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Appendix
A  Proof of Lemma 5.3

Proof. Assume the contrary, i.e. at the end of round
r=[2+ l)% 2], the best arm and the
second best arm are still not differentiated, meaning
for some i # *, we still have

i~ g,/2 <A + g2

By Lemma 5.2, we have g, < A/2. Thus, we have

po ST + 00 /2 ST + 3,2 T+ 3A/4

where for the second step we use Lemma 4.3. Simi-
larly, we haveu; > M( DA /4. Then, we have
(1" +30/4) -

A< p—pi < (U<r)_A/4)<A

which results in a contradiction. O

B Proof of Theorem 6.1

Proof. We present the algorithm in Algorithm 2.
The algorithm repeatedly calls the procedure
in Algorithm 1 with increasing time horizons
To,T1,...,Tr, where L < loglogT. By setting
T, =T7 |, we have T} = gl. Then, by Theorem 4.1,
we can upper bound the regret as

L K
— log(A;/A)log T,
ZEDDIE S

1=0 i=1 v

XL: XK: 2 log(A;/A)log Ty

1=0 i=1 i

i 2L 1og(A;/A) log Ty
A

A

i=1

K
log(A;/A)logT
< = SV~

i=1

which proves the theorem. O

C Discussion of Conjecture on the
Lower Bound for Stochastic
Bandits

For any given round r, for some « > 0, define:
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That correspond to two terms in
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which is the total regret provided within Section
5. Consider the following example where there is
a group of high-value arms and a group of low-value
arms, and the size of the low-value arms is larger
than the high-value arms.

Example C.1. Assume 1 > E > ¢, and s > 1/2.
Let Aj =€ fori=1...sK, and A; = E fori =
sK+1...K.

In this example, we can find that as g, < E/2,
R = sK/gr, and R = (1 —s)K/E.

ht out Since
gr S F and s > 1/2, we can find that R < R(r).

out ~o
This means that Example C.1 will not harm us 1f we
use Algorithm 1 because we know that > R <

2 1/ A

Then, we consider another example where the size
of the group of the high-value arms is larger than
low-value arms. Particularly, we consider

Example C.2. Assume 1 > E > ¢, and s < 1/2,
where s/(1 —s) <e/E. Let A; =€ fori=1...5K,
and Aj =F fori=sK+1...K.

We can find that in this example, as long as € < g, <
E, Ri(g) SsK/e S (1—-9)/E = R((jz)t This means
that this is the hard case for Algorithm 1 because
R(();)t is dominating. However, we can deal with this

example with the following update rule

B 9r
Irat = 2max{1, (1 — s)/s}
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which is roughly g1 = m. Note that
»*out in

if s is unknown, we can estimate it by simply count-
ing the number of arms not ruled out. With the
new update rule, we can find that as long as g, < F,
we have ¢g,11 S Es/(1 — s) < e. This means that
in the next round, we are able to identify the high-
value arms. Therefore, the number of rounds is a

constant.

Finally, we consider the following case where we con-
jectured to be the hard case:

Example C.3. Let A, =i/K fori=1,2,... K.

First note that in this example, R\") = n and R}, ~

nlog1/gy, where we can find that R < RU") for

out
any r. If we use the trick we are dealing with Exam-

ple C.2, we can find that the corresponding update

rule becomes g,11 = ﬁ’i/gr. Such rule is exactly

(9). Therefore, we conjecture that the additional

% factor is not improvable.
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