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Appendix

A Proof of Lemma 5.3

Proof. Assume the contrary, i.e. at the end of round
r = d( 2

ε + 1) log 2/∆
log log 2/∆ + 2e, the best arm and the

second best arm are still not differentiated, meaning
for some i 6= ∗, we still have

µ
(r)
∗ − gr/2 < µ

(r)
i + gr/2

By Lemma 5.2, we have gr ≤ ∆/2. Thus, we have

µ∗ ≤ µ(r)
∗ + gr/2 ≤ µ(r)

i + 3gr/2 ≤ µ(r)
i + 3∆/4

where for the second step we use Lemma 4.3. Simi-
larly, we haveµi ≥ µ(r)

i −∆/4. Then, we have

∆ ≤ µ∗ − µi ≤ (µ
(r)
i + 3∆/4)− (µ

(r)

a(r)
−∆/4) < ∆

which results in a contradiction.

B Proof of Theorem 6.1

Proof. We present the algorithm in Algorithm 2.
The algorithm repeatedly calls the procedure
in Algorithm 1 with increasing time horizons
T0, T1, . . . , TL, where L ≤ log log T . By setting
Tl = T 2

l−1, we have Tl = T 2l

0 . Then, by Theorem 4.1,
we can upper bound the regret as

ΨT .
L∑
l=0

K∑
i=1

log(∆i/∆) log Tl
∆i

=

L∑
l=0

K∑
i=1

2l log(∆i/∆) log T0

∆i

.
K∑
i=1

2L log(∆i/∆) log T0

∆i

.
K∑
i=1

log(∆i/∆) log T

∆i

which proves the theorem.

C Discussion of Conjecture on the
Lower Bound for Stochastic
Bandits

For any given round r, for some α > 0, define:

R
(r)
in =

∑
i:∆i<αgr

1

gr
, R

(r)
out =

∑
i:∆i>αgr

1

∆i

That correspond to two terms in
ri∑
r=1

∆i ·
2 log(1/δ)

g2
r

+

rmax∑
r=ri+1

∆i ·
2 log(1/δ)

(∆i − gr−1)
2

+ ∆i · rmax (13)

which is the total regret provided within Section
5. Consider the following example where there is
a group of high-value arms and a group of low-value
arms, and the size of the low-value arms is larger
than the high-value arms.
Example C.1. Assume 1 > E � ε, and s > 1/2.
Let ∆i = ε for i = 1 . . . sK, and ∆i = E for i =
sK + 1 . . .K.

In this example, we can find that as gr < E/2,
R

(r)
in = sK/gr, and R

(r)
out = (1 − s)K/E. Since

gr . E and s > 1/2, we can find that R(r)
out . R

(r)
in .

This means that Example C.1 will not harm us if we
use Algorithm 1 because we know that

∑
r R

(r)
in .∑

i 1/∆i.

Then, we consider another example where the size
of the group of the high-value arms is larger than
low-value arms. Particularly, we consider
Example C.2. Assume 1 > E � ε, and s < 1/2,
where s/(1− s) < ε/E. Let ∆i = ε for i = 1 . . . sK,
and ∆i = E for i = sK + 1 . . .K.

We can find that in this example, as long as ε . gr .
E, R(r)

in . sK/ε . (1 − s)/E = R
(r)
out. This means

that this is the hard case for Algorithm 1 because
R

(r)
out is dominating. However, we can deal with this

example with the following update rule

gr+1 =
gr

2 max{1, (1− s)/s}
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which is roughly gr+1 = gr

2 max{1,R(r)
out/R

(r)
in }

. Note that

if s is unknown, we can estimate it by simply count-
ing the number of arms not ruled out. With the
new update rule, we can find that as long as gr . E,
we have gr+1 . Es/(1 − s) . ε. This means that
in the next round, we are able to identify the high-
value arms. Therefore, the number of rounds is a
constant.

Finally, we consider the following case where we con-
jectured to be the hard case:

Example C.3. Let ∆i = i/K for i = 1, 2, . . . ,K.

First note that in this example, R(r)
in h n and R(r)

out h
n log 1/gr, where we can find that R(r)

in . R
(r)
out for

any r. If we use the trick we are dealing with Exam-
ple C.2, we can find that the corresponding update
rule becomes gr+1 = gr

2 log 1/gr
. Such rule is exactly

(9). Therefore, we conjecture that the additional
log(∆i/∆)

log log(∆i/∆) factor is not improvable.
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