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Abstract

Advances in recovering low-rank matrices
from noisy observations have led to tractable
algorithms for clustering from general pair-
wise labels with provable performance guar-
antees. Based on convex relaxation, it has
been shown that the ground truth clusters
can be recovered with high probability un-
der a generalized stochastic block model by
solving a semidefinite program. Although
tractable, the algorithm is typically too slow
for sufficiently large problems in practice. In-
spired by recent advances in non-convex ap-
proaches to low-rank recovery problems, we
propose an algorithm based on projected gra-
dient descent that enjoys similar provable
guarantees as the convex counterpart, but
can be orders of magnitude faster. Our the-
oretical results are further supported by en-
couraging empirical results.

1 Introduction

In the labeled graph clustering problem, the input is
a set of pairwise observations among a finite set of n
nodes. Each observation between a pair of nodes is in
the form of a label. For a binary graph, the label is
simply the indicator for the presence or absence of an
edge, or “unknown” for an unobserved pair. From such
pairwise observations, one seeks to partition the nodes
into disjoint clusters such that within-cluster pairs are
more closely related than between-cluster pairs. The
use of general labels allows a very rich encoding of pair-
wise interactions and covers a wide range of graph clus-
tering settings, including the standard binary graphs,
partially observed graphs, weighted graphs as well as
time-varying graphs.
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Under a generalized stochastic block model, it has
been shown (Lim et al., 2014) that the underly-
ing ground truth clustering can be exactly recovered
with high probability by solving a semidefinite pro-
gram, which is a convex relaxation of the maximum-
likelihood problem. In certain case, this approach
is shown to be order-wise optimal, in the sense that
the necessary and the sufficient conditions for recov-
ery match up to a constant factor.

The convex approach, while tractable, is computation-
ally demanding in practice and does not scale well to
large data sets. Recently, non-convex optimization ap-
proachs have been shown to successfully solve many
low-rank recovery problems (Gu et al., 2016; Chen and
Wainwright, 2015; Sun and Luo, 2015; Zheng and Laf-
ferty, 2015; Zhao et al., 2015; Yi et al., 2016). In partic-
ular, Chen and Wainwright (2015) outlined a general
framework for a family of low-rank recovery problems
and proposed an approach based on projected gradi-
ent descent. The closest setting to ours in (Chen and
Wainwright, 2015) is a planted densest subgraph prob-
lem, which can be considered a single-cluster discovery
problem. It is, however, unclear whether the setup can
be directly generalized to the full-fledged graph clus-
tering problem.

Inspired by results from Chen and Wainwright (2015)
and Lim et al. (2014), we propose and analyze a pro-
jected gradient approach for the general labeled graph
clustering problem. Our main contribution is in show-
ing that the proposed approach enjoys similar theoret-
ical performance guarantees in terms of recovering the
underlying ground truth but can be orders of magni-
tude faster than the convex counterpart.

The rest of the paper is organized as follows. We pro-
vide references to some closely related works in Sec-
tion 1.1. We describe our problem setup and present
the algorithm in Section 2. Our main results, with
most of the proofs, are presented in Section 3. Ex-
periment results are presented in Section 4. Finally,
Section 5 discusses some potential future works.
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1.1 Related Works

The stochastic block model, also known as the planted
partition model (Holland et al., 1983; Condon and
Karp, 2001) have been widely used to analyze graph
clustering algorithms. These include partially ob-
served graphs (Oymak and Hassibi, 2011; Chen et al.,
2014a), weighted graphs (Chen et al., 2014b), and the
more general labeled graphs (Heimlicher et al., 2012;
Lelarge et al., 2013; Lim et al., 2014). Approaches for
graph clustering include spectral clustering (McSherry,
2001; Chaudhuri et al., 2012) and convex optimization
(Mathieu and Schudy, 2010; Ames and Vavasis, 2011;
Lim et al., 2014). The problem setting in (Saade et al.,
2016) is very similar to ours. Their works focus on the
2-cluster case, where they derive necessary and suf-
ficient conditions for partial recovery of the ground
truth.

Also related are stochastic block models that allow
overlapping clusters, or mixed memberships (Airoldi
et al., 2008; Latouche et al., 2011; Kaufmann et al.,
2016). There are generally fewer approaches with
provable performance guarantees in this setting. An
interesting recent work is by Kaufmann et al. (2016),
where they propose and show the consistency of a
spectral algorithm for the overlapping stochastic block
models.

Gradient descent approach to low-rank recovery prob-
lems have been proposed by Burer and Monteiro
(2005); Chen and Wainwright (2015); Sun and Luo
(2015); Zheng and Lafferty (2015); Zhao et al. (2015);
Yi et al. (2016). Other non-convex algorithms with
provable guarantees include phase retrieval (Cands
et al., 2015), EM (Wang et al., 2015) and tensor de-
compositions (Anandkumar et al., 2014). We refer the
reader to these works and the references therein for
further related literature.

2 Problem Setup and Algorithm

We assume that a ground-truth clustering exists,
where n nodes are partitioned into r disjoint clusters
of size K1, . . . ,Kr respectively. Without loss of gener-
ality, we assume K1 ≥ K2 ≥ . . . ≥ Kr =: K. where K
is the smallest cluster size. Define membership index
set Ik such that i ∈ Ik iff node i belongs to cluster
k, for k = 1 . . . r. We use the shorthand k(i) to refer
to the cluster index of node i. Define F ∗ ∈ Rn×r the
cluster membership matrix where F ∗ik = 1 if i ∈ Ik and
0 otherwise. Let Y ∗ = F ∗F ∗> be the corresponding
cluster matrix. Note that rank(Y ∗) = r and K1 . . .Kr

are its singular values. We define κ = K1

Kr
.

We use the generalized stochastic block model as pro-
posed in (Lim et al., 2014), where each pair (i, j)

of nodes independently generates an observed label
Ωij ∈ O where O is a label set. The labels are gen-
erated according to distributions µ and ν such that
Ωij ∼ µ if k(i) = k(j) and Ωij ∼ ν if k(i) 6= k(j). To
illustrate, the standard stochastic block model would
have O = {+1,−1} that corresponds to “edge” or “no-
edge” in the graph, with µ(+1) = p and ν(+1) = q.

Our objective is to recover Y ∗ (or F ∗) given the ob-
servations Ω.

2.1 Convex Approach

Let w : O → R be a weight function and the matrix
W ∈ Rn×n be a weight matrix where Wji = Wij =
w(Ωij) for all i, j ∈ {1 . . . n}. The convex approach to
recovering Y ∗ involves solving the following semidefi-
nite program:

max
Y

〈W,Y 〉

s.t. Y ∈ Sn+ ,
0 ≤ Yij ≤ 1,∀(i, j),

(1)

where 〈W,Y 〉 = trace(W>Y ) and Sn+ is the space of
n× n real symmetric positive semidefinite matrices.

Intuitively, one would want to assign larger weights to
more informative labels. The following result states
the conditions sufficient for exact recovery of Y ∗ from
Ω:

Theorem 1 (Lim et al. 2014). Suppose b is any num-
ber that satisfies |w(l)| ≤ b almost everywhere (a.e.)
over O with respect to µ and ν. There exists a univer-
sal constant c > 0 such that if

min{Eµw,−Eνw}

≥ c
b log n+

√
n log n

√
max{Varµw,Varνw}
K

, (2)

then Y ∗ is the unique solution to program (1) with high
probability.1

We shall focus on weight functions where

E := Eµw = −Eνw > 0. (3)

Also, we define Var w := max{Varµw,Varνw}.

In particular, we propose to use the “linear” weights

wLIN(l) :=
µ(l)− ν(l)

µ(l) + ν(l)
.

It is easy to see that −1 ≤ w(l) ≤ 1 for all l ∈ O
and that (3) holds for wLIN. The following corollary is
immediate:

1By high probability we mean > 1− n−d where d only
affects the constant c linearly.
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Corollary 1. Suppose the weight function wLIN is
used. There exists a universal constant c such that Y ∗

is the unique solution to program (1) with high proba-
bility if ∫

l∈O

(µ(l)− ν(l))2

µ(l) + ν(l)
dλ ≥ cn log n

K2
. (4)

It has been shown (Lim et al., 2017) that this is also
the necessary condition (up to a constant factor) for
recovery in the case of two equal-size clusters.

2.2 Projected Gradient Descent

Chen and Wainwright (2015) proposed a general
framework for solving low-rank recovery problems
based on projected gradient descent. In particular,
it solves the following semidefinite problem:

min
Y
L(Y ) s.t. Y ∈ Sn+ andY ∈ Y

via a factorized formulation:

min
F∈Rn×r

L(FF>) s.t. F ∈ F (5)

where L : Sn+ → R is a loss function.

Program (5) is in general non-convex even if the orig-
inal program is convex. It is solved using a sequence
of projected gradient descent updates as follows:

F t+1 = ΠF
(
F t − ηt∇L(FF>)

)
where ηt > 0 is a step size parameter, and ΠF denotes
the Euclidean projection onto the set F .

Chen and Wainwright (2015) provide a set of con-
ditions under which the projected gradient descent
converges to a (near)-optimal solution. They have
demonstrated that the algorithm works for the planted
densest subgraph problem, which can be considered
a single-cluster (rank-1) version of the more general
planted partition problem. The algorithm uses F =
{F : F ∈ [0, 1]n×1,

∑n
i=1 Fi = K}, which assumes that

the cluster size K is known. It is not clear that the
result can be generalized to two or more clusters.

We extend the results to solving the general labeled
graph clustering problem. In particular, we propose
to use

F = {F : F ∈ [0, 1]n×r,

r∑
k=1

Fik = 1, ∀i = 1 . . . n}.

(6)
Under this choice of F , the conditions in Chen and
Wainwright (2015) do not immediately follow. In the
next section, with a much simplified proof, we show
that the projected gradient descent indeed converges
at linear rate under the right condition.

Algorithm 1 provides the pseudocode. The projection
ΠF can be done efficiently in O(nr log r) using the al-
gorithm described in (Wang and Carreira-Perpiñán,
2013). Due to the linear convergence rate, the stop-
ping condition can simply be a fixed iteration count or
a threshold on the change in the loss function.

Algorithm 1 Projected Gradient Descent

Input: Weight matrix W ∈ Rn×n symmetric, rank r,
step size η
Output: F ∈ [0, 1]n×r

1. t← 0, F 0 initialized as in Section 2.3.

2. F t+1 = ΠF (F t + ηWF t)

3. If stopping condition satisfied, then stop and out-
put F = F t+1.

4. t← t+ 1, go to step 2.

2.3 Initialization

To initialize Algorithm 1, we propose to perform spec-
tral clustering on the normalized matrix

W ′ =

(
1

Eµw − Eνw

)
(W − Eνw). (7)

In particular, let U ′ be n × r matrix whose columns
are eigenvectors of W ′ corresponding to its r largest
absolute eigenvalues. Next, run k-means on the rows
of U ′ to obtain an initial clustering. Finally, set F 0

according to this initial clustering.

3 Main Results

We derive our main results in this section. For any
matrix A, We use ‖A‖F for the Frobenius norm, ‖A‖op

for the operator norm, ‖A‖1 =
∑
ij |Aij | and ‖A‖∞ =

maxij |Aij | respectively.

First, note that the factorization Y ∗ = F̄ F̄> is not
unique. We define the equivalent class of valid solu-
tions as follows

E(Y ∗) := {F̄ ∈ Rn×r : F̄ F̄> = Y ∗, F̄ ∈ F}

where F is given by (6). For any F ∈ F , define

d(F, F ∗) = min
F̄∈E(Y ∗)

‖F − F̄‖F .

For t = 0, 1 . . ., let

F̄ t := arg min
F̄∈E(Y ∗)

‖F t − F̄‖F ,

where F t are as defined in Algorithm 1. Define Λt :=
F t+1 − F t and ∆t = F t − F̄ t.
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The following lemma characterizes the set E(Y ∗):

Lemma 1. Any F̄ ∈ E(Y ∗) satisfies F̄ = F ∗P for
some permutation matrix P ∈ Rr×r. Furthermore, for
any F̄ , F̄ ′ ∈ E(Y ∗), F̄ 6= F̄ ′, we have ‖F̄ − F̄ ′‖F ≥
2
√
K.

Proof. Fix any F̄ ∈ E(Y ∗). Since F̄ F̄> = F ∗F ∗>, F̄
and F ∗ have the same singular values. Let F̄ = UΣV >

and F ∗ = U0ΣV >0 be the rank-r SVD for F̄ and F ∗

respectively. By the spectral theorem, U = U0Q for
some orthogonal matrix Q, and Q is block-diagonal
such that QΣ = ΣQ. Let P = V0QV

>. Then P is
orthogonal and F ∗P = U0ΣV >0 V0QV

> = U0QΣV > =
F̄ . Since both F̄ and F̄0 are entrywise non-negative,
P must be a permutation matrix. To prove the last
statement, note that since F̄ 6= F̄ ′, they must differ in
at least two columns. Since all columns have disjoint
support, ‖F̄·j − F̄ ′·j‖2F ≥ 2K if F̄·j 6= F̄ ′·j .

The following corollary is immediate:

Corollary 2. If d(F, F ∗) <
√
K, then there is a

unique F̄ ∈ E(Y ∗) such that ‖F − F̄‖F <
√
K.

Our main result is stated as follows:

Theorem 2. Assume that the weight function satis-
fies (2) and (3). Suppose d(F 0, F ∗) ≤ 1

10

√
K. Then,

with high probability, Algorithm 1 with step size η =
K

35E
√
κn2 generates a sequence of F t satisfying

d(F t, F ∗)2 ≤
(

1− 1

350κ3r2

)t
d(F 0, F ∗)2.

In other words, when F 0 is initialized sufficiently close
to E(Y ∗), the projected gradient descent converges ex-
ponentially fast toward the exact clustering, with high
probability. Here, the randomness is over all possible
label matrices generated from the ground truth.

3.1 Initialization

Theorem 2 requires that we initialize F 0 sufficiently
close to any F̄ ∈ E(Y ∗). As described in Section 2.3,
we propose to perform spectral clustering to obtain
F 0. The following theorem shows that it can provide
a suitable F 0:

Theorem 3. Assume that the weight function satisfies
(3). There exists a universal constant c such that if

E√
(2 + ε)κr

≥ c
b log n+

√
n(Var w) log n

K
, (8)

then the initialization by spectral clustering using (1 +
ε)-approximate k-means on W ′ as defined by (7) out-
puts F 0 with d(F 0, F ∗) ≤ 1

10

√
K with high probability.

Proof. By matrix Bernstein inequality(Tropp, 2012),
we have that with high probability,

‖W − EW‖op ≤ C
(
b log n+

√
n(Var w) log n

)
(a)

≤ EK√
3200(2 + ε)κr

where we use (8) in (a).

Let Û and Ũ be the leading eigenvectors of W ′ and
EW ′ respectively. By Lemma 5.1 of (Lei and Rinaldo,
2015), there exists an orthogonal matrix Q such that

‖Û − ŨQ‖F ≤
2
√

2r

K
‖W ′ − EW ′‖op

=

√
2r

EK
‖W − EW‖op ≤

1√
1600(2 + ε)κ

(9)

where we use the fact that EW ′ = Y ∗ whose smallest
non-zero singular value is K.

By Lemma 5.3 of (Lei and Rinaldo, 2015), with

δk :=
√

1
Kk

+ 1
maxl6=kKl

and U := ŨQ, we have that

the number of mis-classified members in cluster k is
bounded by |Sk| for k = 1 . . . r and

∑r
k=1 |Sk|δ2

k ≤
8(2 + ε)‖Û − U‖2F. Therefore,

d(F 0, F ∗)2 ≤ 2

r∑
k=1

|Sk|

≤ 2

r∑
k=1

|Sk|K2

(
1

Kk
+

1

maxl 6=kKl

)
≤ 16κK(2 + ε)‖Û − U‖2F
(b)

≤ 1

100
K

where we use (9) in (b).

Notice that if we hold the number of clusters r con-
stant, then the condition (8) of Theorem 3 is identical
to the condition (2) of both Theorem 1 and 2. On
the other hand, if we allow the number of clusters to
grow with n, then Theorem 3 admits a slower rate of
growth for r than

√
n (ignoring log factors), which is

achievable by (2). Improving this rate is left for future
work.

3.2 Preliminary Lemmas

To prove Theorem 2, we first need a few technical lem-
mas.

Lemma 2. There exists a universal constant c such
that if condition (2) holds, then with probability at
least 1− n−3,

‖W −EW‖op ≤
EK

4
and ‖(W −EW )F̄‖∞ ≤

EK

4
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for any F̄ ∈ E(Y ∗).

Proof. The operator norm is bounded by matrix Bern-
stein inequality (Tropp, 2012). For the second inequal-
ity, note that each entry of (W −EW )F̄ is the sum of
at most K1 independent zero-mean random variables,
and we can apply the standard Bernstein inequality.
The bounds then follow from condition (2). We omit
the details.

Lemma 3. Under the conditions of Theorem 2, if
d(F t, F ∗) ≤ 1

10

√
K, then d(F t+1, F ∗) ≤ 7

50

√
K. Fur-

thermore, F̄ t = F̄ t+1.

Proof. By Algorithm 1, F t+1 = ΠF (F̃ t+1) where
F̃ t+1 = F t + ηWF t. The projection ΠF is a convex
optimization problem

ΠF (F̃ t+1) = arg min
F∈F
‖F − F̃ t+1‖2F .

By first-order conditions for optimality, we have that

〈F t+1 − F̃ t+1, F − F t+1〉 ≥ 0, ∀F ∈ F . (10)

Taking F = F t in (10) and re-arranging, we therefore
have

‖Λt‖2F
≤ η〈WF t,Λt〉

= η〈W,F t(Λt)>〉

= η〈EW,F t(Λt)>〉+ η〈W − EW,F t(Λt)>〉
≤ η‖EW‖F‖F t‖op‖Λt‖F + η‖W − EW‖op‖F t‖F‖Λt‖F
(a)

≤ η(En)

(
11

10

√
κK

)
‖Λt‖F + η

(
EK

4

)(
11

10

√
n

)
‖Λt‖F

≤ 1

25

√
K‖Λt‖F

where in (a), we apply Lemma 2 for ‖W −EW‖op and

‖F t‖op ≤ ‖F t − F̄ t‖op + ‖F̄ t‖op ≤
1

10

√
K +

√
κK

≤ 11

10

√
κK,

and

‖F t‖F ≤ ‖F t−F̄ t‖F +‖F̄ t‖F ≤
1

10

√
K+
√
n ≤ 11

10

√
n.

Therefore,

‖F t+1 − F̄ t‖F ≤ ‖Λt‖F + ‖F t − F̄ t‖F ≤
7

50

√
K.

The last statement follows from Corollary 2.

Lemma 3 by itself is too weak to establish convergence,
but it ensures that d(F t+1, F ∗) <

√
K and F̄ t+1 =

F̄ t. The next lemma, which corresponds to the local
descent condition in (Chen and Wainwright, 2015), is
crucial.

Lemma 4. Under the conditions of Theorem 2, sup-
pose that d(F t+1, F ∗) ≤ τ

√
K. Then

〈−WF t+1,∆t+1〉 ≥
(

1

2
− 2τ

)
EK‖∆t+1‖2F.

Proof. To reduce clutter, we use F = F t+1, ∆ = ∆t+1

and F̄ = F̄ t+1 for the rest of the proof.

We have that

〈−WF,∆〉 = 〈−W,F∆>〉
= 〈−EW,F∆>〉+ 〈−(W − EW ), F∆>〉.

(11)

We now bound the first term on the RHS. Let k(i)
denote the column index of node i according to F̄ .
Note that EW = ES where S is block diagonal with
Sij = 1 if k(i) = k(j) and Sij = −1 if k(i) 6= k(j). For
any i, j such that k(i) = k(j) = c, we have

−Sij(F∆>)ij = Fic(1− Fjc)−
∑
k 6=c

FikFjk

(a)

≥ Fic(1− Fjc)−
∑
k 6=c

(1− Fic)Fjk

= Fic(1− Fjc)− (1− Fic)(1− Fjc)
= (1− Fjc)[1− 2(1− Fic)]

where in (a) we use the fact that, for any F ∈ F , each
row sums to 1, and therefore for any k′ 6= c,

Fik′ ≤
∑
k 6=c

Fik = 1− Fic.

We therefore have that for each c = 1 . . . r,∑
ij:k(i)=k(j)=c

−Sij(F∆>)ij

≥

 ∑
i:k(i)=c

1− Fic

 ∑
i:k(i)=c

1− 2(1− Fic)


=

 ∑
i:k(i)=c

|∆ic|

Kc − 2
∑

i:k(i)=c

(1− Fic)


(b)

≥

 ∑
i:k(i)=c

|∆ic|

Kc − 2

√
Kc

∑
i:k(i)=c

(1− Fic)2


≥

 ∑
i:k(i)=c

|∆ic|

(Kc − 2
√
Kc(τ

√
K)
)

≥ (1− 2τ)K

 ∑
i:k(i)=c

|∆ic|

 (12)
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where (b) is by Jensen’s inequality.

Similarly, for any i, j such that k(i) = c 6= d = k(j),
we have

− Sij(F∆>)ij − Sji(F∆>)ji

=

Fid(Fjd − 1) +
∑
k 6=d

FikFjk

+

Fjc(Fic − 1) +
∑
k 6=c

FikFjk


≥ (FicFjc − Fid(1− Fjd)) + (FjdFid − Fjc(1− Fic))
= Fjc(1− 2(1− Fic)) + Fid(1− 2(1− Fjd))

and therefore for each pair (c, d), c 6= d,∑
ij:k(i)=c,k(j)=d

−Sij(F∆>)ij +
∑

ij:k(i)=d,k(j)=c

−Sij(F∆>)ij

≥
∑

ij:k(i)=c,k(j)=d

Fjc(1− 2(1− Fic)) + Fid(1− 2(1− Fjd))

=

 ∑
i:k(i)=d

Fic

 ∑
i:k(i)=c

1− 2(1− Fic)

+

 ∑
i:k(i)=c

Fid

 ∑
i:k(i)=d

1− 2(1− Fid)


≥ (1− 2τ)K

 ∑
i:k(i)=d

|∆ic|

+ (1− 2τ)K

 ∑
i:k(i)=c

|∆id|

 .

(13)

Combining (12) and (13), we have

〈−EW,F∆>〉 ≥ (1− 2τ)EK‖∆‖1. (14)

We are now ready to finish the proof. Continuing
from (11),

〈−WF,∆〉
= 〈−EW,F∆>〉+ 〈−(W − EW ), F∆>〉
= 〈−EW,F∆>〉+ 〈−(W − EW ), F̄∆>〉+
〈−(W − EW ),∆∆>〉
≥ (1− 2τ)EK‖∆‖1 − ‖(W − EW )F‖∞‖∆‖1
− ‖W − EW‖op‖∆‖2F

(c)

≥ (1− 2τ)EK‖∆‖1 −
EK

2
‖∆‖1

≥
(

1

2
− 2τ

)
EK‖∆‖2F

where in (c) we apply Lemma 2 and use the fact that
‖∆‖2F ≤ ‖∆‖∞‖∆‖1 ≤ ‖∆‖1.

Lemma 4 is used to derive the following key bound for
the proof of the main theorem.

Lemma 5. Under the conditions of Theorem 2, sup-
pose that d(F t+1, F ∗) ≤ 7

50

√
K. Then

1

η
〈Λt,−∆t+1〉 ≥ 1

5
EK‖∆t+1‖2F −

252

32

En2

K
‖Λt‖2F

Proof. Using Lemma 4 with τ = 7
50 , we have that

〈−WF t,∆t+1〉
= 〈−WF t+1 +WΛt,∆t+1〉

≥ 11

50
EK‖∆t+1‖2F − |〈(EW )Λt,∆t+1〉|

− |〈(W − EW )Λt,∆t+1〉|

≥ 11

50
EK‖∆t+1‖2F − ‖EW‖F‖Λt‖F‖∆t+1‖F

− ‖W − EW‖op‖Λt‖F‖∆t+1‖F
(a)

≥ 11

50
EK‖∆t+1‖2F −

5En

4
‖Λt‖F‖∆t+1‖F

(b)

≥ 11

50
EK‖∆t+1‖2F −

EK

50
‖∆t+1‖2F −

252En2

32K
‖Λt‖2F

≥ 1

5
EK‖∆t+1‖2F −

252En2

32K
‖Λt‖2F (15)

where in (a) we apply Lemma 2 and in (b) we use the

fact that ab ≤ a2+b2

2 .

Using (10) with F = F̄ t, we have that

〈WF t − Λt

η
,∆t+1〉 ≥ 0.

Adding (15) to the above completes the proof.

3.3 Proof of Theorem 2

Following Chen and Wainwright (2015), we prove by
induction. By the condition of the theorem, we have
d(F 0, F ∗) ≤ 1

10

√
K. We will show that for t = 0, 1 . . .,

if d(F t, F ∗) ≤ 1
10

√
K, then

d(F t+1, F ∗)2 ≤
(

1− 1

350κ3r2

)
d(F t, F ∗)2.

Lemma 3 ensures that F̄ t+1 = F̄ t. Considering the
triangle formed by F̄ t, F t and F t+1, we have that

‖∆t+1‖2F = ‖∆t‖2F − ‖Λt‖2F + 2〈Λt,∆t+1〉
(a)

≤ ‖∆t‖2F − ‖Λt‖2F

− η 1

5
EK‖∆t+1‖2F + η

252

32

En2

K
‖Λt‖2F

≤
(

1 +
K2

175
√
κn2

)−1

‖∆t‖2F

≤
(

1− K2

350
√
κn2

)
‖∆t‖2F

≤
(

1− 1

350κ3r2

)
‖∆t‖2F
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Figure 1: Ground truth recovery rate. White regions denote success while dark regions are failures.

where we apply Lemma 5 in (a). Recursively applying
the above completes the proof.

4 Experiments

We evaluate the proposed algorithm on graphs gen-
erated by the stochastic block model under various
parameter settings. In all our experiments, we use
a constant step size of 0.01 and stopping threshold
ε = 10−6 for the projected gradient descent. All k-
means steps use k-means++ with 10 repetitions. We
focus on comparing the performance between the con-
vex and the proposed non-convex approach. For more
extensive empirical results on the convex approach in
the labeled graph clustering setting, including results
on real data sets, we refer the reader to (Lim et al.,
2017).

A first feasible check is performed on standard bi-
nary graphs with within-cluster edge probability p and
between-cluster edge probability q, across a wide range
of p and q. We measure the performance in terms of
the rate of exact recovery of the underlying ground
truth and compare this with the convex approach us-
ing the ADMM solver as proposed in (Lim et al., 2014).

Figure 1 shows the results over various combination
of (p, q) pairs, for n = 200 and 4 equal-size clusters.
Since we assume p > q, only the bottom-right half of
the plot is meaningful. We clearly observe that the
region of success is comparable between the two ap-
proaches. In fact, we observe a slightly wider coverage
by the projected gradient approach – we attribute this
to the differences in stopping conditions used in each
approach.

To go beyond the binary graph, Figure 2 shows the
performance for partially observable graphs, where
a pair of nodes produces the label “unknown” with
probability 0.5. Here, we include the results from
spectral clustering, which we use for initialization.

Also included are results for “vanilla” k-means on
entire rows of W . The horizontal axis shows KL-
divergence between the within-class label distribution
µ and between-class label distribution ν. We observe
that both the projected gradient descent and ADMM
outperform spectral clustering and vanilla k-means, in
terms of both full recovery rate as well as pairwise er-
ror rate. Figure 3 shows the same settings but with
two independent observations per pair. Such obser-
vations can be obtained from, for example, multiple
independent snapshots of a graph. We observe overall
improvement in clustering performance as expected,
with the same qualitative difference between the algo-
rithms.

The real difference between the convex and non-convex
approaches is illustrated in Figure 4, where we plot
the computation time required for convergence as n
grows. It is clear that the gap in terms of computa-
tion time grows dramatically with respect to n. Con-
sidering that both approaches have similar theoretical
performance guarantees, we believe that the proposed
approach would be more relevant in practical scenar-
ios.

5 Discussion and Future Work

We have presented a non-convex approach based on
projected gradient descent and showed that it enjoys
similar theoretical performance guarantees as in the
convex approach. While the bound in Theorem 2 is
encouraging, we believe that it is not optimal, at least
based on empirical evidence so far. In particular, the
rate of convergence has a high-degree dependence on
the number of clusters, making the (naive) overall time
complexity O(r3n2 log 1

ε ). While this can be allevi-
ated to a certain extend in the sparse case, the current
rate seems suboptimal, considering that O(rn2 log 1

ε )
has been demonstrated in the case of robust PCA
(Yi et al., 2016), also with projected gradient descent.
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Figure 2: n = 400, 8 clusters
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Figure 3: n = 400, 8 clusters, two snapshots
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Figure 4: Computation time as n grows

Improving this rate is therefore an interesting future
work.

Another direction would be to adapt the approach to
handle overlapping clusters, a scenario of great practi-

cal relevance. In this case, we are currently not aware
of a clear convex counterpart in terms of approaches
with provable performance guarantees, making this an
interesting direction for future work.
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