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1 Assumptions and Key Notations

Recall that we consider the regularized loss minimization problem over a time horizon of length T,

T
o 1
minimize 7 ;ft(x;wt) + o(y) (1)

subject to ijr By =c.

ZO0O-ADMM is given by

(. 1
xis1 = argmin { ¢ - AT (Ax + Bye — o) + § [Ax -+ By, — el + 5 -l | )
xeX Nt
yerr = argmin {o(y) = Af (Axer + By — ) + [ Axis + By — [}, 3)
ye
Atr1 = A — p(Ax41 + By —©), (4)

where G; = o — pn; ATA.

We first elaborate on our assumptions.

e Assumption A implies that ||[x —x/|ls < R and ||y —y’|l2 < R for all x,x’ € X and for all y,y’ € ).
e Based on Jensen’s inequality, Assumptions B implies that |E[Vxf(x; we)]||l2 < L.

e Assumption C implies a Lipschitz condition over the gradient Vi f(x;w;) with constant L,(w;) (Bubeck
et al., 2015; Hazan, 2016). Also based on Jensen’s inequality, we have |E[Lg(wy)]| < L.

We next introduce key notations used in our analysis. Given the primal-dual variables x, y and A of problem
(1), we define v := [xT,yT, AT], and a primal-dual mapping H

0 0 0 —AT
Hv)=Cv-[0|,C:=|0 0 -BT|, (5)
c A B 0
where C is skew symmetric, namely, CI' = —C. An important property of the affine mapping H is that

(vi —vo,H(vy) — H(v2)) = 0 for every v; and va. Supposing the sequence {v;} is generated by an algorithm,
we introduce the auxiliary sequence

Vi = [X$>Y?axg]T7 (6)

where S\t =X — p(Ax41 + By, — c).
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2 Proof of Theorem 1
Since the sequences {x;}, {y:} and {A;} produced from (2)-(4) have the same structure as the ADMM/O-ADMM

steps, the property of ADMM given by Theorem 4 of (Suzuki, 2013) is directly applicable to our case, yielding

T
(y)) + Z(Vt —v)TH(¥y)
t=1

=

T
D (filxi) + 6(ye) = D> (fil
=1

- =1
||X1 lIx1 —x[I&, Ix: —x[I&,
+ Z + (A A(xrp1 — x1))

(= xlE,
2m s 20 21
A1 = A5 [ Ares = Al
2y — - B(y — Arir — A
+2||Y1 yllBTB + 2p 2 + (B(y — y7+1), Ar41 )
T
|G- (7)

T
H)\t /\t+1|| o Mt
- By —y1), Z 2 —ZEIIXt—XHSﬁLZ;HgtIIGfl
t=1 t=1

Here for notational simplicity we have used, and henceforth will continue to use, f;(x:) instead of f(x:;wy)

(7), based on G; = o — pi; AT A, we have

”Xt - X||2Gt ”Xt B XHQGt—l _ ( « & ) HX X||2
- =\ - t — )
20 2n4 1 2 2mp— 2
which yields
T 2 T
|x; — X||G llx: — X”G 1 o a o 9

£ - —lIx; —x||5 < max —7——,0]?. 8

> ( ) X e } (g - g 50 ®
Slyr = yllBre, 55 (A = X3 = [Ars1 = All3),

We also note that the terms 5—||x1 — x|, (A, A(xr41 —x1)),
A) are independent of time ¢. In particular, we have

(B(y = y7+1)s Ar41 — A), and (B(y —y1), A1 —
Ix1 — x[|&, < aR?, (A, A(xrpr —x1)) < R|A[2]|A]l#,
= AlI3) < [IAl3, B(y —y1), A — A1) < RIBJl#[All2,

(9)

(X1 = Al = [ Az
where || - || denotes the Frobenius norm of a matrix, and we have used the facts that G, < al and Ay =0

Based on the optimality condition of y;y; in (3), we have
BYA; + pBT (Axy41 + Byig1 =€),y — yiq1) 20 ,Vy €Y

(00(yit1) —
B A1,y — yi+1) > 0. And thus, we obtain

which is equivalent to (O¢(y¢+1)
A1, By = ye1)) = (AB(Y = ye41)) < (00(ye41), ¥y = Y1) — (A By — yes1)),
which yields
(B(Y = y+1): st = A) S (Y = ¥er1,00(yer1) = BYA) < R(La + BT A1), (10)
where we have used the fact that ||0¢(yis1)|2 < Lo
Substituting (8)-(10) into (7), we then obtain
1 & 1 « 1 «
T Z (fe(xe) + d(ye)) — T Z (fe(x) + o(y)) + T Z({’t —v) H(w)
t=1 t t=1
T
« o o 1 . K
O}R? + =3 Tl + 7. (11)

=1
T T
1 X2 1
Ly Pl 1 g0 oo gyl
-1 =1
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where K is a constant term related to «, R, 01, A, B, A, p and Ly, K = QRQ + R All2|AllF + p||/\H§ +
R|B| £[|A]2 + R(Lz + [| BT All2), and we have used the fact that [|g[|2, < ||gtH2 (due to G; 1 <1).

Based on (11) we continue to prove Theorem 1. When B is invertible and y; = B™!(c — Ax;), we obtain
1
B(y; —yi) = ;()\t — Ae-1). (12)
Based on the convexity of f and ¢, we obtain

fe(xe) + o(yy) < fe(xe) + d(ye) +
= fi(xt) + d(ye) +

(00(y1),¥: — ye)

1

;<( DT06(y1), Ak = Ae-1), (13)
where the last equality holds due to (12).

Let (x*,y*) be the optimal solution (implying Ax* 4+ By* — ¢ = 0). For any dual variable A* and v; =
x{,y{  AT]T, we have
—AT X Xy — X
~ *\T ~ . *\T (= kN T\ * R
(Vi = V) "H(v) =HNV")" (Vv —v*) = -B* A ye—y
Ax* +By* —c A — AF

=(\*,c — Ax, — By;) = %o\*,)\t—)\t,g (14)
where v* := [(x*)T, (y*)T, (A*)T]T, and the affine mapping H(-) is given by (5).
Setting A* = (B71)T0¢(y}), based on (13) and (14) we have
fe(xe) + 6(yy) — (fu(x") + ¢(y"))
<fe(xe) + @(ye) + (Ve = vV)TH (V) = (fulx*) + o(y™)). (15)
Combining (11) and (15) yields

~

T
722 Uil 400 = 7 30 () + 0 +

[Aer1— Aell3
2p

N[ =
M’ﬂ

~
Il
-

- Iy e Ly AT e o LN A = A3
STZ fe(xe) + o(ye)) — f;(ft( )+ o(y?)) + f;(Vt—V ) HWtH_TZ;T
1 & « 2 K
ST;maX{Tm—m—* ,0}R” + TZ ||gtH2+* (16)
Since Apyr1 — At = p(Ax¢41 + Byy1 — ¢), from (16) we have
T T T
Z fe(xe) + o(y1)) -7 Z y)+ % Z [AX; 41+ Byss1 — cll3
1 < « « 5
ST;maX{Tm—m—* JO}R™ + — Z ||gt|\2+* (17)

Taking expectations for both sides of (17) with respect to its randomness, we have

T , )
1 B )
E T Z fe(xt) + o(y1)) Z y)| +E Z Z |Axcs1 + Byr1 — cl?
=1 T — 2
Ly @« n K
<= max——i——OR2 Mmie, 2] + = "
_T; o " o } ; 5 Elllgell] + = (1)
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Based on (Duchi et al., 2015, Lemma 1), the second-order statistics of the gradient estimate g; is given by
By, [8t] = gt + BeLyg(wi)v(xe, Bt), (19)
. 1
By, [1&:12) < 2s(m)llgell3 + 587 Lo (we)* M(p)?, (20)

where g; = Vi f (%5 W) [x=x,» [[V(xe, Bt)|l2 < $Ez[||z]|3], Ly(W:) is defined in Assumption C, and s(m) and M ()
are introduced in Assumption E. According to (20), we have

Bl = B [E01&3)) <E [250m)lgell3 + 5713, M (1)
<25(m) L3 + L B LM (1), (21)

where for ease of notation, we have replaced Ly (w;) with L, +, and the last inequality holds due to Assumptions
B and C.

Substituting (21) into (18), the expected average regret can be bounded as
T T
e ;o a o e s(m)L o K
Regret (x¢, vy, X5, y") Zmax{ —5 "% 0}R” + —7 ;7} -|- z;ﬂtﬁt + T (22)

On the other hand, when A is invertible and x; = A~!(c — By;), we obtain
A=) = (0= Aroa)
Based on the convexity of f and ¢, we obtain
fe(xp) + 6(ye) < fe(xe) + d(ye) + (Vfe(xy), x; — x¢)
= i)+ 0l) + (AT VAl A = ) (23)
Setting A* = (A~1TV f,(x}), based on (23) and (14) we have

(
fe(xt) + @(ye) = (fe(x7) + o(y™))
<fe(xe) + 0(ye) + (Ve = v)TH() = (folx") + ¢(y"))- (24)

Since the right hand side (RHS) of (24) and RHS of (15) are same, we can then mimic the aforementioned
procedure to prove that the regret Regret,(x},y:, x*,y*) obeys the same bounds as (22).

3 Simplification of Regret Bound

Consider terms in right hand side (RHS) of (22) together with 7, = ﬁ and §; = %, we have
T
1 aR?
Zma{ A \R? < L o Vstm)
2ne 2m = 2 277t 1 VT 20
L2 XT: < 2C1+/s(m)L?
p > \/T )
M(p L2 r CiC3L2 N 1 5CiC3L2
< g (25)

T 2 L A S

t=1
where we have used the facts that Zthl % < 2/T ,

(1/t%) = (1/t%) <1+ /m<1/ta) —a/(a—1), Ya>1, (26)

t=1 t=2

M’ﬂ
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and we recall that s(m) = m > 1. Substituting (25) into RHS of (22), we conclude that the expected average
regret Regret,(x:,y}, x ) is upper bounded by

1 aR?\/s( + \/ m)L? 501022L§+K (27)
VT 2C1 127 T

4 Proof of Corollary 1

Given i.i.d. samples {w;} drawn from the probability distribution P, from Theorem 1 we have

TZ (x¢; W) + o(y})) TZ (x";3wy) + oy ))]

_ 1 aR/ Ciy/s(m)Ly  SCiO3LE 1 K ’s
VT 201 42 JT 2 T T (28)
Based on F(x,y) = Ew[f(x;W)] + ¢(y), from (28) we have
T
E[F(xhyt) - F(X*v T Z Xtayt ( *ay*)‘|
1 o ) 1 &
“Euvr | B f2<f<xt;wt>+¢<y;>>7 > (f(X*;wt)+¢(y*))H
272

<1 1 aR?\/s( \/ m)L3 5C1C Ly +K (29)

=T 2()1 2 7T
where the first inequality holds due to the convexity of F', and the second equality holds since x; and y; are

implicit functions of i.i.d. random variables {w},_} and {zx},_}, and {w;} and {z;} are independent of each
other.

5 Proof of Corollary 2

Substituting n; = 2 and f; = % into RHS of (22), we have

T T

1 a s(m)L3 m)L3logT

= — - — = 0 R* =0, L —_—

T ; ma { 27’]75 27715 1 } z:: oT ’

M(p)2L: & aC3L2 1 3aC3L2

—L Y b = — 3 < —==, (30)
4T P 40T —t 8oT

where we have used the facts that ZtT 17 < 14logT and (26). Based on (30) and (27), we complete the proof.

6 Proof of Corollary 3

We consider the hybrid minibatch strategy

q1 . .
_ ZZ f(xe + Bezy 91 Wi, i) f(Xt,Wt,z)Zw_ (31)
T G o Bt

f(xe4Bize ;Wi i) —f(Xe;We.q)
Bt

with gt;ij =

z¢ ;. Based on (19) and i.i.d. samples {w;;} and {2z ;}, we have

g: := E[g:i;] = Elgs] + BE[Lg v (x4, Bt)], Vi, J. (32)



ZOO-ADMM: Convergence Analysis and Applications

where for ease of notation we have replaced Ly (w;) with Ly, [|v(x¢, 8|2 < 3E[||z]3] < M (1) due to Assumption
E. From (31), we obtain

q1 q2 2 q1 q2 2
E[|g:[3] =E ZZ (&rij —8) + 8| | =&l +E 722 (&1ij — &)
=1 j=1 9 1192 =1 j=1 9
2 + iEmgt - 2 = &+ ——Ell&nl?] - —— (& (33)
2 q192 ’ 2 q192 ’ q192 ’

where we have used the fact that E[g; ;;] = E[g; 11] for any ¢ and j.
The definition of g; in (32) yields
I8:11* <2I|Elge]|3 + 2l|BeE[Lg,ev(xt, Be)ll3
<2E[|lg:[13] + 267E[L JE[l|v(x¢, Bo)lI3] < 2E[llg: 3] + %ﬁfLZM(M)27 (34)

where the first inequality holds due to Cauchy-Schwarz inequality, and the second inequality holds due to Jensen’s
inequality. From (20), we obtain

N 1
Elll&:,1111%) < 2s(m)E[[lg:[I5] + gﬂfLﬁM(u)2~ (35)
Substituting (34) and (35) into (33), we obtain
. _ 1 . s(m) Q1QQ +1
E[ll&:3] < llg:l13 + —Elll&:11]l3] < 2(1+ ) llgell3] + = ——87 Ly M (). (36)
4192 19
Similar to proof of Theorem 1, substituting (36) into (18), we obtain
- 1 & « « d n
Regretr(x;,y,, x*,y*) <= max——i—fOR2 LE[|&:12] +
g T( t yt y ) 7T; {277t 27]t-1 } Z 2 [||gt||2]
T
1 o (ql(h + s(m 1
<= max——7—70R2
T ; {277t 201 ) Q1Q2T Zﬂt
(e + DI2M () <, K
+ + —. 37
et =Mt BT
Substituting n; = ﬁ and f; = % into (37), we obtain
Regret (x4, y7, X", y")
s(m) s(m)
<aR2 L+ 9192 + 2C1L2 1+ q1492 + 5C'1CV22L3 4192 +1 + K
el 2 kel
2C VT VT 127 aaor /1 + :(1,;) T
24/1+ %) D Yo e: ) - R
7O‘R q192 + 2C1L% q192 + 1o hg 1 L= (38)
2C VT VT 6 T T
which then completes the proof.
7 ZOO-ADMM for Sensor Selection
We recall that the sensor selection problem can be cast as
1
minimize — x;wy) + 71 (x) + Z
b z TZf( t) 1(x) 2(y) (39)

subject to x—y =0,
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where y € R™ is an auxiliary variable, f(x;w;) = —logdet(> ;" 2;a,a],) with w; = {a;;}/",, and {Z;} are
indicator functions

109 ={ 0y onerane 200 ={ % o

oo otherwise, oo otherwise.

Based on (39), two key steps of ZOO-ADMM (2)-(3) are given by

Xiy1 = argmin {||x — dt||§} , (40)
0<x<1

yerr = argmin {ly = (i1 = (1/)A)3} (41)
1Ty=mg

where g; is the gradient estimate, and d; := 2 (—g; + A; — px; + py:) + X;. Sub-problems (40) and (41) yield
closed-form solutions as below (Parikh and Boyd, 2014)

0 [dﬂi<:0
[XtJrl]i = [dt]l [dt}z S [0, 1] and (42)
1 [de], > 1,
1 —17 - A
yt+1 _ xt+1 . 7At + mo (Xt+1 t/p> 1m7 (43)
P m
where [x]; denote the ith entry of x.
8 ZOO-ADMM for Sparse Cox Regression
This sparse regression problem can formulated as
1 n
minimize E;f(X;Wi) +9lylh (44)

subject to x—y =0,

where f(x;w;) = §; {—aiTx—&—log (> jer, eaJTx)} with w; = a;. By using the ZOO-ADMM algorithm, we

can avoid the gradient calculation for the involved objective function in Cox regression. The two key steps of
ZOO-ADMM (2)-(3) at iteration i become

Xip1 = % (—8&i + Xi — pxi + pyi) + X4, (45)
. 14 2
yi+1 =argmin < [[y[li + 5= ly —dillz ¢ » (46)
y 2y

where g, is the gradient estimate, d; = (x;4+1 — (1/p)A;), and the solution of sub-problem (46) is given by the
soft-thresholding operator at the point d; with parameter p/v (Parikh and Boyd, 2014, Sec.6)

(1= g p)dile [dilk > 2
Yorls = { o R QL oh k=l2em
1 — p)
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