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A Alternative methods of discrete
variational inference

We can gain insight and intuition about the stick-
breaking and rounding transformations by considering
their counterparts for discrete, or categorical, varia-
tional inference. Continuous relaxations are an ap-
pealing approach for this problem, affording gradient-
based inference with the reparameterization trick. First
we review the Gumbel-softmax method [Maddison
et al., 2017, Jang et al., 2017, Kusner and Hernández-
Lobato, 2016]—a recently proposed method for dis-
crete variational inference with the reparameteriza-
tion trick—then we discuss analogs of our permutation
and rounding transformations for the categorical case.
These can be considered alternatives to the Gumbel-
softmax method, which we compare empirically in Ap-
pendix A.5.

Recently there have been a number of proposals for
extending the reparameterization trick [Rezende et al.,
2014, Kingma and Welling, 2014] to high dimensional
discrete problems1 by relaxing them to analogous con-
tinuous problems [Maddison et al., 2017, Jang et al.,
2017, Kusner and Hernández-Lobato, 2016]. These
approaches are based on the following observation:
if x ∈ {0, 1}N is a one-hot vector drawn from a cate-
gorical distribution, then the support of p(x) is the set
of vertices of the N − 1 dimensional simplex. We can
represent the distribution of x as an atomic density on
the simplex.

A.1 The Gumbel-softmax method

Viewing x as a vertex of the simplex motivates a natural
relaxation: rather than restricting ourselves to atomic

1Discrete inference is only problematic in the high di-
mensional case, since in low dimensional problems we can
enumerate the possible values of x and compute the nor-
malizing constant p(y) =

∑
x p(y, x).

measures, consider continuous densities on the simplex.
To be concrete, suppose the density of x is defined by
the transformation,

zn
iid∼ Gumbel(0, 1)

ψn = log θn + zn

x = softmax(ψ/τ)

=

(
eψ1/τ∑N
n=1 e

ψn/τ
, . . . ,

eψN/τ∑N
n=1 e

ψn/τ

)
.

The output x is now a point on the simplex, and the
parameter θ = (θ1, . . . , θN ) ∈ RN+ can be optimized via
stochastic gradient ascent with the reparameterization
trick.

The Gumbel distribution leads to a nicely inter-
pretable model: adding i.i.d. Gumbel noise to log θ
and taking the argmax yields an exact sample
from the normalized probability mass function θ̄,
where θ̄n = θn/

∑N
m=1 θm [Gumbel, 1954]. The soft-

max is a natural relaxation. As the temperature τ goes
to zero, the softmax converges to the argmax function.
Ultimately, however, this is just a continuous relaxation
of an atomic density to a continuous density.

Stick-breaking and rounding offer two alternative ways
of constructing a relaxed version of a discrete random
variable, and both are amenable to reparameterization.
However, unlike the Gumbel-Softmax, these relaxations
enable extensions to more complex combinatorial ob-
jects, notably, permutations.

A.2 Stick-breaking

The stick-breaking transformation to the Birkhoff poly-
tope presented in the main text contains a recipe for
stick-breaking on the simplex. In particular, as we
filled in the first row of the doubly-stochastic matrix,
we were transforming a real-valued vector ψ ∈ RN−1 to
a point in the simplex. We present this procedure for
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discrete variational inference again here in simplified
form. Start with a reparameterization of a Gaussian
vector,

zn
iid∼ N (0, 1),

ψn = µn + νnzn, 1 ≤ n ≤ N − 1,

parameterized by θ = (µn, νn)N−1
n=1 . Then map this to

the unit hypercube in a temperature-controlled manner
with the logistic function,

βn = σ(ψn/τ),

where σ(u) = (1 + e−u)−1 is the logistic function. Fi-
nally, transform the unit hypercube to a point in the
simplex:

x1 = β1,

xn = βn

(
1−

n−1∑
m=1

xm

)
, 2 ≤ n ≤ N − 1,

xN = 1−
N−1∑
m=1

xm,

Here, βn is the fraction of the remaining “stick” of
probability mass assigned to xn. This transformation
is invertible, the Jacobian is lower-triangular, and the
determinant of the Jacobian is easy to compute. Lin-
derman et al. [2015] compute the density of x implied
by a Gaussian density on ψ.

The temperature τ controls how concentrated p(x) is at
the vertices of the simplex, and with appropriate choices
of parameters, in the limit τ → 0 we can recover any
categorical distribution (we will discuss this in detail in
Section A.4. In the other limit, as τ →∞, the density
concentrates on a point in the interior of the simplex
determined by the parameters, and for intermediate
values, the density is continuous on the simplex.

Finally, note that the logistic-normal construction
is only one possible choice. We could instead
let βn ∼ Beta(anτ ,

bn
τ ). This would lead to a gener-

alized Dirichlet distribution on the simplex. The beta
distribution is slightly harder to reparameterize since
it is typically simulated with a rejection sampling pro-
cedure, but Naesseth et al. [2017] have shown how this
can be handled with a mix of reparameterization and
score-function gradients. Alternatively, the beta dis-
tribution could be replaced with the Kumaraswamy
distribution [Kumaraswamy, 1980], which is quite sim-
ilar to the beta distribution but is easily reparameteri-
zable.

A.3 Rounding

Rounding transformations also have a natural analog
for discrete variational inference. Let en denote a one-

hot vector with n-th entry equal to one. Define the
rounding operator,

round(ψ) = en∗ ,

where

n∗ = arg min
n

‖en − ψ‖2

= arg max
n

ψn.

In the case of a tie, let n∗ be the smallest index n
such that ψn > ψm for all m < n. Rounding effec-
tively partitions the space into N disjoint “Voronoi”
cells,

Vn =
{
ψ ∈ RN : ψn ≥ ψm ∀m ∧ ψn > ψm ∀m < n

}
.

By definition, round(ψ) = en∗ for all ψ ∈ Vn∗

We define a map that pulls points toward their rounded
values,

x = τψ + (1− τ)round(ψ). (1)

Proposition 1. For τ ∈ [0, 1], the map defined by (1)
moves points strictly closer to their rounded values so
that round(ψ) = round(x).

Proof. Note that the Voronoi cells are intersections of
halfspaces and, as such, are convex sets. Since x is a
convex combination of ψ and en∗ , both of which belong
to the convex set Vn∗ , x must belong to Vn∗ as well.

Similarly, x will be a point on the simplex if an only
if ψ is on the simplex as well. By analogy to the
rounding transformations for permutation inference,
in categorical inference we use a Gaussian distribu-
tion ψ ∼ N (proj(m), ν), where proj(m) is the projec-
tion of m ∈ RN+ onto the simplex. Still, the simplex
has zero measure under the Gaussian distribution. It
follows that the rounded points x will almost surely
not be on the simplex either. The supposition of this
approach is that this is not a problem: relaxing to the
simplex is nice but not required.

In the zero-temperature limit we obtain a discrete distri-
bution on the vertices of the simplex. For τ ∈ (0, 1] we
have a distribution on Xτ ⊆ RN , the subset of the reals
to which the rounding operation maps. (For 0 ≤ τ < 1
this is a strict subset of RN .) To derive the density q(x),
we need the inverse transformation and the determi-
nant of its Jacobian. From Proposition 1, it follows
that the inverse transformation is given by,

ψ =
1

τ
x− 1− τ

τ
round(x).
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As long as ψ is in the interior of its Voronoi cell,
the round function is piecewise constant and the Jaco-
bian is ∂ψ

∂x = 1
τ I, and its determinant is τ−N . Taken

together, we have,

q(x;m, ν) =

τ−NN
(

1

τ
x− 1− τ

τ
round(x); proj(m),diag(ν)

)
× I[x ∈ Xτ ].

Compare this to the density of the rounded random
variables for permutation inference.

A.4 Limit analysis for stick-breaking

We show that stick-breaking for discrete variational
inference can converge to any categorical distribution
in the zero-temperature limit.

Let β = σ(ψ/τ) with ψ ∼ N (µ, ν2). In the
limit τ → 0 we have β ∼ Bern(Φ(−µν )), where Φ(·) de-
notes the Gaussian cumulative distribution function
(cdf). Moreover, when βn ∼ Bern(ρn) with ρn ∈ [0, 1]
for n = 1, . . . , N , the random variable x obtained from
applying the stick-breaking transformation to β will
have an atomic distribution with atoms in the vertices
of ∆N ; i.e, x ∼ Cat(π) where

π1 = ρ1

πn = ρn

n−1∏
m=1

(1− ρm) n = 2, . . . , N − 1,

πN =

N−1∏
m=1

(1− ρm).

These two facts, combined with the invertibility of the
stick-breaking procedure, lead to the following proposi-
tion

Proposition 2. In the zero-temperature limit, stick-
breaking of logistic-normal random variables can realize
any categorical distribution on x.

Proof. There is a one-to-one correspondence be-
tween π ∈ ∆N and ρ ∈ [0, 1]N−1. Specifically,

ρ1 = π1

ρn =
πn∏n=1

m=1 1− ρm
for n = 2, . . . , N − 1.

Since these are recursively defined, we can substitute
the definition of ρm to obtain an expression for ρn in
terms of π only. Thus, any desired categorical distribu-
tion π implies a set of Bernoulli parameters ρ. In the
zero temperature limit, any desired ρn can be obtained
with appropriate choice of Gaussian mean µn and vari-
ance ν2

n. Together these imply that stick-breaking can
realize any categorical distribution when τ → 0.

A.5 Variational Autoencoders (VAE) with
categorical latent variables

We considered the density estimation task on MNIST
digits, as in Maddison et al. [2017], Jang et al. [2017],
where observed digits are reconstructed from a latent
discrete code. We used the continuous ELBO for train-
ing, and evaluated performance based on the marginal
likelihood, estimated with the variational objective of
the discretized model. We compared against the meth-
ods of Jang et al. [2017], Maddison et al. [2017] and ob-
tained the results in Table 1. While stick-breaking and
rounding fare slightly worse than the Gumbel-softmax
method, they are readily extensible to more complex
discrete objects, as shown in the main paper.

Table 1: Summary of results in VAE

Method − log p(x)
Gumbel-Softmax 106.7
Concrete 111.5
Rounding 121.1
Stick-breaking 119. 8

Figure 1 shows MNIST reconstructions using Gumbel-
Softmax, stick-breaking and rounding reparameteriza-
tions. In all the three cases reconstructions are reason-
ably accurate, and there is diversity in reconstructions.

B Variational permutation inference
details

Here we discuss more of the subtleties of variational
permutation inference and present the mathematical
derivations in more detail.

B.1 Continuous prior distributions.

Continuous relaxations require re-thinking the objec-
tive: the model log-probability is defined with discrete
latent variables, but our relaxed posterior is a continu-
ous density. As in Maddison et al. [2017], we instead
maximize a relaxed ELBO. We assume the functional
form of the likelihood remains unchanged, and simply
accepts continuous values instead of discrete. However,
we need to specify a new continuous prior p(X) over the
relaxed discrete latent variables, here, over relaxations
of permutation matrices. It is important that the prior
be sensible: ideally, the prior should penalize values
of X that are far from permutation matrices.

For our categorical experiment on MNIST we
use a mixture of Gaussians around each ver-
tex, p(x) = 1

N

∑N
n=1N (x | ek, η2). This can be ex-

tended to permutations, where we use a mixture of
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Real Gumbel-Softmax Rounding Stick-breaking

Figure 1: Examples of true and reconstructed digits from their corresponding discrete latent variables. The real input
image is shown on the left, and we show sets of four samples from the posterior predictive distribution for each discrete
variational method: Gumbel-softmax, rounding, and stick-breaking. Above each sample we show the corresponding sample
of the discrete latent “code.” The random codes consist of of K = 20 categorical variables with N = 10 possible values
each. The codes are shown as 10× 20 binary matrices above each image.

Gaussians for each coordinate,

p(X) =

N∏
m=1

N∏
n=1

1

2

(
N (xmn | 0, η2) +N (xmn | 1, η2

)
.

(2)

Although this prior puts significant mass around invalid
points (e.g. (1, 1, . . . , 1)), it penalizes X that are far
from BN .

B.2 Computing the ELBO

Here we show how to evaluate the ELBO. Note that
the stick-breaking and rounding transformations are
compositions of invertible functions, gτ = hτ ◦ f with
Ψ = f(z; θ) and X = hτ (Ψ). In both cases, f takes in
a matrix of independent standard Gaussians (z) and
transforms it with the means and variances in θ to
output a matrix Ψ with entries ψmn ∼ N (µmn, ν

2
mn).

Stick-breaking and rounding differ in the temperature-
controlled transformations hτ (Ψ) they use to map Ψ
toward the Birkhoff polytope.

To evaluate the ELBO, we must compute the den-

sity of qτ (X; θ). Let Jhτ (u) = ∂hτ (U)
∂U

∣∣
U=u

denote the
Jacobian of a function hτ evaluated at value u. By
the change of variables theorem and properties of the
determinant,

qτ (X; θ) = p
(
h−1
τ (X); θ

)
×
∣∣Jh−1

τ
(X)

∣∣
= p
(
h−1
τ (X); θ

)
×
∣∣Jhτ (h−1

τ (X))
∣∣−1

.

Now we appeal to the law of the unconscious statistician
to compute the entropy of qτ (X; θ),

Eqτ (X;θ)

[
− log q(X; θ)

]
= Ep(Ψ;θ)

[
− log p(Ψ; θ) + log |Jhτ (Ψ)|

]
= H(Ψ; θ) + Ep(Ψ;θ)

[
|Jhτ (Ψ)|

]
. (3)

Since Ψ consists of independent Gaussians with vari-
ances ν2

mn, the entropy is simply,

H(Ψ; θ) =
1

2

∑
m,n

log(2πeν2
mn).

We estimate the second term of equation (3) using
Monte-Carlo samples. For both transformations, the
Jacobian has a simple form.

Jacobian of the stick-breaking transformation.
Here hτ consists of two steps: map Ψ ∈ RN−1×N−1

to B ∈ [0, 1]N−1×N−1 with a temperature-controlled,
elementwise logistic function, then map B to X in the
Birkhoff polytope with the stick-breaking transforma-
tion.

As with the standard stick-breaking transformation
to the simplex, our transformation to the Birkhoff
polytope is feed-forward; i.e. to compute xmn we only
need to know the values of β up to and including
the (m,n)-th entry. Consequently, the Jacobian of the
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transformation is triangular, and its determinant is
simply the product of its diagonal.

We derive an explicit form in two steps. With a slight
abuse of notation, note that the Jacobian of hτ (Ψ) is
given by the chain rule,

Jhτ (Ψ) =
∂X

∂Ψ
=
∂X

∂B

∂B

∂Ψ
.

Since both transformations are bijective, the determi-
nant is, ∣∣Jhτ (Ψ)

∣∣ =

∣∣∣∣∂X∂B
∣∣∣∣ ∣∣∣∣∂B∂Ψ

∣∣∣∣ .
the product of the individual determinants. The first
determinant is,∣∣∣∣∂X∂B

∣∣∣∣ =
N−1∏
m=1

N−1∏
n=1

∂xmn
∂βmn

=

N−1∏
m=1

N−1∏
n=1

(umn − `mn).

The second transformation, from Ψ to B, is an element-
wise, temperature-controlled logistic transformation
such that,∣∣∣∣∂B∂Ψ

∣∣∣∣ =

N−1∏
m=1

N−1∏
n=1

∂βmn
∂ψmn

=

N−1∏
m=1

N−1∏
n=1

1

τ
σ (ψmn/τ)σ (−ψmn/τ) .

It is important to note that the transformation that
maps B → X is only piecewise continuous: the function
is not differentiable at the points where the bounds
change; for example, when changing B causes the active
upper bound to switch from the row to the column
constraint or vice versa. In practice, we find that
our stochastic optimization algorithms still perform
reasonably in the face of this discontinuity.

Jacobian of the rounding transformation. The
rounding transformation is given in matrix form in the
main text, and we restate it here in coordinate-wise
form for convenience,

xmn = [hτ (Ψ)]mn = τψmn + (1− τ)[round(Ψ)]mn.

This transformation is piecewise linear with jumps at
the boundaries of the “Voronoi cells;” i.e., the points
where round(X) changes. The set of discontinuities has
Lebesgue measure zero so the change of variables theo-
rem still applies. Within each Voronoi cell, the round-
ing operation is constant, and the Jacobian is,

log
∣∣Jhτ (Ψ)

∣∣ =
∑
m,n

log τ = N2 log τ.

For the rounding transformation with given tempera-
ture, the Jacobian is constant.

C Experiment details

We used Tensorflow [Abadi et al., 2016] for the VAE
experiments, slightly changing the code made available
from Jang et al. [2017]. For experiments on synthetic
matching and the C. elegans example we used Autograd
[Maclaurin et al., 2015], explicitly avoiding propagating
gradients through the non-differentiable round opera-
tion, which requires solving a matching problem.

We used ADAM [Kingma and Ba, 2014] with learning
rate 0.1 for optimization. For rounding, the parameter
vector V defined in 3.2 was constrained to lie in the
interval [0.1, 0.5]. Also, for rounding, we used ten
iterations of the Sinkhorn-Knopp algorithm, to obtain
points in the Birkhoff polytope. For stick-breaking the
variances ν defined in 3.1 were constrained between
10−8 and 1. In either case, the temperature, along
with maximum values for the noise variances were
calibrated using a grid search on the interval [10−2, 1].
Improvements may be obtained with the use of an
annealing schedule, a direction we intend to explore in
the future.

In the C. elegans example we considered the sym-
metrized version of the adjacency matrix described in
[Varshney et al., 2011]; i.e. we used A′ = (A+A>)/2,
and the matrix W was chosen antisymmetric, with
entries sampled randomly with the sparsity pattern
dictated by A′. To avoid divergence, the matrix W
was then re-scaled by 1.1 times its spectral radius.
This choice, although not essential, induced a reason-
ably well-behaved linear dynamical system, rich in
non-damped oscillations. We used a time window of
T = 1000 time samples, and added spherical standard
noise at each time. All results in Figure 4 are aver-
ages over five experiment simulations with different
sampled matrices W . For results in Figure 4b we con-
sidered either one or four worms (squares and circles,
respectively), and for the x-axis we used the values
ν ∈ {0.0075, 0.01, 0.02, 0.04, 0.05}. We fixed the num-
ber of known neuron identities to 25 (randomly chosen).
For results in Figure 4c we used four worms and consid-
ered two values for ν; 0.1 (squares) and 0.05 (circles).
Different x-axis values correspond to fixing 110, 83, 55
and 25 neuron identities.
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