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Abstract

Kernel methods are powerful tools for model-
ing nonlinear data. However, the amount of
computation and memory required for kernel
methods becomes the bottleneck when deal-
ing with large-scale problems. In this paper,
we propose Nested Nyström Method (NNM)
which achieves a delicate balance between the
approximation accuracy and computational
efficiency by exploiting the multilayer struc-
ture and multiple compressions. Even when
the size of the kernel matrix is very large,
NNM consistently decomposes very small ma-
trices to update the eigen-decomposition of
the kernel matrix. We theoretically show that
NNM implicitly updates the principal sub-
space through the multiple layers, and also
prove that its corresponding errors of rank-k
PSD matrix approximation and kernel PCA
(KPCA) are decreased by using additional sub-
layers before the final layer. Finally, we empir-
ically demonstrate the decreasing property of
errors of NNM with the additional sublayers
through the experiments on the constructed
kernel matrices of real data sets, and show
that NNM effectively controls the efficiency
both for rank-k PSD matrix approximation
and KPCA.

1 Introduction

The scalability of kernel methods is the major bottle-
neck for applying them to large-scale problems due
to the computational and memory cost caused by the
large dense kernel matrices. Nyström method is one of
the effective methods for accelerating the kernel meth-
ods by low-rank approximation of the kernel matrix,
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K ∈ Rn×n. There has been a large body of work that
further improves the approximation quality and compu-
tational efficiency via adopting various sampling meth-
ods [5, 15, 4, 8, 13, 3, 11, 23, 10] and refining approxima-
tion formula [7, 5, 12, 20, 13, 18]. Especially, for rank-k
spectral decomposition of K, there are two basic rank-
k Nyström methods which are rank-k Standard Nys-
tröm Method (SNM) [5] and orthogonal Nyström method
(ONM) [7]. Recently, their efficient versions which are
SNM using Randomized SVD (SNM+Rand.SVD) [12]
and Double Nyström Method (DNM) [13] were proposed.
All these four methods implicitly approximate the first
k principal directions UY,k of n mapped data points
Y in the feature space to compute the rank-k spectral
decomposition of K = Y>Y with distinct schemes
based on different motivations [13]. Rank-k SNM [5]
actually computes the first k principal directions US,k

of s sample mapped points S in the feature space, and
SNM+Rand.SVD [12] uses randomized SVD to im-
prove efficiency for computing the principal directions
of sample mapped points. That is, rank-k SNM and
SNM+Rand.SVD approximate UY,k via US,k, which
is computed by a particular form. However, it is known
that both these two approximations lose the orthogo-
nality and are biased to the sample subspace which is
range(S). On the other hand, the ONM computes the
best k approximate principal orthogonal direction in
the sample subspace range(S) in the sense of minimize
the KPCA reconstruction error [13]. However, such
approximation requires extra computation, resulting
higher time complexity O(s2n) compared to the time
complexity of rank-k SNM which is O(ksn+ k3). To
further accelerate ONM, DNM [13] uses ONM twice
in different scales, so that to compress the sample sub-
space range(S) for reducing the dimension of possible
solution space for efficient computing of UY,k. Al-
though the algorithm performs well in practice, there is
no analysis about how its rank-k approximation error
varies after compression of sample subspace, and it is
not clear whether the double scales are enough in terms
of the balance between approximation accuracy and
computation efficiency.

To achieve a better trade-off between these two factors,
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we extend the DNM to a multi-scale Nyström method.
Accelerating the algorithms by exploiting multi-scale
structures has been studied for the various methods
including FEM [6], Bayesian optimization [21] and neu-
ral network [1] to solve the nonlinear problems, and
there are also a number of applications such as multi-
scale stable kernel construction [17], manifold learn-
ing [19], dictionary learning [16], and object detection
[2, 14]. Among them, feature pyramid networks [14]
successfully achieves both efficient and accurate object
detection.

Inspired by the multi-scale approximation, we pro-
pose a multi-scale Nyström method, Nested Nys-
tröm Method (NNM), for both efficient and accurate
eigen-decomposition of PSD matrices. NNM has a
multilayer structure which consists of t sublayers and
the final layer to efficiently and accurately updates the
first k principal direction UY,k for computing a rank-k
spectral decomposition of K. We note that NNM is a
general multi-scale framework which can be combined
with any other column sampling, and our contribution
is orthogonal to the column samplings. Interestingly, it
can be viewed as t fully connected neural networks in
the structure of NNM as described in Fig 1. We first
briefly introduce the rank-k Nyström algorithms in Sec-
tion 2. Then, we describe the nested Nyström method
and provide an error analysis of NNM accordingly in
Section 3. In Section 5, we will demonstrate our theo-
retical analysis of NNM and show that NNM is efficient
for both rank-k PSD matrix approximation and KPCA
on several benchmarks.

2 Rank-k Nyström Methods and
Their Implicit Equations

In this section, we briefly introduce the notations and
discuss the Nyström methods with the implicit equa-
tions regarding to approximating principal directions
UY,k of n mapped data points Y in the feature space.

By the spectral theorem, for any n × n PSD matrix
K, there exists a matrix Y ∈ Rd×n which can be
considered as n mapped data points so that K = Y>Y
without loss of generality, where d is finite [5]. Even if
K is generated by RBF kernel, the unknown mapped
data in feature space can be isomorphically represented
as Y s.t. K = Y>Y. Then, let S be the d× s sample
matrix which consists of s sample columns of d × n
matrix Y corresponding to the column index J , and
let C = Y>S be the n× s submatrix of PSD matrix
K, which can be regarded as the inner product matrix
of the whole data instances and the samples in the
feature space. For kernel methods, C can be computed
by using the kernel function κ, i.e., C(i,j) = κ(xi,xt)
where t ∈ J is the j-th sample index among s sample

Figure 1: An example of muti-scale structure of NNM
with four layers which are three sublayers and the final
layer. Implicitly, NNM with four layers consists of three
Fully Connected (FC) neural networks to compute the
rank-k spectral decomposition of K. The output of
each FC neural network can be considered as approx-
imate principal directions of n mapped data points,
and NNM uses them to compute loading vectors of the
subsamples/samples on the upper layer. By using the
computed loading vectors, we can update the next FC
neural network.

Table 1: A summary of the notations

Notation Description

n the number of instances
s the number of samples
K n× n PSD matrix
Y d× n matrix Y s.t. K = Y>Y
S d× s sample matrix of Y

C n× s sample matrix of K, C = Y>S

KA KA = A>A for ∀A
A′ compressed matrix for ∀A

A = UAΣAV>A compact SVD for ∀A
Ã = ŨAΣ̃AṼ>A approximate compact SVD for ∀A

Ak = UA,kΣA,kV>A,k rank-k SVD for ∀A
Ãk = ŨA,kΣ̃A,kṼ>A,k approximate rank-k SVD for ∀A

A† = VAΣ−1
A U>A pseudo inverse for ∀A

indices. Let KS be the s× s principal submatrix of K
s.t. KS = S>S. For kernel methods using PSD kernel
function, without loss of generality, we can also apply
these implicit equations C = Y>S and KS = S>S. A
summary of notations is displayed in Tbl 1.

Now, we are going to discuss rank-k Nyström methods
which are rank-k standard Nyström method (SNM) [5],
SNM using randomized SVD (SNM+Rand.SVD) [12],
orthogonal Nyström method (ONM) [7], and double
Nyström method (DNM) [13]. These four methods
implicitly approximate the first k principal directions
ŨY,k of the subspace spanned by mapped data points
Y in the feature space to compute the rank-k spectral
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decomposition of K as

Kk ≈ YŨY,k(ŨY,k)
>Y>, (1)

where K = Y>Y without loss of generality, the rank-
k SVD of Y is Yk = UY,kΣY,k(VY,k)

>, ŨY,k is
approximation of UY,k, and Kk = YUY,k(UY,k)

>Y>

is the best rank-k approximation of K computed by
SVD [13]. Although these methods share Eqn (1) and
approximate UY,k for Kk, the computed ŨY,k are
different since they use distinct approaches based on
dissimilar motivations.

Rank-k standard Nyström method (SNM) [5] ap-
proximately computes the rank-k spectral decom-
position as (Σ̃snm

Y,k )
2 = n

s (ΣS,k)
2, Ṽsnm

Y,k =√
s
nCVS,kΣ

−2
S,k, K̃snm

k = CK†S,kC
>, where k ≤

rank(S), and KS,k = VS,kΣ
2
S,kV

>
S,k. The implicit

equations of SNM for rank-k approximation are

Ũsnm
Y,k = US,k, K̃snm

k = Y(US,k)(US,k)
>Y>, (2)

where columns of US,k are the first k principal di-
rections of S s.t. Sk = US,kΣS,kV

>
S,k. We note

that K̃snm
k = Y(US,k)(US,k)

>Y> = CK†S,kC
>.

Since SNM approximates UY,k as US,k Eqn (2) is
biased to the sample subspace which is range(S).
To reduces time complexity O(ksn + s3) to O(ksn),
SNM+Rand.SVD [12] uses randomized SVD to quickly
decompose s × s sample matrix KS, and implicitly
compute ŨS,k. Thus, we can consider the implicit
equations of SNM+Rand.SVD by replacing US,k in
Eqn (2) as ŨS,k.

To efficiently obtain accurate orthonormal eigenvec-
tors in one-shot, orthogonal Nyström method (ONM)
was proposed [7]. In fact, rank-k SNM and ONM are
identically the same when k = rank(S). However, for
k < rank(S), rank-k SNM and ONM can be distin-
guished by using the modified approximation formula
[13]. The explicit equations of ONM for rank-k approx-
imation are

Σ̃onm
Y,k = ΣG,k, Ṽonm

Y,k = GVG,kΣ
−1
G,k, (3)

K̃onm
k = GVG,k(VG,k)

>G>,

where G = CVSΣ−1S , KS = VSΣ2
SV>S and G has rank

k SVD Gk = UG,kΣG,kV
ᵀ
G,k. The implicit equations

of ONM are

Ũonm
Y,k = USVG,k, K̃onm

k = Y>Ũonm
Y,k (Ũ

onm
Y,k )

>Y,

(4)

where G = CVSΣ−1S = Y>US, Ṽonm
Y,k =

GVG,kΣ
−1
G,k = Y>USVG,k(ΣG,k)

−1. It is straight-
forward to verify that US,k and USVG,k are different
when k < rank(S), consequently two approximations

of the first k principal directions UY,k are different i.e.,
Ũsnm

Y,k 6= Ũonm
Y,k . Thus, it is again trivial to show that

the results of Eqn (2) and Eqn (4) are different when
k < rank(S).

The another benefit of ONM is that it solves the sample-
based kernel PCA problem (Lem 1) [13]. That is, given
sample matrix S, Ũonm

Y,k minimizes the reconstruction
error of kernel PCA with the constraint that approxi-
mate principal directions are in the range(S). Columns
of Ṽonm

Y,k Σ̃onm
Y,k are the corresponding principal compo-

nents.

Lemma 1 [13] Sample-based kernel PCA is defined as
kernel PCA with an additional subspace constraint of
range(ŨY,k) ∈ range(S). Then, ONM is the optimal
sample-based kernel PCA.

Based on Lem 1, double Nyström method (DNM) pro-
posed sample subspace compression, and it uses ONM
twice [13]. However, there is no further error analysis
regarding a multilayer structure in [13].

We provide Lem 2, a refined version of Lem 1, which
states that ONM computes rank-k SVD of Y such that
the computed k principal directions Ũonm

Y,k minimize
reconstruction error of Y regardless of whether Y is
mean centered or not.

Lemma 2 Regardless of the condition of mean center-
ing on Y, given sample matrix S, ONM computes first k
approximate principal directions ŨY,k which minimize
reconstruction error of Y with range(ŨY,k) ∈ range(S),
where the reconstruction error of Y is defined as
RE(ŨY,k) = ‖Y − ŨY,kŨ

>
Y,kY ‖F.

We will use Lem 2 for the analysis of our method.

3 Nested Nyström Method

If the data size n is large, rank-k SNM and ONM
need a relatively larger number of samples s to get
accurate spectral decomposition, and the approxima-
tion will take longer. We propose NNM which con-
sistently decomposes very small matrices to efficiently
update the first k principal directions of Y and eigen-
decomposition of K even though n is large. NNM is
described in Alg 1, and its example is displayed in Fig 2,
and the detailed description is as follows.

The multilayer architecture of NNM is based on the fol-
lowing three parts: subsampling part, Nyström method
part, and compression part. First, we run subsampling
part which constructs a nested sequence of subsample
matrices and stacks multiple layers with it. Then, we
run both Nyström method and compression parts with
the nested sequence of subsample matrices on the t sub-
layers until the final layer. Specifically, NNM updates
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Algorithm 1 Nested Nyström Method (NNM)
Require: n× s matrix C and s× s matrix KS, where

C = Y>S and KS = S>S, where s� n
Ensure: rank-k spectral decomposition of K
1: Subsampling part:

Subsampling indices from the index set J of S
s.t. J ⊇ J1 ⊇ ... ⊇ Jt, and corresponding C ⊇
KS ⊇ C1 ⊇ KS1 · · · ⊇ Ct ⊇ KSt , where |Ji| = si,
s� s1 � ...� st

2: For i-th sublayer from the 1st to the t-th
sublayer:
Rank-st Nyström method: Compute ṼSt−i,st of
KSt−i

with C′t−(i−1) and K′St−(i−1)
(optional use

ONM)
Compression: Compress sample matrices Ct−i and
KSt−i

as C′t−i and K′St−i
(Eqn (6), Eqn (7))

3: Final layer:
Run ONM (Eqn (3)) with C′ and K′S

the principal subspace and compresses sample matri-
ces by using the small-dimensional subspace which is
compressed and transformed by computed eigenvec-
tors on each sublayer. At the final layer of NNM, we
computes the rank-k spectral decomposition by us-
ing ONM with the compressed sample matrices, since
ONM computes the best principal directions which min-
imizes reconstruction error given the samples (Lem 1,
Lem 2). We note that NNM computes the true rank-k
spectral decomposition when the range of compressed
samples includes the true rank-k principal subspace,
i.e., range(Uk) ⊂ range(S′).

Subsampling part: Given indices set J of s samples
and the corresponding sample matrices S and KS, we
construct a nested index sets J ⊇ J1 ⊇ ... ⊇ Jt and
the corresponding nested sequence of submatrices as
Eqn (5).

S ⊇ S1 ⊇ S2 ⊇ · · · ⊇ St, (5)
C ⊇ KS ⊇ C1 ⊇ KS1

⊇ C2 ⊇ KS2
⊇ · · · ⊇ Ct ⊇ KSt

,

where |Ji| = si, and s � s1 � ... � st. Especially,
we can understand (si−1) × si matrix Ci and si × si
matrix KSi

with implicit equations as Ci = S>i−1Si
and KSi = S>i Si for 1 ≤ i ≤ t, where Si is d× si and
S0 = S.

Rank-st Nyström method part: In this part, we
compute the approximate eigenvectors ṼSi of KSi by
using compressed submatrices C′Si+1

and K′Si+1
. From

the 1st to the (t− 1)-th sublayer: We compute the first
st approximate eigenvectors ṼSi,st of KSi

by using
compressed submatrices C′i+1 and K′Si+1

on the (t− i)-
th layer, where i ∈ {1, 2, ..., (t − 1)} and C′t = Ct

and K′St
= KSt

. On the t-th sublayer: We compute
the first st approximate eigenvectors ṼS,st of KS by

ONM

ONM

Nested Sub-sampling

C KS KS1C1 C2 KS2 C3KS3

ṼS2,s3C2 KS2
ṼS1,s3C1 KS1

C

ONMONM

ṼY,k ṼS,l

Recursive Eigenspace Update

by Compression and Kernel PCA

KS

Figure 2: An example of multilayer structure of NNM
with 4 layers (3 sublayers and the final layer), which can
be described by the explicit equations Eqn (5), Eqn (6)
and Eqn (7). Right arrow denotes subsampling. ONM
with the arrow denotes that we compute approximate
eigenvalues and eigenvectors by using ONM. Circle C
means a compression of sample matrices with approxi-
mate eigenvectors.

using C′1 and K′S1
, and select ṼS,` from ṼS,st , where

st ≥ ` ≥ k. We recommend using the ONM for rank-st
Nystrom method at each layer due to both its efficiency
and accuracy, especially Lem 1 and Lem 2. Then, the
time complexity of rank-st Nystrom method part with
ONM at i-th layer is O(s2t st−i) for i ∈ {1, 2, ..., (t−1)},
and the time complexity of rank-st Nystrom method
part with ONM at t-th layer is O(s2t s). These time
complexities are very small, since n� s� s1 � ...�
st ≥ ` ≥ k.

Compression part: In this part, we compress sample
matrices by using the approximate eigenvectors. From
the 1st to the (t− 1)-th sublayer: we compress sample
matrices Ci and KSi

by using ṼSi,st as

C′i = CiṼSi,st , K′Si
= (ṼSi,st)

>KSi
ṼSi,st , (6)

where ṼSi,st is computed at (t − i)-th layer, and i ∈
{1, 2, ..., (t − 1)}. On the t-th sublayer: we compress
sample matrices C and KS by using ṼS,` with k ≤
` ≤ st

C′ = CṼS,`, K′S = (ṼS,`)
>KSṼS,`. (7)

We can connect the compression of sample matrices
to the compression of sample subspace with implicit



Woosang Lim1, Rundong Du1, Bo Dai1, Kyomin Jung2, Le Song1,3, Haesun Park1

equations

C′i = S>i−1S
′
i, C′ = Y>S′ (8)

K′Si
= S′>i S′i, K′S = S′>S′,

where S′i = SiṼSi,st ,S
′ = SṼS,`, i ∈ {1, 2, ..., (t− 1)},

and S0 = S.

Based on Eqn (8), we can think that the sample sub-
space range(Si) is compressed into a smaller dimen-
sional subspace range(S′i), where i ∈ 0, 1, ..., (t− 1)
and S0 = S. From the 1st to the (t − 1)-th sublayer,
we efficiently and accurately update the compressed
sample subspace range(S′i) by using the eigenvectors
of sample matrices. Since the compressed sample sub-
space range(S′i) is biased to the principal subspace of
si subsamples, we preserve the st dimension of com-
pressed sample subspace until the t-th sublayer. At the
t-th layer, we compress the sample subspace range(S)
with a smaller dimension ` for a shorter running time
instead of using st, since the principal subspace of s
samples is more closer to the rank-k principal subspace
of n nodes. That is, we can use ṼS,` for compression
of S instead of using ṼS,st , where k ≤ ` ≤ st.

The time complexity of compression part at (t− i)-th
layer is O(stsisi−1) for i ∈ {1, 2, ..., (t − 1)}, and the
time complexity of compression part at t-th layer is
O(`sn), where s0 = s. We note that all performances in
the compression parts are only matrix multiplications.

Time complexity analysis: Suppose that we
construct the nested sequence of subsamples with∑t
j=1 sj = O(s), e.g.,

∑t
j=1 sj ≤ s, where s � s1 �

... � st ≥ ` ≥ k. Then, we provide Proposition 1
which states the time and space complexities of NNM.

Proposition 1 Suppose that we use ONM for rank-
st Nyström method parts in NNM, and set the nested
sequence of subsamples with

∑t
j=1 sj = O(s), where

s � s1 � ... � st ≥ ` ≥ k. Then, the total time
and space complexities of NNM are O(`sn+ sts1s) and
O(sn), respectively.

The detailed proof of Proposition 1 is in the Appendix.
A large portion of the total time complexity O(`sn+
sts1s) is O(`sn) corresponding to the simple matrix
multiplications in the compression parts. In Section 5,
we will show that the running time of NNM is linear
for s.

Selecting number of subsamples and sublayers:
We can select the number of subsamples based on the
condition

∑t
j=1 sj = O(s) of Proposition 1. We first

set M for M · s ≥
∑t
j=1 sj . The simple choice of M is

1 or 2, then we have s ≥
∑t
j=1 sj or 2s ≥

∑t
j=1 sj . We

then define a relation among the numbers of subsamples.
One of the simplest way is to set si = asi−1 for i ∈

{1, 2, ..., t}, where s0 = s and 0 < a ≤ 1. A smaller
a leads to a shorter running time, but a larger a is
better to obtain a small approximation error. To attain
both efficiency and accuracy, we can set a = 1

2 , then∑t
j=1 sj =

∑t
j=1

1
2j s ≤ s. For example, we can set

s1 = 1000, s2 = 500, and s3 = 250 when s = 2000 and
t = 3. We note that st and ` are tuning parameter,
where s� s1 � ...� st ≥ ` ≥ k. Finally, we note that
the proper number of sublayer t should satisfy M · s ≥∑t
j=1 sj and s ≥ sj . For example, suppose that we set

a = 1
2 and M = 2, then we have 2 · s ≥

∑t
j=1 sj and

sj = 2t−jst. Then, for st = 250 and s ∈ [2000, 5000],
the proper number of sublayer t is between 1 and 4,
since we have 2 · s ≥

∑t
j=1 2

t−jst and s ≥ 2t−jst when
t ∈ {1, 2, 3, 4}.

Several properties of NNM: We note that NNM
is a generalized multilayer architecture, not a simple
approximation version. For example, NNM with no
sublayer is equivalent to ONM, and NNM with one
sublayer is equivalent to the DNM. But the main dif-
ference is that the upper error bound of NNM further
decreases when we decompose the same sized sample
matrix with additional layers. That is, we can compute
more accurate rank-k decomposition within the same
short time. We will show it in Section 5.

We can use any sampling method along with NNM,
since NNM does not need any assumption for proper-
ties of sample matrices C and KS. Thus, for kernel
methods, we can apply any sampling method both
for constructing sample matrices and a nested set of
subsamples.

We note that it is possible to replace ONM in
the rank-st Nyström method part with other eigen-
decomposition methods. However, if we use the ONM
in the rank-st Nyström method part, then the benefit
will be small time complexity, low errors, and easy
implementation. Furthermore, it guarantees that the
upper error bound of NNM decreases when we use
an additional sublayer. We will prove it as Thm 1 in
Section 4.

We do not consider rank-k SNM at any layers instead
of ONM. Since, if we use the SNM at any layers, we
can not guarantee that the error decreases even we use
additional sublayers or increase `. We provide a formal
statement as Proposition 3 in Section 4.

3.1 Extension of NNM

In this section, we discuss the extension of NNM which
is described in Alg 2. Suppose that, given the s sam-
ples and NNM with t sublayers, we want to compute
sb additional samples to update the spectral decompo-
sition of n×n PSD matrix K by using the sa extended
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Algorithm 2 Extension of NNM with Additional Sam-
ples
Require: the number of additional samples sb, NNM

with t sublayers and its inputs and outputs
Ensure: rank-k spectral decomposition of K

NNM with (t+ 1) sublayers, additional sb samples
(total sa = (s+ sb) samples),
appended sample matrices Ca and KSa

1: Additional sampling:
Sampling additional sb points
Constructing appended sample matrices: n × sa
matrix Ca and sa × sa matrix KSa

2: (t+ 1)-th sublayer:
Rank-st Nyström method: Compute ṼSa,` of KSa

by using the sample matrices of KSa compressed
by ṼS,st

Compression: Compress sample matrices Ca and
KSa

as C′a and K′Sa
by using ṼSa,` (Eqn (7))

3: Final layer:
Run ONM (Eqn (3)) with C′a and K′Sa

samples, where sa = (s + sb). Then, by extending
the multilayer structure of NNM, we can efficiently
update the spectral decomposition. The extension of
NNM which consists of three components: additional
sampling, (t+ 1)-th sublayer, and the final layer. The
followings are description of NNM.

Additional sampling: We can use either uniform or
non-uniform sampling. For non-uniform sampling, we
can efficiently compute sb additional samples by using
the rank-k spectral decomposition obtained from NNM
with t layers, e.g., approximate column norm sampling
[5], approximate leverage score sampling [13], and adap-
tive partial sampling [11]. The implicit equation of sa
samples is Sa =

[
S Sb

]
, and the implicit equations

of appended n × sa sample matrix Ca and sa × sa
sample matrix KSa

are Ca = Y>Sa and KSa
= S>a Sa,

respectively.

(t+ 1)-th sublayer: In the rank-st Nyström method
part, we efficiently compute ṼSa,` of KSa

. Let C0 and
KS be the sa × s and s × s sample matrices of KSa

,
respectively. Then, we compress C0 and KS as C′0
and K′S by using ṼS,st which was computed at the t
sublayer of NNM, and compute ṼSa,` of KSa

by using
ONM and the compressed sample matrices C′0 and K′S.
In the compression part, we compress sample matrices
Ca and KSa as C′a and K′Sa

by using ṼSa,`

Final layer: We compute Ṽk by using C′a, K′Sa
and

ONM.

The time complexity of rank-st Nyström method part
using ONM in (t+ 1)-th sublayer is O(s2t sa), and the
time complexity of compression part is O(`san). At

the final layer, the time complexity of ONM with C′a
and K′Sa

is O(`2n).

We can combine different sampling strategies for com-
puting spectral decomposition of PSD matrices by using
the extension of NNM. For example, we can easily com-
bine uniform and approximate leverage score sampling,
since the time complexity of computing approximate
leverage scores using Ṽk computed by NNM with t sub-
layers is just O(kn). Then, the total time complexity of
NNM with (t+1) sublayers is O(`san+ stsas) which is
linear for sa when (s+

∑t
j=1 sj) = O(sa). In Section 5,

we will compare the experimental results of NNM by
using uniform sampling and uniform + approximate
leverage score sampling. Finally, we note that we can
use multi-sublayers between t-th sublayer and the final
layer, if sa/s is too large.

4 Error Analysis of NNM

In this section, we provide an error analysis of NNM.
First, we provide the implicit representations of com-
pressed sample subspaces to analyze the error of NNM.
Next, we show the upper error bounds of NNM, and
prove that the upper error bounds decreases when we
use additional sublayers.

4.1 Representations of Compressed Sample
Subspaces

NNM efficiently and accurately updates the compressed
sample matrix S′i so that range(S′i) closely approxi-
mates the true principal subspace based on Eqn (8)
until the final layer. That is, we want to compute S′ s.t.
range(Uk) ⊂ range(S′). Consequently, we need to ana-
lyze how compressed sample subspace varies range(S′i)
through the multilayer structure to analyze NNM.

First, we provide the implicit representation of the
principal subspace as range(Uk) = range(UkΣY,k) =
range(YVY,k). Similarly, we can give the implicit rep-
resentations of compressed sample subspaces range(S′i)
and range(S′) as range(YṼY,st) and range(YṼY,`),
respectively. Lem 3 formally states their implicit rep-
resentations.

Lemma 3 Given the mutilayer Nyström structure of
NNM with t sublayers, let S = YP and Si = Si−1Pi,
where P>i Pi = I for column sampling, P0 = P,
and S0 = S. Then, we have Si = YZi with Zi =
PP1 · · ·Pi and S′i = YṼY,st on the (t−i)-th layer, and
S′ = YṼY,` on the t-th layer, where ṼY,st = ZiṼSi,st

and ṼY,` = PṼS,`.

By Lem 3, we note that if range(YVY,k) ⊂
range(YṼY,`) = range(S′), then NNM computes the
rank-k spectral decomposition with the optimal error.
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4.2 Decrease of Upper Error Bounds of
NNM

For the case of using linear combination input S =
YṼY,s with Ṽ>Y,sṼY,s = I, the generalized upper
error bounds of ONM have been proven [13]. Since the
input of the final layer of NNM can be considered as
S′ = YṼY,` by Lem 3, we provide Lem 4 which states
the upper bounds of the final error of NNM.

Lemma 4 Suppose that S′ = YṼY,` is the com-
pressed samples as an input of the final layer of NNM,
where Ṽ>Y,`ṼY,` = I and k ≤ ` ≤ st. Then, upper er-
ror bounds of NNM for kernel PCA and rank-k matrix
approximation are

NRE(ŨY,k) ≤ NRE(UY,k) +

√
2ε2(ṼY,k)

γk
(9)

MRE(K̃k) ≤ MRE(Kk) +

√
2ε2(ṼY,k)

γk
tr(K),

where ṼY,k is any submatrix consisting of k columns
of ṼY,`, ŨY,k consists of the first k approximate prin-
cipal directions which are implicitly generated by kernel
PCA, NRE(ŨY,k) = ‖Y − ŨY,kŨ

>
Y,kY ‖F/‖Y ‖F is

the normalized reconstruction error (NRE) of kernel
PCA, MRE(K̃k) = ‖K − K̃k ‖F is the reconstruction
error of rank-k PSD matrix approximation, γk is the
k-th eigengap, ε2(ṼY,k) is the sum of errors of eigen-
values from ṼY,k with Ṽ>Y,kṼY,k = I s.t. ε2(ṼY,k) =

tr(V>Y,kY
>YVY,k)− tr(Ṽ>Y,kY

>YṼY,k).

These upper error bounds in Lem 4 only depend on
ε2(ṼY,k), since γk and tr(K) are constant given the
K. The approximation errors in Eqn (9) go to the
optimal errors which are NRE(UY,k) and MRE(Kk)

as ε2(ṼY,k) goes to 0, and ε2(ṼY,k) = 0 when
range(VY,k) ⊂ range(ṼY,`). Since reducing ε2(ṼY,k)

is important, we need to show how ε2(ṼY,k) varies
through the sublayers.

Suppose that, given the mutilayer structure of NNM
with t sublayers, we use ONM for kernel PCA parts and
only i sublayers which are from the first sublayer to i-th
sublayer until the final layer, where i ∈ {1, 2, ..., (t−1)}.
Then, the i-th sublayer becomes the last sublayer before
the final layer, and we have S′j = Y(ZjṼ

onm
Sj ,`

) as the
input of the final layer with j = (t − i) by Lem 3
and Lem 4. Thus, we can select ṼY,k = ZjṼ

onm
Sj ,k

for
ε2(ṼY,k), i.e., ε2(ZjṼonm

Sj ,k
) since ṼY,` = ZjṼ

onm
Sj ,`

.

Proposition 2 states that the sum of eigenvalue error
ε2(ṼY,k) decreases as we use additional sublayers.

Proposition 2 Suppose that we use ONM for kernel
PCA parts in NNM. Then, we have ε2(ZjṼonm

Sj ,k
) and

Table 2: The summary of 4 real data sets. n is the
number of instances and m is the dimension of the
original data.

data set Letter MNIST MiniBooNE Covertype

n 20000 60000 130064 581012
m 16 784 50 54
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Figure 3: Performance comparison of SNM,
SNM+Rand.SVD, and NNM. The upper left figure
displays the results for rank-k kernel matrix approxima-
tion, and the upper right figure displays their running
time. The results show that the error of NNM decreases
as we use additional sublayers within the short time.

ε2(Zj−1Ṽ
onm
Sj−1,k

) for NNM using i and (i+1) sublayers
respectively, and ε2(Zj−1Ṽonm

Sj−1,k
) ≤ ε2(ZjṼonm

Sj ,k
).

Due to the page limit, the proofs are in the Appendix.
By Lem 4 and Proposition 2, we provide our main
theoretical result Thm 1 which states that the quality
of compressed input at the final layer is important, and
we can increase accuracy by using more sublayers.

Theorem 1 Suppose that we use ONM for the kernel
PCA parts in the sublayers. Then, the upper error
bound of NNM in Lem 4 decreases when we use addi-
tional sublayers.

Finally, Proposition 3 states that rank-k SNM does
not have the benefit for using additional sublayers or
increasing ` parameter.

Proposition 3 Suppose that we compress C and KS

as C′ and K′S with ṼS,` = VS,` at the t-th layer, and
we run the rank-k SNM with C′ and K′S at the final
layer. Then K̃snm

k are the same regardless of values of `,
where ` ≥ k. That is, the rank-k spectral decomposition
using rank-k SNM is biased by s samples.

5 Experiments

In this section, we present experimental results that
demonstrate our theoretical work. We compare rank-k
Nyström methods to the rank-k kernel matrix approxi-
mation and KPCA. The three error measures which we
used are matrix reconstruction error (MRE(K̃k) =
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Figure 4: Performance comparison for rank-k kernel
matrix approximation among the NNM with 1, 2, 3, 4
sublayers. NNM (t = 4) is more efficient than NNM
(t = 1, 2, 3).
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Figure 5: Comparison of MRE(K̃k) for rank-k kernel
matrix approximation among the four representative
methods with: SNM, SNM+Rand.SVD, ONM, NNM
(ours). NNM is more efficient than other state-of-the
art Nyström methods given the short time.
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Figure 6: Comparison of convergence to the optimal
error with rMRE(K̃k) for rank-k kernel matrix approx-
imation. It shows that error of NNM rapidly decreases
compared to other Nyström methods.
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Figure 7: Comparison of convergence to the optimal
error with rNRE(K̃k) for KPCA. It shows that recon-
struction error of KPCA of NNM rapidly decreases
compared to other Nyström methods.

‖K − K̃k ‖F), relative matrix reconstruction error
(rMRE(K̃k) =

‖K−K̃k ‖F
‖K−Kk ‖F ∈ [1,∞)), and relative KPCA

reconstruction error (rNRE(Ũk) =
NRE(Ũk)
NRE(Uk)

∈ [1,∞)),
where ‖K−Kk ‖F and NRE(Uk) are the optimal error
which comes from SVD. The optimum of rMRE and
rNRE is 1. To construct PSD matrix K, we use RBF
kernel which is defined as κ(xi,xj) = exp

(
−‖xi−xj‖22

2σ2

)
,

where σ is a kernel parameter. We select 4 real data
sets for evaluating performances, and summarize them
in Tbl 2.

We empirically compare the NNM described in Alg 1
with four representative Nyström methods: SNM [5],
SNM+Rand.SVD [12], ONM [7], and DNM [13]. We
abbreviate NNM with i sublayers to NNM (t = i)
for convenience, and DNM is the same with NNM
(t = 1). For all methods except NNM (t = 4), we
set s = 500j with j = 4, 5, ..., 10 in Fig 3. We set
s = 3000, 3500, ..., 5000 for NNM (t = 4). We use
the same amount of sn kernel matrix elements for all
methods.

We set p parameter as 100, 500 for SNM+Rand.SVD,
since the error of SNM+Rand.SVD decreases to the
error of SNM when p = 500 regardless of data sets
and experiment settings. We report the additional
experimental results with p = 500, 1000, 2000 in the
Appendix. To compare NNM with SNM+Rand.SVD,
we use the following parameters: s1 = (1000 + 50j),
s2 = (500+25j) , s3 = (250+25j), ` = (k+150+5j) for
s = 2000, 2500, and s1 = (2000+50j), s2 = (1000+50j),
s3 = (500+25j) , s4 = (250+25j), ` = (k+150+5j) for
s ≥ 3000. With these parameters, we have sj ≈ 2t−jst,
and set the maximum number of sublayers t as 4 to
satisfy 2 · s ≥

∑t
j=1 2

t−jst and s ≥ 2t−jst (see the
paragraph of selecting t in Section 3).

In Fig 3, we can see that the errors of NNM are smaller
than SNM and SNM+Rand.SVD, and the errors of
NNM further decrease as we use additional sublayers
within the short time. We also run NNM by combining
uniform sampling (Unif) and approximate leverage
score sampling (ALev) based on the extension of NNM.
For example, (t = 2+1,Unif+Alev) means that we run
NNM with 2 sublayers by using Unif, and extend NNM
with 1 sublayers by using ALev. In Fig 3, although
the error of NNM (t = 2+ 1,Unif+Alev) is higher than
NNM (t = 3), the error of NNM (t = 3 + 1,Unif+Alev)
is smaller than the error of NNM (t = 4), since the
accuracy of approximate leverage scores computed by
NNM increases as we use more sublayers. Fig 4 shows
that the error of NNM decreases as we use additional
sublayers regardless of data sets. We can see that
NNM (t = 3, 4) sublayers are more accurate than NNM
(t = 1, 2) within the same short time. Fig 5 shows that
the errors of NNM are smaller than errors of other state-
of-the art Nyström methods within the same short time.
Fig 6 and Fig 7 show that the errors of NNM both for
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rank-k kernel matrix approximation and KPCA rapidly
decrease compared to other rank-k Nyström methods.

6 Conclusion

In this paper, we presented a multi-scale Nyström archi-
tecture, called nested Nyström Method (NNM), which
efficiently and accurately updates the rank-k spectral
decomposition of PSD matrix on the multilayer struc-
ture with the nested sequence of subsamples and sub-
space compression. Both theoretically and empirically,
we demonstrated that the error of NNM decreases as
we use additional layers. Finally, we showed that NNM
is more efficient than other rank-k Nyström methods.
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A Additional Experimental Results

In this section, we provide the experimental results
with various setting: different sigma, different rank-
k, different `, and etc. We empirically compare the
NNM described in Alg 1 with four representative Nys-
tröm methods: standard Nyström method (SNM) [22],
standard Nyström method using randomized SVD
(SNM+Rand.SVD) [12], one-shot Nyström method
(ONM) [7], and double Nyström method (DNM) [13].
We note that DNM is equivalent to NNM with 1 sub-
layer. For convenience, we abbreviate NNM with i
sublayers to NNM (t = i). If we consider the final
layer, then NNM (t = i) has (i+ 1) total layers. For
all methods, we set s = 500j, where j = 4, 5, ..., 10.
Thus, there are 7 episodes for each test and the corre-
sponding 7 points on the each line in the figures. We
use the same amount of sn kernel matrix elements for
all methods. We report only the decomposition time
in this section, since we report the running time in-
cluding kernel construction time in the main section
(Section 5).

We tested the value of p parameter of SNM+Rand.SVD
from 5 to 2000, since the errors of SNM+Rand.SVD
decrease to the errors of SNM as we increase the value
p parameter. We report the experimental results of
SNM+Rand.SVD with p = 500, since the errors of
SNM+Rand.SVD decrease close to the errors of SNM
regardless of data sets and experiment settings when
we increase p as 500. We observed that the errors
of SNM+Rand.SVD did not further decrease even if
we increased the value of p parameter over 500 in
the experiments, e.g., p = 1000, 2000, since the errors
of SNM+Rand.SVD converge to the errors of SNM
as we increase p parameter. To compare NNM with
SNM+Rand.SVD, we use the following parameters for
Fig 8 Fig 9 and Fig 10: For NNM with t = 3, we set
s1 = (1000 + 50j), s2 = (500 + 25j) , s3 = (250 + 25j),
` = (k + 80 + 5j), where j = 4, 5, ..., 10. For NNM
with t = 2, we set s1 = (500 + 25j) , s2 = (250 + 25j),
` = (k + 80 + 5j). For NNM with t = 1, we set
s1 = (250 + 25j), ` = (k + 80 + 5j). In Fig 8 Fig 9
and Fig 10, we exclude the kernel construction time for
report the running time. Meanwhile, in Fig 3 and Fig 4
in Section 5, we reported the running time including
kernel construction time.

Fig 8 displays the experimental results on 4 different
real data sets. In this experiment, we set k = 20
instead of k = 50. We set σ for 4 data sets as follows:
σ = 1.0 for Letter, σ = 5.0 for MNIST, σ = 1.0
for MiniBooNE, and σ = 1.0 for Covertype. For our
method, we display the experimental results of NNM
with 3 sublayers. Fig 8 shows that NNM computes
more accurate rank-k matrix approximation compared
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Figure 8: Performance comparison with k = 20 among
the four representative methods: SNM [22], ONM [7],
SNM + Rand.SVD [12], and NNM (ours). There are
7 episodes for each test, and there are 7 points on the
each line in the figures. That is, we gradually increase
the number of samples s as 2000, 2500, 3000, ... ,
5000, and there are corresponding 7 points on the each
line. We perform SVD algorithm only on the Letter
and MNIST data sets due to the memory limit. The
results show that NNM is more accurate than other
Nyström methods within the same short time.

to the other Nyström methods within the same time.
Especially, for Letter and MNIST data sets, we can
notice that the error of NNM rapidly decreases to the
optimal error. Although SNM+Rand.SVD is slightly
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Figure 9: Performance comparison with the different
sigma values of kernel function. In this experiment,
we display the experimental results of NNM with 3
sublayers. The results show that the errors of NNM is
smaller than other Nyström methods within the same
short time regardless of sigma values.

faster, the errors of NNM are much smaller than the
errors of SNM+Rand.SVD. ONM is the accurate, but it
takes much longer. Fig 9 also shows that NNM is both
accurate and efficient regardless of the sigma values of
kernel function.

Fig 10 shows that the errors of SNM+Rand.SVD do not
further decrease even if we increase the value of p param-
eter over 500 in the experiments, e.g., p = 1000, 2000.
We can also notice that the errors of SNM+Rand.SVD

converge to the errors of SNM.

B Proof of Proposition 1

Proof 1 For the proof of Proposition 1, we use∑t
j=1 sj = O(s) and properties of big O notation. The

time complexity of kernel PCA part with ONM at i-th
layer is O(s2t st−i) for i ∈ {1, 2, ..., (t − 1)}, and the
time complexity of kernel PCA part with ONM at t-th
layer is O(s2t s). Then, the sum of time complexities in
kernel PCA parts is bounded as

s2t s+

t−1∑
i=1

s2t st−i ≤ (M + 1)s2t s,

where
∑t
j=1 sj ≤M ·s and we usually set M ≤ 2 in the

experiments. Thus, by the properties of big O notation,
the total time complexity of kernel PCA parts using
ONM is O(s2t s).

The time complexity of compression part at (t− i)-th
layer is O(stsisi−1) for i ∈ {1, 2, ..., (t − 1)}, and the
time complexity of compression part at t-th layer is
O(`sn), where s0 = s. Then, the sum of time complex-
ities in compression parts is bounded as

`sn+

t−1∑
i=1

stsisi−1 = `sn+ sts1s+

t−2∑
i=1

stsi+1si

≤ `sn+ (M + 1)sts1s,

where s0 = s and
∑t
j=1 sj ≤ M · s. Thus, the total

time complexity of kernel PCA parts is O(`sn+ sts1s).

Finally, at the final layer, the time complexity of ONM
with C′ and K′S is O(`2n), since C′ is n× ` and K′S
is `× `. Therefore, the total time complexity of NNM
is O(`sn+ sts1s).

C Proof of Lem 3

Lem 3 formally states implicit representations of com-
pressed subspaces.

Lemma 3: Given the mutilayer Nyström structure of
NNM with t sublayers, let S = YP and Si = Si−1Pi,
where P>i Pi = I for column sampling, P0 = P,
and S0 = S. Then, we have Si = YZi with Zi =
PP1 · · ·Pi and S′i = YṼY,st on the (t−i)-th layer, and
S′ = YṼY,` on the t-th layer, where ṼY,st = ZiṼSi,st

and ṼY,` = PṼS,`.

Proof 2 For a general case, we assume that a muti-
layer Nyström structure of NNM has t sublayers with
the nested sequence of samples in Eqn (5). Without loss
of generality, we can define Pj for column sampling s.t.
S = YP and Si = Si−1Pi with (Pi)

>Pi = I, where
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Figure 10: Performance comparison for k = 20, 50 with different sigma values among the four representative
methods: SNM [22], ONM [7], SNM + Rand.SVD [12], and NNM (ours). There are 7 episodes for each test, and
there are 7 points on the each line in the figures. We gradually increase the number of samples s as 2000, 2500,
3000,..., 5000, and there are corresponding 7 points on the each line. Regardless of rank-k and sigma values,
experimental results show that the NNM is more accurate than other Nyström methods within the same short
time.

P0 = P, and S0 = S. Then, we have Si = YZi, where
Zj = PP1 · · ·Pj and Zj = P.

By Eqn (6), Eqn (7) and Eqn (8), we have S′i =
SiṼSi,st on the (t−i)-th sublayer for i ∈ {1, ..., (t−1)}
and S′ = SṼS,` on the t-th sublayer. Thus, if we
apply Si = YZi to the S′i = SiṼSi,st and S′ =

SṼS,`, then we have S′i = YZiṼSi,st on the (t − i)-
th layer, and S′ = YPṼS,` on the t-th layer. Since

(ZiṼSi,st)
>ZiṼSi,st = I and (PṼS,`)

>PṼS,` = I, we
can think that S′i = YṼY,st on the (t− i)-th layer with
ṼY,st = ZiṼSi,st , and S′ = YṼY,` on the t-th layer
with ṼY,` = PṼS,`.

By Lem 3, we note that if range(YVY,k) ⊂
range(YṼY,`) = range(S′), then NNM computes the
rank-k spectral decomposition with the optimal error.
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D Proof of Lem 4

For the case of using linear combination input S =
YṼY,s with Ṽ>Y,sṼY,s = I, the generalized upper error
bounds of ONM have been proven as Proposition 4 [13].

Proposition 4 [13] If we set S = YṼY,s with
Ṽ>Y,sṼY,s = I, then errors of kernel PCA and rank-
k matrix approximation using ONM are bounded as
follows:

NRE(ŨY,k) ≤ NRE(UY,k) +

√
2ε2(ṼY,k)

γk

MRE(K̃k) ≤ MRE(Kk) +

√
2ε2(ṼY,k)

γk
tr(K),

where ŨY,k consists of the first k approximate principal
directions which are implicitly generated by kernel PCA,
NRE(ŨY,k) = ‖Y − ŨY,kŨ

>
Y,kY ‖F/‖Y ‖F is the

normalized error (NRE) of kernel PCA, MRE(K̃k) =
‖K− K̃k ‖F is the error of rank-k PSD matrix approx-
imation, γk is the k-th eigengap, ε2(ṼY,k) is the sum
of errors of eigenvalues from ṼY,k s.t. ε2(ṼY,k) =

tr(V>Y,kY
>YVY,k) − tr(Ṽ>Y,kY

>YṼY,k), and ṼY,k

is any submatrix consisting of k columns of ṼY,s.

The input of the final layer of NNM can be considered
as S′ = YṼY,` by Lem 3, then we can consider s
samples, ṼY,s, and S in Proposition 4 as compressed
` samples, ṼY,`, and S′, respectively. Since the input
of the final layer of NNM satisfy the condition of input
in Proposition 4, we can provide Lem 4 which states
the upper bounds of the final errors of NNM.

Lemma 4: Suppose that S′ = YṼY,` is the com-
pressed samples as an input of the final layer of NNM,
where Ṽ>Y,`ṼY,` = I and k ≤ ` ≤ st. Then, upper er-
ror bounds of NNM for kernel PCA and rank-k matrix
approximation are

NRE(ŨY,k) ≤ NRE(UY,k) +

√
2ε2(ṼY,k)

γk
(10)

MRE(K̃k) ≤ MRE(Kk) +

√
2ε2(ṼY,k)

γk
tr(K),

where ṼY,k is any submatrix consisting of k columns
of ṼY,`, ŨY,k consists of the first k approximate prin-
cipal directions which are implicitly generated by ker-
nel PCA, NRE(ŨY,k) = ‖Y − ŨY,kŨ

>
Y,kY ‖F/‖Y ‖F

is the normalized reconstruction error (NRE) of ker-
nel PCA, MRE(K̃k) = ‖K− K̃k ‖F is the reconstruc-
tion error of rank-k PSD matrix approximation, γk
is the k-th eigengap, ε2(ṼY,k) is the sum of errors
of eigenvalues from ṼY,k with Ṽ>Y,kṼY,k = I s.t.
ε2(ṼY,k) = tr(V>Y,kY

>YVY,k)−tr(Ṽ>Y,kY
>YṼY,k).

E Proof of Proposition 2

We provide Proposition 2 which states that the eigen-
value error of K from ṼY,k decreases as we use addi-
tional sublayers.

Proposition 2 Suppose that we use ONM for kernel
PCA parts in NNM. Then, we have ε2(ZjṼonm

Sj ,k
) and

ε2(Zj−1Ṽ
onm
Sj−1,k

) for NNM using i and (i+1) sublayers
respectively, and ε2(Zj−1Ṽonm

Sj−1,k
) ≤ ε2(ZjṼonm

Sj ,k
).

Proof 3 To prove Proposition 2, we need Cor 1,
Lem 7, Lem 6 and Lem 5, and their statements and
proofs are in the following subsections.

Suppose that, given the mutilayer structure of NNM
with t sublayers, we use ONM for kernel PCA parts and
only i sublayers which are from the first sublayer to i-th
sublayer until the final layer, where i ∈ {1, 2, ..., (t−1)}.
Then, the i-th sublayer becomes the last sublayer before
the final layer, and we have S′j = Y(ZjṼ

onm
Sj ,`

) as the
input of the final layer with j = (t− i) by Lem 3 and
Lem 4. Since ṼY,` = ZjṼ

onm
Sj ,`

, we can select ṼY,k =

ZjṼ
onm
Sj ,k

which is the first k columns of ZjṼ
onm
Sj ,`

for
ε2(ṼY,k).

Similarly, suppose that we use only (i + 1) sublayers
from the first sublayer to (i+ 1)-th sublayer until the
final layer, where i ∈ {1, 2, ..., (t− 1)}. Then, we have
S′j−1 = YZj−1Ṽ

onm
Sj−1,`

as the input of the final layer
with j = (t−i), and we can select ṼY,k = Zj−1Ṽ

onm
Sj−1,k

for ε2(ṼY,k) since ṼY,` = Zj−1Ṽ
onm
Sj−1,`

.

Thus, if we apply ṼY,k = ZjṼ
onm
Sj ,k

to ε2(ṼY,k) for
using i sublayer and ṼY,k = Zj−1Ṽ

onm
Sj−1,k

to ε2(ṼY,k)

for using (i+ 1) sublayers, then we have ε2(ZjṼonm
Sj ,k

)

and ε2(Zj−1Ṽonm
Sj−1,k

), respectively.

Next, we need to prove Eqn (11)

ε2(Zj−1Ṽ
onm
Sj−1,k) ≤ ε2(ZjṼ

onm
Sj ,k ), (11)

where j = (t− i) and i ∈ {1, 2, ..., (t− 1)}. Eqn (11) is
equivalent to Eqn (12) by Lem 5.

tr((Ṽonm
Sj ,k )

>S>j SjṼ
onm
Sj ,k ) (12)

≤ tr((Ṽonm
Sj−1,k)

>S>j−1Sj−1Ṽ
onm
Sj−1,k),

where j = (t− i) and i ∈ {1, 2, ..., (t− 1)}.

By Lem 6, we have

tr((Ṽonm
Sj ,k )

>S>j SjṼ
onm
Sj ,k )

≤ tr(((Ṽonm
Sj ,` )

>S>j SjṼ
onm
Sj ,` )k)

= tr(((S′j)
>S′j)k) = tr(KS′j ,k

),
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where (·)k stands for the best rank k approximation,
and Ṽonm

Sj ,k
consists of the first k columns of Ṽonm

Sj ,`
.

Without loss of generalization, we can define Pj to
satisfy Sj = Sj−1Pj, then (Pj)

>Pj = I. Now, we
have

S′j = SjṼ
onm
Sj ,` = Sj−1PjṼ

onm
Sj ,` = Sj−1P

′
j ,

where P′j = PjṼ
onm
Sj ,`

for the cases in Thm 1. By using
compact SVD of S′j s.t. S′j = US′j

ΣS′j
V>S′j

, then we
have

tr(((S′j)
>S′j)k)

= tr(U>S′j ,kS
′
j(S
′
j)
>US′j ,k

)

= tr(U>S′j ,kSj−1P
′
j(P

′
j)
>S>j−1US′j ,k

)

≤ tr(U>S′j ,kSj−1S
>
j−1US′j ,k

).

The last inequality holds because of Lem 6 and the fact
that (P′j)>P′j = I.

So far, we have shown

tr((Ṽonm
Sj ,k )

>S>j SjṼ
onm
Sj ,k )

≤ tr(U>S′j ,kSj−1S
>
j−1US′j ,k

).

Now, we want to argue that

tr(U>S′j ,kSj−1S
>
j−1US′j ,k

)

≤ tr((Ũonm
Sj−1,k)

>Sj−1S
>
j−1Ũ

onm
Sj−1,k).

We note that Ũonm
Sj−1,k

and U′Sj ,k
are in the range of S′j .

Then, by Cor 1,

tr((Ũonm
Sj−1,k)

>Sj−1S
>
j−1Ũ

onm
Sj−1,k)

= max
ŨSj−1,k

tr
(
Ũ>Sj−1,kSj−1S

>
j−1ŨSj−1,k

)
subject to Ũ>Sj−1,kŨSj−1,k = I,

range(ŨSj−1,k) ⊂ range(S′j).

Thus, we have

tr((Ṽonm
Sj ,k )

>S>j SjṼ
onm
Sj ,k )

≤ tr(U>S′j ,kSj−1S
>
j−1US′j ,k

)

≤ tr((Ũonm
Sj−1,k)

>Sj−1S
>
j−1Ũ

onm
Sj−1,k).

Next, by Lem 7, we have

tr((Ũonm
Sj−1,k)

>Sj−1S
>
j−1Ũ

onm
Sj−1,k)

≤ tr((Ṽonm
Sj−1,k)

>S>j−1Sj−1Ṽ
onm
Sj−1,k).

Consequently, we have

tr((Ṽonm
Sj ,k )

>S>j SjṼ
onm
Sj ,k )

≤ tr((Ṽonm
Sj−1,k)

>S>j−1Sj−1Ṽ
onm
Sj−1,k).

E.1 Lem 5

Lemma 5 Given the Sj = YZj, if we consider
ṼY,k = ZjṼSj ,k, then the followings are equivalent

maximize
ṼSj ,k

tr((ṼSj ,k)
>SjSjṼSj ,k)

⇐⇒minimize
ṼSj ,k

ε2(ZjṼSj ,k).

Proof 4 Let us remind that the sum of eigenvalue
errors from ṼY,k is defined as

ε2(ṼY,k) = tr(V>Y,kY
>YVY,k)− tr(Ṽ>Y,kY

>YṼY,k)

= tr(Σ2
Y,k)− tr(Ṽ>Y,kY

>YṼY,k),

where K = Y>Y, Y = UYΣYV>Y, Yk =

UY,kΣY,kV
>
Y,k, and (ṼY,k)

>ṼY,k = I.

If we consider ṼY,k = ZjṼSj ,k, then we have

ε2(ZjṼSj ,k)

= tr(Σ2
Y,k)− tr((ZjṼSj ,k)

>Y>YZjṼSj ,k)

= tr(Σ2
Y,k)− tr((ṼSj ,k)

>S>j SjṼSj ,k).

Since tr(Σ2
Y,k) is constant given the rank-k and K, we

complete the proof.

E.2 Lem 6

Lemma 6 [9] Let A ∈ Rm×n have singular values
σ1(A) ≥ · · · ≥ σq(A) ≥ 0, where q = min{m,n}. For
each k = 1, . . . , q we have

k∑
i=1

σi(A) = max{| tr(X>AY)| : X ∈ Rm×k,Y ∈ Rn×k,

X>X = Y>Y = I}.

E.3 Cor 1

Corollary 1 For a mutilayer Nyström architecture of
NNM, we have

Ũonm
Sj−1,k = argmax

ŨSj−1,k

tr(Ũ>Sj−1,kSj−1S
>
j−1ŨSj−1,k) (13)

subject to Ũ>Sj−1,kŨSj−1,k = I,

range(ŨSj−1,k) ⊂ range(S′j).

That is, given the subsample matrices Sj and Sj−1,
ONM minimizes the sum of eigenvalue errors of KSj−1

under the formula of Eqn (13).

Proof 5 Since, S′j = SjṼ
onm
Sj ,`

= Sj−1PjṼ
onm
Sj ,`

=

Sj−1P
′
j, we note that Ũonm

Sj−1,k
and U′Sj ,k

are in the
range of S′j. Then, we can easily derive Cor 1 from
Lem 1 and Lem 2.
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E.4 Lem 7

Lemma 7 We have

tr((Ṽonm
Sj ,k )

>S>j SjṼ
onm
Sj ,k ) ≥ tr((Ũonm

Sj ,k)
>SjS

>
j Ũonm

Sj ,k),

where Ṽonm
Sj ,k

= S>j Ũonm
Sj ,k

(Σ̃onm
Sj ,k

)−1.

Proof 6 First we have (Ũonm
Sj ,k

)>SjS
>
j Ũonm

Sj ,k
=

(Σ̃onm
Sj ,k

)2. Next, suppose that we consider full SVD
of Sj s.t. Sj = USjΣSjV

>
Sj
, then we have

tr((Ṽonm
Sj ,k )

>S>j SjṼ
onm
Sj ,k )

= tr((Ũonm
Sj ,k)

>USjΣ
4
Sj

U>Sj
Ũonm

Sj ,k(Σ̃
onm
Sj ,k)

−2)

tr((Ũonm
Sj ,k)

>SjS
>
j Ũonm

Sj ,k)

= tr((Ũonm
Sj ,k)

>USjΣ
2
Sj

U>Sj
Ũonm

Sj ,k).

If we consider B = U>Sj
Ũonm

Sj ,k
, then the proof is com-

pleted by Lem 8.

E.5 Lem 8

Lemma 8 Suppose matrix B = (bij) ∈ Rm×n
has orthonormal columns, i.e. B>B = In, Σ2 =
diag(σ2

1 , . . . , σ
2
m). Then, we have

tr(B>Σ4BD−1) ≥ tr(B>Σ2B),

where D = diag(d1, . . . , dn) is the the diagonal matrix
consisting of diagonal elements of B>Σ2B.

Proof 7 By matrix multiplication we have di =∑m
j=1 σ

2
j b

2
ji and thus the ith diagonal element of

B>Σ4BD−1 is
(∑m

j=1 σ
4
j b

2
ji

)/
di . By Cauchy-

Schwarz inequality,

m∑
j=1

σ4
j b

2
ji =

 m∑
j=1

(σ2
j bji)

2

 m∑
j=1

b2ji


≥

 m∑
j=1

σ2
j b

2
ji

2

= d2i .

Therefore,
(∑m

j=1 σ
4
j b

2
ji

)/
di ≥ di. Thus, we have

tr(B>Σ4BD−1) =

n∑
i=1

 m∑
j=1

σ4
j b

2
ji

/di

≥
n∑
i=1

di = tr(B>Σ2B).

F Proof of Thm 1

To prove Thm 1, we need Lem 3, Lem 5, Proposition 2,
and Lem 4, whose statements and proofs are in the
Appendix.

Theorem 1 Suppose that we use ONM for the kernel
PCA parts in the sublayers. Then, the upper error
bound of NNM in Lem 4 decreases when we use ad-
ditional sublayers. That is, if we add an additional
sublayer to the NNM structure with i sublayers as
(i + 1)-th sublayer, then upper error bounds further
decrease as ε2(ṼY,k) decreases.

Proof 8 Suppose that, given the mutilayer structure
of NNM with t sublayers, we use ONM for kernel PCA
parts and only i sublayers which are from the first
sublayer to i-th sublayer until the final layer, where
i ∈ {1, 2, ..., (t− 1)}. Then, the i-th sublayer becomes
the last sublayer before the final layer, and we have
S′j = Y(ZjṼ

onm
Sj ,`

) as the input of the final layer with
j = (t−i) by Lem 3 and Lem 4. Since ṼY,` = ZjṼ

onm
Sj ,`

,
we can select ṼY,k = ZjṼ

onm
Sj ,k

which is the first k
columns of ZjṼ

onm
Sj ,`

for ε2(ṼY,k).

Similarly, suppose that we use only (i + 1) sublayers
from the first sublayer to (i+ 1)-th sublayer until the
final layer, where i ∈ {1, 2, ..., (t− 1)}. Then, we have
S′j−1 = YZj−1Ṽ

onm
Sj−1,`

as the input of the final layer
with j = (t−i), and we can select ṼY,k = Zj−1Ṽ

onm
Sj−1,k

for ε2(ṼY,k) since ṼY,` = Zj−1Ṽ
onm
Sj−1,`

.

Thus, if we apply ṼY,k = ZjṼ
onm
Sj ,k

to ε2(ṼY,k) for
using i sublayer and ṼY,k = Zj−1Ṽ

onm
Sj−1,k

to ε2(ṼY,k)

for using (i+ 1) sublayers, then we have ε2(ZjṼonm
Sj ,k

)

and ε2(Zj−1Ṽonm
Sj−1,k

), respectively. Then, by Lem 2, we
have ε2(Zj−1Ṽonm

Sj−1,k
) ≤ ε2(ZjṼonm

Sj ,k
).

We also note that, given the ` column vectors
of ZjṼ

onm
Sj ,`

, ε2(ZjṼ
onm
Sj ,k

) is the minimum among
ε2(ṼY,k), where ṼY,k is any submatrix consisting of k
column vectors of ZjṼ

onm
Sj ,`

and j = (t− i) for using i
sublayer. We can easily prove it by considering Lem 1,
Lem 2 and the definition of Ṽonm

Sj ,k
which is the fist k

column vectors of Ṽonm
Sj ,`

s.t.

Ṽonm
Sj ,k =argmax

ṼSj ,k

tr((ṼSj ,k)
>SjSjṼSj ,k)

subject to range(ṼSj ,k) ⊂ range(S′j+1),

(ṼSj ,k)
>ṼSj ,k = I,

where we compute Ṽonm
Sj ,k

by using ONM and the com-
pressed sample matrices C′j+1 = S>j S′j+1 and K′Sj+1

=

(Sj+1)
>S′j+1. Since maximizing tr((Ṽ>Sj ,k

SjSjṼSj ,k)
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is equivalent to minimizing ε2(ZjṼSj ,k by Lem 5,
ε2(ZjṼ

onm
Sj ,k

) is the minimum among ε2(ṼY,k), where
ṼY,k is any submatrix consisting of k column vectors
of ZjṼ

onm
Sj ,`

.

Thus, we complete the proof, since the minimum of sum
of eigenvalue errors ε2(ṼY,k) in Lem 4 decreases as we
use additional sublayers until the final layer.

G Proof of Proposition 3

We provide Proposition 3 which states why the SNM
should not be utilized at the final layer of NNM.

Proposition 3 Suppose that we compress C and KS

as C′ and K′S with ṼS,` = VS,` at the t-th layer, and
we run the SNM with C′ and K′S at the final layer.
Then K̃snm

k are the same regardless of values of `, where
` ≥ k. That is, the rank-k spectral decomposition using
rank-k SNM is biased by s samples.

Proof 9 Suppose that ṼY,` = VS,` for some ` ≥ k,
and σi(S) 6= 0 for i = 1, ..., `. Then, we have
C′ = CVS,` = Y>SVS,` and K′S = S′>S′ =

VS,`S
>SVS,` = Σ2

S,`. Consequently, K†S′,k = Σ−2S,k.
If we run the standard Nyström method at the final
layer with C′ and K′S, then we have

K̃snm
k = C′K†S′,kC

′> = Y>SVS,`Σ
−2
S,kV

>
S,`S

>Y

= Y>US,`ΣS,`Σ
−2
S,kΣS,`U

>
S,`Y

= Y>US,kU
>
S,kY.


