xt ∈ Σ∗. Similarly to the
linear case, we will sometimes use the shorthand no-
tation G̃x = G̃xt

◦ G̃xt−1 ◦ · · · ◦ G̃x1 . This nonlinear
model can be seen as a generalization of dynamical
recognizers [Moore, 1997] to the quantitative setting.
It is easy to see that one recovers the classical WFA
model by restricting the functions G̃σ and G̃λ to be
linear. Of course some restrictions on these nonlinear
functions have to be imposed in order to control the
expressiveness of the model. In this paper, we consider
nonlinear functions computed by neural networks.

3.2 A Representation learning perspective
on the spectral algorithm

Our learning algorithm is inspired by the spectral learn-
ing method for WFA. In order to give some insights
and further motivate our approach, we will first show
how the spectral method can be interpreted as a repre-
sentation learning scheme.

The spectral method can be summarized as a two-
stages process consisting of a factorization step and a
regression step: first find a low rank factorization of the
Hankel matrix and then perform regression to estimate
the transition operators {Aσ}σ∈Σ.

First focusing on the factorization step, let us observe
that one can naturally embed the set of prefixes into
the vector space RS by mapping each prefix u to the
corresponding row of the Hankel matrix Hu,:. However,
it is easy to check that this representation is highly
redundant when the Hankel matrix is of low rank. In
the factorization step of the spectral learning algorithm,
the rank k factorization H = PS can be seen as finding
a low dimensional representation Pu,: ∈ Rk for each
prefix u, from which the original Hankel representation
Hu,: can be recovered using the linear map S (indeed
Hu,: = Pu,:S). We can formalize this encoder-decoder
perspective by defining two maps Ψp : P 7→ Rk and
Ψs : Rk 7→ RS by Ψp(u)> = Pu,: and Ψs(x)> = x>S.
One can easily check that Ψs(Ψp(u))> = Hu,:, which
implies that Ψp(u) encodes all the information sufficient
to predict the value f(uv) for any suffix v ∈ S (indeed
f(uv) = Ψp(u)>S:,v).

The regression step of the spectral algorithms consists
in recovering the matrices Aσ satisfying Hσ = PAσS.
From our encoder-decoder perspective, this can be seen
as recovering the compositional mappings Aσ satisfying
Ψp(uσ)> = Ψp(u)>Aσ for each σ ∈ Σ.

It follows from the previous discussion that non-
linearity could be beneficially brought to WFA and

Nonlinear Weighted Finite Automata

into the spectral learning algorithm in two ways: first
by using nonlinear methods to perform the factoriza-
tion of the Hankel matrix, thus discovering a potentially
nonlinear embedding of the Hankel representation, and
second by allowing the compositional feature maps
associated to each symbol to be nonlinear.

4 Learning NL-WFA

Introducing non-linearity can be achieved in several
ways. In this paper, we will use neural networks
due to their ability to discover relevant nonlinear low-
dimensional representation spaces and their expressive
power as function approximators.

4.1 Nonlinear factorization

Introducing non-linearity in the factorization step boils
down to finding two mappings Ψp and Ψs such that
Ψs(Ψp(u)) = Hu,: for any prefix u ∈ P. Briefly go-
ing back to the linear case, one can check that if
H = PS, then we have Hu,: = Hu,:S+S for each
prefix u, implying that the encoder-decoder maps sat-
isfy Ψp(u)> = Hu,:S+ and Ψs(x)> = x>S. Thus the
factorization step can essentially be interpreted as find-
ing an auto-encoder able to project down the Hankel
representation Hu,: to a low dimensional space while
preserving the relevant information captured by Hu,:.

How to extend the factorization step to the nonlinear
setting should now appear clearly: by training an auto-
encoder to learn a low-dimensional representation of
the Hankel representations Hu,:, one will potentially
unravel a rich representation of the set of prefixes from
which a NL-WFA can be recovered.

Let φ̃ : RS 7→ Rk and φ̃′ : Rk → RS be the encoder
and decoder maps respectively. We will train the auto-
encoder shown in Figure 1 (left) to achieve

φ̃′(φ̃(Hu,:)) ' Hu,:.

More precisely, if H ∈ Rm×n, the model is trained to
map the original Hankel representation Hu,: ∈ Rn of
each prefix u to a latent representation vector in Rk,
where k � n, and then map this vector back to the
original representation Hu,:. This is achieved by min-
imizing the reconstruction error (i.e. the `2 distance
between the original representation and its reconstruc-
tion). Instead of linearly factorizing the Hankel matrix,
we use an auto-encoder framework consisting of two
networks, whose hidden layer activation functions are
nonlinear2.

More precisely, if we denote the nonlinear activation
function by θ, and we let A, B, C, D be the weights

2 We use the (component-wise) tanh function in our
experiments.

Figure 1: Factorization network and transition network:
grey units are nonlinear while white ones are linear.

matrices from the left to the right of the neural net
shown in Figure 1 (left), the function f̂ : Rn → Rn
computed by the auto-encoder can be written as

f̂ = φ̃′ ◦ φ̃ : (H)>u,: 7→ θ(θ(θ(H>u,:A)>B)>C)>D

where the encoder-decoder functions φ̃ : Rn → Rk and
φ̃′ : Rk → Rn are defined by φ̃(x)> = θ(θ(x>A)>B)
and φ̃′(h)> = θ(h>C)>D for vectors x ∈ Rn,h ∈ Rk
where n is the number of suffixes.

It is easy to check that if the activation function θ is the
identity, one will exactly recover a rank k factorization
of the Hankel matrix, thus falling back onto the classical
factorization step of the spectral learning algorithm.

4.2 Nonlinear regression

Given the encoder-decoder maps φ̃ and φ̃′, we then
move on to recovering the transition functions. Re-
call that we wish to find the compositional feature
maps G̃σ : Rk → Rk for each σ satisfying Ψp(uσ) =
G̃σ(Ψp(u)) for all u ∈ P. Using the encoder map φ̃
obtained in the factorization step, the mapping Ψp can
be written as Ψp(u) = φ̃(Hu,:).

In order to learn these transition maps, we will thus
train one neural network for each symbol σ to minimize
the following squared error loss function∑

u∈P
‖G̃σ(φ̃(Hu,:))− φ̃(Huσ,:)‖2.

The structure of the simple feed-forward network used
to learn the transition maps is shown in Figure 1 (right).
Let E,F be the two weights matrices, the function
ĝ : Rk → Rk computed by this network can be written
as

ĝ : h> 7→ θ(θ(h>E)>F)
We want to point out that both hidden units and out-
put units of this network are nonlinear. Since this
network will be trained to map between latent repre-
sentations computed by the factorization network, the

Tianyu Li, Guillaume Rabusseau, Doina Preup

output units of the transition network and the units
corresponding to the latent representation in the fac-
torization network should be of the same nature to
facilitate the optimization process.

4.3 Overall learning algorithm

Let (P,S) ⊂ Σ∗×Σ∗ be a basis of suffixes and prefixes
such that λ ∈ P ∩ S. Let (P ′,S) be its p-closure (i.e.
P ′ = P ∪ PΣ) and let m = |P ′|, n = |S|. For reasons
that will be clarified in the next section, we assume that
P is prefix-closed (i.e. for any x ∈ P, all prefixes of x
also belong to P). The first step consists in building
the estimate H ∈ Rm×n of the Hankel matrix from the
training data (by using e.g. the empirical frequencies
in the train set), where the rows of H are indexed by
prefixes in P ′ = P ∪ PΣ and its columns by suffixes in
S. The learning algorithm for NL-WFA then consists
of two steps:

1. Train the factorization network to obtain a nonlin-
ear decomposition of the Hankel matrix H through
the mappings φ̃ : Rn → Rk and φ̃′ : Rk → Rn sat-
isfying

φ̃′(φ̃(Hu,:)) ' Hu,: for all u ∈ P ∪ PΣ. (1)

2. Train the transition networks for each symbol σ ∈
Σ to learn the transition maps G̃σ : Rk → Rk
satisfying

G̃σ(φ̃(Hu,:)) ' φ̃(Huσ,:) for all u ∈ P. (2)

The resulting NL-WFA is then given by Ã =
〈α0, G̃λ, {G̃σ}σ∈Σ〉 where α0 = φ̃(Hλ,:) and G̃λ is de-
fined by

G̃λ(x) = λ>φ̃′(x) for all x ∈ Rk

where λ is the one-hot encoding of the empty suffix λ.

4.4 Theoretical analysis

While the definitions of the initial vector α0 and ter-
mination function Gλ given above may seem ad-hoc,
we will now show that the learning algorithm we de-
rived corresponds to minimizing an error loss function
between fÃ(u) and the estimated value Hu,λ over all
prefixes in P . Intuitively, this means that our learning
algorithm aims at minimizing the empirical squared
error loss over the training set P ⊂ Σ∗. More formally,
we show in the following theorem that if both the factor-
ization network and the transition networks are trained
to optimality (i.e. they both achieve 0 training error),
then the resulting NL-WFA exactly recovers the values
given in the first column of the estimate of the Hankel
matrix.

Theorem 2. If the prefix set P is prefix-closed and
if equality holds in Eq. (1) and Eq. (2), then the NL-
WFA Ã = 〈α0, G̃λ, {G̃σ}σ∈Σ〉, where α0 = φ̃(Hλ,:) and
G̃λ : x 7→ λ>φ̃′(x), is such that fÃ(u) = Hu,λ for all
u ∈ P.

Proof. We first show by induction on the length of a
word u = u1u2 · · ·ut ∈ P that

G̃u(α0) = G̃ut
(G̃ut−1(· · · G̃1(α0) · · ·)) = φ̃(Hu,:).

If u = σ ∈ Σ, using the fact that λ ∈ P we have
G̃σ(α0) = G̃σ(φ̃(Hλ,:)) = φ̃(Hσ,:) by Eq. (2). Now
if u = u1u2 · · ·ut ∈ P, we can apply the induc-
tion hypothesis on u1u2 · · ·ut−1 (since P is prefix-
closed) to obtain G̃u(α0) = G̃ut(G̃u1···ut−1(α0)) =
G̃ut(φ̃(Hu1···ut−1,:)) = φ̃(Hu,:) by Eq. (2).

To conclude, for any u ∈ P we have fÃ(u) =
G̃λ(G̃u(α0)) = G̃λ(φ̃(Hu,:)) = λ>φ̃′(φ̃(Hu,:)) =
Hu,:λ = Hu,λ by Eq. (1).

Intuitively, it follows that the learning algorithm de-
scribed in Section 4.3 aims at minimizing the following
loss function

J(φ̃, φ̃′, {G̃σ}σ∈Σ) =
∑
u∈P

(λ>φ̃′(G̃u(φ̃(Hλ,:))−Hu,λ)2

=
∑
u∈P

(fÃ(u)− f̂(u))2

where f̂(u) is the estimated value of the target function
on the word u, and where the NL-WFA Ã is a function
of the encoder-decoder maps φ̃, φ̃′ and of the transition
maps G̃σ as described in Section 4.3.

Even though Theorem 2 seems to suggest that our
learning algorithm is prone to over-fitting, this is not
the case. Indeed, akin to the linear spectral learning
algorithm, the restriction on the number of states of
the NL-WFA (which corresponds to the size of the
latent representation layer in the factorization network)
induces regularization and enforces the learning pro-
cess to discriminate between signal and noise (i.e. in
practice, the networks will not achieve 0 error due to
the bottleneck structure of the factorization network).

4.5 Applying non-linearity independently in
the factorization and transition networks

We have shown that non-linearity can be introduced
into the two steps of our learning algorithm. We can
thus consider three variants of this algorithm where
we either apply non-linearity in the factorization step
only, in the regression step only, or in both steps. It

Nonlinear Weighted Finite Automata

Figure 2: Pautomac score for the Dyck language ex-
periment for different model sizes (trained on a sample
size of 20,000).

is easy to check that these three different settings cor-
respond to three different NL-WFA models depending
on whether the termination function only is nonlinear,
the transition functions only are nonlinear, or both the
termination and transition functions are nonlinear. In-
deed, recall that that a NL-WFA Ã is defined as a tuple
Ã = 〈α0, G̃λ, {G̃σ}σ∈Σ〉. If no non-linearity are intro-
duced in the factorization network, the termination
function will have the form

G̃λ : x 7→ λ>φ̃′(x) = λ>D>C>x

(using the notations from the previous sections), which
is linear. Similarly, if no non-linearity are used in the
transition networks, the resulting maps G̃σ will be
linear.

One may argue that only applying non-linearity in
the termination function G̃λ would not lead to an
expressive enough model. However, it is worth noting
that in this case, after the nonlinear factorization step,
even though the transition functions are linear they are
operating on a nonlinear feature space. This is similar
in spirit to the kernel trick, where a linear model is
learned in a feature space resulting from a nonlinear
transformation of the initial input space. Moreover,
if we go back to the example of the squared function
(fA)2 for some WFA A with k states (see beginning
of Section 3), even though (fA)2 may have rank up
to k2, one can easily build a NL-WFA with k states
computing (fA)2 where only the termination function
is nonlinear.

5 Experiments

We compare the classical spectral learning algorithm
with the three configurations of our neural-net based
NL-WFA learning algorithms: applying non-linearity

Figure 3: Word error rate for the Dyck language ex-
periment for different model sizes (trained on a sample
size of 20,000).

only in the factorization step (denoted by fac.non),
only in the regression step (denoted by tran.non), and
in both phases (denoted by both.non). We will perform
experiments on a grammatical inference task (i.e. learn
a distribution over Σ∗ from samples drawn from this
distribution) with both synthetic and real data.

5.1 Methods of evaluation

We compare the trained models on two tasks, language
modeling (i.e. density estimation) and one-step ahead
predictions, by using the two following metrics:

• The Pautomac score was first proposed for the
Pautomac challenge [Verwer et al., 2014] and is
defined by

Pauto(M) = −2
∑

x∈T
P∗(x) log(PM (x))

where PM (x) is the normalized probability as-
signed to x by the learned model and P∗(x) is
the normalized true probability (both PM and P∗
are normalized to sum to 1 over the test set T).
Since the models returned by both our method and
the spectral learning algorithm are not ensured to
outputs positive values, we replace negative val-
ues by their absolute values when computing the
Pautomac score.

• The word error rate (WER) measures the percent-
age of incorrectly predicted symbols when, given
each prefix of strings in the test set, the most likely
next symbol is predicted.

For the language modeling task, both NL-WFA and
the spectral learning algorithm are used to directly
learn the distribution over Σ∗ (i.e. the function f :

Tianyu Li, Guillaume Rabusseau, Doina Preup

Figure 4: Average Pautomac score for learning the
Dyck language with different sample sizes.

x 7→ P(x)). For the prediction task, both methods are
used to learn the prefix distribution fp : x 7→ P(xΣ∗)
instead, and the next symbol is predicted by x 7→
arg maxσ∈Σ fp(xσ) at test time.

5.2 Synthetic data: probabilistic Dyck
language

For the synthetic data experiment, we generate data
from a probabilistic Dyck language. Let Σ = {[,]},
we consider the language generated by the following
probabilistic context free grammar

S → SS with probability 0.2
S → [S] with probability 0.4
S → [] with probability 0.4

i.e. starting from the symbol S, we draw one of the rules
according to their probability and apply it to transform
S into the corresponding right hand side; this process
is repeated until no S symbol are left. One can check
that this distribution will generate balanced strings
of brackets. It is well known that this distribution
cannot be computed by a WFA (since its support is
a context free grammar). However, as a WFA can
compute any distribution with finite support, it can
model the restriction of this distribution to word of
length less than some threshold N . By using this
distribution for our synthetic experiments, we want to
showcase the fact that NL-WFA can lead to models
with better predictive accuracy when the number of
states is limited and that they can better capture the
complex structure of this distribution.

5.3 Real data: Penn treebank

In our experiments, we use empirical frequencies in a
training data set to estimate the Hankel matrix HB ∈

Figure 5: Average word error rate for learning the Dyck
language with different sample sizes.

R1000×1000, where the p-closed basis B is obtained by
selecting the 1, 000 most frequent prefixes and suffixes
in the training data. We first assess the ability of
NL-WFA to better capture the structure in the data
when the number of states is limited. We compared the
models for different model sizes k ranging from 1 to 50,
where k is the number of states of the learned WFA
and NL-WFA. For the latter, we used a three hidden
layers structure for the factorization network where the
number of hidden units are set to 2k, k and 2k. For
the transition networks, we use a neural network with
2k hidden units3. We used Adamax [Kingma and Ba,
2014] with learning rate 0.015 and 0.001 respectively
to train these two networks.

All models are trained on a training set of size 20, 000
and the Pautomac score and WER on a test set of size
250 are reported in Figure 2 and 3 respectively. For
both metrics, we see that NL-WFA gives better results
for small model sizes. While NL-WFA and WFA tend
to perform similarly for the Pautomac score for larger
model sizes, NL-WFA clearly outperforms WFA in
terms of WER in this case. This shows that including
non-linearity can increase the prediction power of WFA
by discovering the underlying nonlinear structure and
can be beneficial when dealing with a small number of
states.

We then compared the sample complexity of learning
NL-WFA and WFA by training the different models on
training set of sizes ranging from 200 to 20, 000. For
all models the rank is chosen by cross-validation. In
Figure 4 and Figure 5, we show the performances for
the four models on a test set of size 250 by reporting
the average and standard deviation over 10 runs of
this experiment. We can see that NL-WFA achieve

3 These hyper parameters are not finely tuned, thus some
optimization might potentially improve the results.

Nonlinear Weighted Finite Automata

Table 1: Log Pautomac Score For Real Data
Sample Size SP EM RNN Fac.non Tran.non Both.non

1000 9.098 4.252 4.765 8.005 3.480 2.937
2000 4.995 3.723 4.6053 4.874 3.374 2.923
3000 4.532 3.570 4.398 4.431 3.423 2.894
4000 4.235 3.542 4.244 4.166 3.198 2.880
ALL 4.234 3.496 4.191 4.144 3.098 2.748

better results on small sample sizes for the Pautomac
score and consistently outperforms the linear model for
all sample sizes for WER. This shows that NL-WFA
can use the training data more efficiently and again
that the expressiveness of NL-WFA is beneficial to
this learning task. The Penn Treebank [Taylor et al.,
2003] is a well known benchmark dataset for natural
language processing. It consists of approximately 7
million words of part-of-speech tagged text, 3 million
words of skeletally parsed text, over 2 million words
of text parsed for predicate argument structure, and
1.6 million words of transcribed spoken text annotated
for speech disfluencies. In this experiment, we use a
small portion of the Treebank dataset: the character
level of English verbs which was used in the SPICE
challenge [Balle et al., 2017]. This dataset contains
5,987 sentences over an alphabet of 33 symbols as the
training set. It also provides two test sets of size 750.
We used one of the test sets as a validation set and
then tested our models on the other.

For this experiment, the Hankel matrix HB is of size
3000× 300 where the prefixes and suffixes have been
selected again by taking the most frequents in the train-
ing data. We used a five layers factorization network
where the layers are of size 4k, 2k, k, 2k and 4k respec-
tively, where k is the number of states of the NL-WFA.
The structure of the transition networks is the same as
in the previous experiment. For all models, the rank is
selected using the validation set.

In the experiments, we compare the performance of NL-
WFA with recurrent neural networks (RNNs), HMM
(Using the Baum-Welch algorithm) and spectral learn-
ing for WFA. For RNNs, we use a three-layers LSTM
network with 128 units for each layer. We use RM-
Sprop [Hinton et al., 2012] with 0.001 learning rate
to optimize the categorical entropy. The results are
reported in Table 1 and Table 2. On the language
modeling task (Pautomac score), our model (both.non)
outperforms all the baselines for every sample size (we
also noticed that the proportion of negative values pre-
dicted by the learned NL-WFA is significantly lower
than the one for classical spectral learning). On the pre-
diction task, RNNs obtain the best results given enough
data while our method (fac.non) performs the best for
small sample sizes (smaller than 3000). This shows
that our model can efficiently model string distribu-
tions and that it can obtain competitive performances

Table 2: WER For Real Data
Sample Size SP EM RNN Fac.non Tran.non Both.non

1000 0.8432 0.808 0.806 0.7630 0.8834 0.8630
2000 0.8342 0.793 0.788 0.7332 0.8762 0.8435
3000 0.8195 0.781 0.736 0.7134 0.8679 0.8212
4000 0.8141 0.776 0.692 0.6935 0.8563 0.8098
ALL 0.8033 0.753 0.669 0.6831 0.8441 0.7910

in the prediction task, especially when dealing with
small sample sizes.

6 Discussion

We believe that trying to combine models from for-
mal languages theory (such as weighted automata) and
models that have recently led to several successes in
machine learning (e.g. neural networks) is an exciting
and promising line of research, both from the theoreti-
cal and practical sides. This work is a first step in this
direction: we proposed a novel nonlinear weighted au-
tomata model along with a learning algorithm inspired
by the spectral learning method for classical WFA. We
showed that non-linearity can be introduced in two
ways in WFA, in the termination function or in the
transition maps, which directly translates into the two
steps of our learning algorithm. In our experiment,
we showed on both synthetic and real data that (i)
NL-WFA can lead to models with better predictive ac-
curacy than WFA when the number of states is limited,
(ii) NL-WFA are able to capture the complex under-
lying structure of challenging languages (such as the
Dyck language used in our experiments) and (iii) NL-
WFA exhibit better sample complexity when learning
on data with a complex grammatical structure.

In the future, we intend to investigate further the
properties of NL-WFA from both the theoretical and
experimental perspectives. For the former, one natural
question is whether we could obtain learning guarantees
for some specific classes of nonlinear functions. Indeed,
one of the main advantages of the spectral learning al-
gorithm is that it provides consistent estimators. While
it may be difficult to obtain such guarantees when con-
sidering functions computed by neural networks, we be-
lieve that studying the case of more tractable nonlinear
functions (e.g. polynomials) could be very insightful.
We also plan on thoroughly investigating connections
between NL-WFA and RNN. From the practical per-
spective, we want to first tune the hyper-parameters for
NL-WFA more extensively on the current datasets to
potentially improve the results. In addition, we intend
to run further experiments on real data and on other
tasks beside language modeling (e.g. classification, re-
gression). Finally, leveraging the strong connection
between WFA and PSR, we intend to explore using
NL-WFA in the context of reinforcement learning.

Tianyu Li, Guillaume Rabusseau, Doina Preup

Acknowledgements

Tianyu Li and Doina Precup have been supported by
NSERC. G. Rabusseau acknowledges support of an
IVADO postdoctoral fellowship.

References
Cyril Allauzen, Mehryar Mohri, and Ameet Talwalkar.
Sequence kernels for predicting protein essentiality.
In Proceedings of the 25th International Conference
on Machine learning, pages 9–16. ACM, 2008.

Enes Avcu, Chihiro Shibata, and Jeffrey Heinz. Subreg-
ular complexity and deep learning. arXiv preprint
arXiv:1705.05940, 2017.

Raphaël Bailly, François Denis, and Liva Ralaivola.
Grammatical inference as a principal component
analysis problem. In Proceedings of the 26th An-
nual International Conference on Machine Learning,
pages 33–40. ACM, 2009.

Borja Balle, Xavier Carreras, Franco M Luque, and
Ariadna Quattoni. Spectral learning of weighted
automata. Machine learning, 96(1-2):33–63, 2014.

Borja Balle, Rémi Eyraud, Franco M Luque, Ariadna
Quattoni, and Sicco Verwer. Results of the sequence
prediction challenge (spice): a competition on learn-
ing the next symbol in a sequence. In International
Conference on Grammatical Inference, pages 132–136,
2017.

Byron Boots, Sajid M Siddiqi, and Geoffrey J Gordon.
Closing the learning-planning loop with predictive
state representations. The International Journal of
Robotics Research, 30(7):954–966, 2011.

Byron Boots, Arthur Gretton, and Geoffrey J Gor-
don. Hilbert space embeddings of predictive state
representations. In Proceedings of the Twenty-Ninth
Conference on Uncertainty in Artificial Intelligence,
pages 92–101. AUAI Press, 2013.

Jack W. Carlyle and Azaria Paz. Realizations by
stochastic finite automata. Journal of Computer
and System Sciences, 5(1):26–40, 1971.

Corinna Cortes, Patrick Haffner, and Mehryar Mohri.
Rational kernels: Theory and algorithms. Journal
of Machine Learning Research, 5(Aug):1035–1062,
2004.

Carlton Downey, Ahmed Hefny, Boyue Li, Byron Boots,
and Geoffrey Gordon. Predictive state recurrent
neural networks. arXiv preprint arXiv:1705.09353,
2017.

Pierre Dupont, François Denis, and Yann Esposito.
Links between probabilistic automata and hidden
markov models: probability distributions, learning

models and induction algorithms. Pattern Recogni-
tion, 38(9):1349–1371, 2005.

Michel Fliess. Matrices de hankel. Journal de Mathé-
matiques Pures et Appliquées, 53(9):197–222, 1974.

Mark Gales and Steve Young. The application of hidden
markov models in speech recognition. Foundations
and Trends in Signal Processing, 1(3):195–304, 2008.

Ahmed Hefny, Carlton Downey, and Geoffrey J Gordon.
Supervised learning for dynamical system learning.
In Advances in neural information processing sys-
tems, pages 1963–1971, 2015.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swer-
sky. Neural networks for machine learning-lecture
6a-overview of mini-batch gradient descent, 2012.

Daniel Hsu, Sham M Kakade, and Tong Zhang. A spec-
tral algorithm for learning hidden markov models.
In Proceedings of the 22nd Conference on Learning
Theory, 2009.

Diederik Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information
Processing Systems, pages 1097–1105, 2012.

Michael L Littman and Richard S Sutton. Predic-
tive representations of state. In Advances in Neural
Information Processing Systems, pages 1555–1561,
2002.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep rein-
forcement learning. arXiv preprint arXiv:1312.5602,
2013.

Mehryar Mohri and Fernando CN Pereira. Dynamic
compilation of weighted context-free grammars. In
Proceedings of the 36th Annual Meeting of the Asso-
ciation for Computational Linguistics and 17th Inter-
national Conference on Computational Linguistics-
Volume 2, pages 891–897. Association for Computa-
tional Linguistics, 1998.

Cristopher Moore. Dynamical recognizers: Real-time
language recognition by analog computers. In Foun-
dations of Computational Mathematics, pages 278–
286. Springer, 1997.

Alfredo Nazábal and Antonio Artés-Rodríguez. Dis-
criminative spectral learning of hidden markov mod-
els for human activity recognition. In Acoustics,
Speech and Signal Processing (ICASSP), 2015 IEEE
International Conference on, pages 1966–1970. IEEE,
2015.

Nonlinear Weighted Finite Automata

Jordan B Pollack. The induction of dynamical recog-
nizers. Machine learning, 7(2):227–252, 1991.

Matthew R Rudary and Satinder P Singh. A nonlinear
predictive state representation. In Advances in Neu-
ral Information Processing Systems, pages 855–862,
2004.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. Mastering the
game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

Wen Sun, Arun Venkatraman, Byron Boots, and J An-
drew Bagnell. Learning to filter with predictive state
inference machines. In International Conference on
Machine Learning, pages 1197–1205, 2016.

Ann Taylor, Mitchell Marcus, and Beatrice Santorini.
The penn treebank: an overview. In Treebanks, pages
5–22. Springer, 2003.

Michael Thon and Herbert Jaeger. Links between mul-
tiplicity automata, observable operator models and
predictive state representations: a unified learning
framework. The Journal of Machine Learning Re-
search, 16(1):103–147, 2015.

Arun Venkatraman, Nicholas Rhinehart, Wen Sun,
Lerrel Pinto, Martial Hebert, Byron Boots, Kris M
Kitani, and J Andrew Bagnell. Predictive-state de-
coders: Encoding the future into recurrent networks.
arXiv preprint arXiv:1709.08520, 2017.

Sicco Verwer, Rémi Eyraud, and Colin De La Higuera.
Pautomac: a probabilistic automata and hidden
markov models learning competition. Machine learn-
ing, 96(1-2):129–154, 2014.

	Introduction
	Preliminaries
	Weighted finite automaton
	Hankel matrix
	Spectral learning

	Nonlinear Weighted Finite Automata
	Definition of NL-WFA
	A Representation learning perspective on the spectral algorithm

	Learning NL-WFA
	Nonlinear factorization
	Nonlinear regression
	Overall learning algorithm
	Theoretical analysis
	Applying non-linearity independently in the factorization and transition networks

	Experiments
	Methods of evaluation
	Synthetic data: probabilistic Dyck language
	Real data: Penn treebank

	Discussion

