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Abstract

In this paper, we design and analyze a
new zeroth-order online algorithm, namely,
the zeroth-order online alternating direction
method of multipliers (ZOO-ADMM), which
enjoys dual advantages of being gradient-
free operation and employing the ADMM to
accommodate complex structured regulariz-
ers. Compared to the first-order gradient-
based online algorithm, we show that ZOO-
ADMM requires /m times more iterations,
leading to a convergence rate of O(y/m/v/T),
where m is the number of optimization
variables, and T is the number of itera-
tions. To accelerate ZOO-ADMM, we pro-
pose two minibatch strategies: gradient sam-
ple averaging and observation averaging, re-
sulting in an improved convergence rate of
O(\/1+4 ¢~ tm/VT), where ¢ is the mini-
batch size. In addition to convergence analy-
sis, we also demonstrate ZOO-ADMM to ap-
plications in signal processing, statistics, and
machine learning.

1 Introduction

Online convex optimization (OCQO) performs sequen-
tial inference in a data-driven adaptive fashion, and
has found a wide range of applications (Hall and Wil-
lett, 2015; Hazan, 2016; Hosseini et al., 2016). In this
paper, we focus on regularized convex optimization in
the OCO setting, where a cumulative empirical loss is
minimized together with a fixed regularization term.
Regularized loss minimization is a common learning
paradigm, which has been very effective in promotion
of sparsity through ¢; or mixed ¢;/¢5 regularization
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(Bach et al., 2012), low-rank matrix completion via
nuclear norm regularization (Candes and Recht, 2009),
graph signal recovery via graph Laplacian regulariza-
tion (Chen and Liu, 2017), and constrained optimiza-
tion by imposing indicator functions of constraint sets
(Parikh and Boyd, 2014).

Several OCO algorithms have been proposed for reg-
ularized optimization, e.g., composite mirror descent,
namely, proximal stochastic gradient descent (Duchi
et al., 2010), regularized dual averaging (Xiao, 2010),
and adaptive gradient descent (Duchi et al., 2011).
However, the complexity of the aforementioned algo-
rithms is dominated by the computation of the proxi-
mal operation with respect to the regularizers (Parikh
and Boyd, 2014). An alternative is to use online al-
ternating direction method of multipliers (O-ADMM)
(Ouyang et al., 2013; Suzuki, 2013; Wang and Baner-
jee, 2013). Different from the algorithms in (Duchi
et al., 2010, 2011; Xiao, 2010), the ADMM frame-
work offers the possibility of splitting the optimization
problem into a sequence of easily-solved subproblems.
It was shown in (Ouyang et al., 2013; Suzuki, 2013;
Wang and Banerjee, 2013) that the online variant of
ADMM has convergence rate of O(1/v/T) for convex
loss functions and O(logT'/T) for strongly convex loss
functions, where T is the number of iterations.

One limitation of existing O-ADMM algorithms is the
need to compute and repeatedly evaluate the gradient
of the loss function over the iterations. In many prac-
tical scenarios, an explicit expression for the gradient
is difficult to obtain. For example, in bandit optimiza-
tion (Agarwal et al., 2010), a player receives partial
feedback in terms of loss function values revealed by
her adversary, and making it impossible to compute
the gradient of the full loss function. In adversarial
black-box machine learning models, only the function
values (e.g., prediction results) are provided (Chen
et al., 2017). Moreover, in some high dimensional set-
tings, acquiring the gradient information may be dif-
ficult, e.g., involving matrix inversion (Boyd and Van-
denberghe, 2004). This motivates the development of
gradient-free (zeroth-order) optimization algorithms.
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Zeroth-order optimization approximates the full gra-
dient via a randomized gradient estimate (Agarwal
et al., 2010; Duchi et al., 2015; Ghadimi and Lan,
2013; Hajinezhad et al., 2017; Nesterov and Spokoiny,
2015; Shamir, 2017). For example, in (Agarwal et al.,
2010; Shamir, 2017), zeroth-order algorithms were de-
veloped for bandit convex optimization with multi-
point bandit feedback. In (Nesterov and Spokoiny,
2015), a zeroth-order gradient descent algorithm was
proposed that has O(m/+/T) convergence rate, where
m is the number of variables in the objective function.
A similar convergence rate was found in (Ghadimi and
Lan, 2013) for nonconvex optimization. This slow-
down (proportional to the problem size m) in con-
vergence rate was further improved to O(y/m/vT)
(Duchi et al., 2015), whose optimality was proved un-
der the framework of mirror descent algorithms. A
more recent relevant paper is (Gao et al., 2017), where
a variant of the ADMM algorithm that uses gradient
estimation was introduced. However, the ADMM al-
gorithm presented in (Gao et al., 2017) was not cus-
tomized for OCO. Furthermore, it only ensured that
the linear equality constraints are satisfied in expec-
tation; hence, a particular instance of the proposed
solution could violate the constraints.

In this paper, we propose a zeroth-order online
ADMM (called ZOO-ADMM) algorithm, and analyze
its convergence rate under different settings, including
stochastic optimization, learning with strongly convex
loss functions, and minibatch strategies for conver-
gence acceleration. We summarize our contributions
as follows.

e We integrate the idea of zeroth-order optimization
with online ADMM, leading to a new gradient-free
OCO algorithm, ZOO-ADMM.

e We prove ZOO-ADMM yields a O(y/m/v/T) con-
vergence rate for smooth+nonsmooth composite ob-
jective functions.

e We introduce a general hybrid minibatch strategy for
acceleration of ZOO-ADMM, leading to an improved

convergence rate O(+/1 4+ ¢=1m/v/T), where ¢ is the

minibatch size.

e We illustrate the practical utility of ZOO-ADMM in
machine leanring, signal processing and statistics.

2 ADMM: from First to Zeroth Order

In this paper, we consider the regularized loss mini-
mization problem over a time horizon of length T’

minimize
XEX,yEY

1 T
T ; fx;we) + o(y) (1)

subject to Ax + By =,

where x € R™ and y € R? are optimization variables,
X and Y are closed convex sets, f(-;w;) is a convex
and smooth cost/loss function parameterized by wy at
time ¢, ¢ is a convex regularization function (possibly
nonsmooth), and A € R>*™ B € R4 and ¢ € R!
are appropriate coefficients associated with a system
of [ linear constraints.

In problem (1), the use of time-varying cost functions
{f(x;w)}L_, captures possibly time-varying environ-
mental uncertainties that may exist in the online set-
ting (Hazan, 2016; Shalev-Shwartz, 2012). We can also
write the online cost as f;(x) when it cannot be ex-
plicitly parameterized by w;. One interpretation of
{f(x;w)}L_, is the empirical approximation to the
stochastic objective function Ew.p [f(x;w)]. Here P
is an empirical distribution with density ), §(w, wy),
where {w;}1_, is a set of i.i.d. samples, and (-, w;)
is the Dirac delta function at w;. We also note that
when Y = X, l=m, A=1,, B=-1,, c =0,,
the variable y and the linear constraint in (1) can be
eliminated, leading to a standard OCO formulation.
Here I,, denotes the m x m identity matrix, and 0,,

is the m x 1 vector of all zeros?.

2.1 Background on O-ADMM

O-ADMM (Ouyang et al., 2013; Suzuki, 2013; Wang
and Banerjee, 2013) was originally proposed to extend
batch-type ADMM methods to the OCO setting. For
solving (1), a widely-used algorithm was developed by
(Suzuki, 2013), which combines online proximal gradi-
ent descent and ADMM in the following form:

X¢41 = argmin {g?x ~A'(Ax + By; —¢)
xeX

1
+5Iax+ By, — ol + 5lx-xil, b @
Tt
Y1 = argimin {¢(y) = AT (Ax¢11 + By — ¢)
ye

+2ll A1 + By — |3} 3)
Att1 = A — p(Ax 41 + By — ©), (4)

where ¢ is the iteration number (possibly the same as
the time step), g; is the gradient of the cost function
f(x;wi) at x4, namely, g: = Vi f (X; We)|x=x,, At IS @
Lagrange multiplier (also known as the dual variable),
p is a positive weight to penalize the augmented term
associated with the equality constraint of (1), || - ||2
denotes the ¢ norm, 7, is a non-increasing sequence of
positive step sizes, and ||x — x|, = (x —x)T Gy(x —
x;) is a Bregman divergence generated by the strongly
convex function (1/2)x? G;x with a known symmetric
positive definite coefficient matrix Gy.

In the sequel we will omit the dimension index m,
which can be inferred from the context.



Sijia Liu, Jie Chen, Pin-Yu Chen, Alfred O. Hero

Similar to batch-type ADMM algorithms, the sub-
problem in (3) is often easily solved via the proximal
operator with respect to ¢ (Boyd et al., 2011). How-
ever, one limitation of O-ADMM is that it requires the
gradient g; in (2). We will develop the gradient-free
(zeroth-order) O-ADMM algorithm below that relaxes
this requirement.

2.2 Motivation of ZOO-ADMM

To avoid explicit gradient calculations in (2), we adopt
a random gradient estimator to estimate the gradient
of a smooth cost function (Duchi et al., 2015; Ghadimi
and Lan, 2013; Nesterov and Spokoiny, 2015; Shamir,
2017). The gradient estimate of f(w;wy) is given by

& — J(xe + ﬁtzt;‘gz) — f(x; Wt)Zt, (5)

where z; € R™ is a random vector drawn indepen-
dently at each iteration t from a distribution z ~ p
with E,[zz”] = I, and {B;} is a non-increasing se-
quence of small positive smoothing constants. Here
for notational simplicity we replace {}7_; with {}. The
rationale behind the estimator (5) is that g; becomes
an unbiased estimator of g; when the smoothing pa-
rameter 3; approaches zero (Duchi et al., 2015).

After replacing g; with &; in (5), the resulting al-
gorithm (2)-(4) can be implemented without explicit
gradient computation. This extension is called zeroth-
order O-ADMM (ZOO-ADMM) that involves a mod-
ification of step (2) :

x¢+1 = argmin {g/x — A{ (Ax + By; — c)
xeX

1
+2 1A%+ By ol + 5okl |- ©

In (6), we can specify the matrix G in such a way as
to cancel the term ||Ax||3. This technique has been
used in the linearized ADMM algorithms (Parikh and
Boyd, 2014; Zhang et al., 2011) to avoid matrix inver-
sions. Defining G; = oI — pn, AT A, the update rule
(6) simplifies to a projection operator

Xtp1 = argmin{”xfw”g} with (7)
ex

Ui

w = [7( g +A ()\t—P(AXt‘FBYt—C)))"‘Xt}a

where o > 0 is a parameter selected to ensure G; > 1.
Here X =Y signifies that X —Y is positive semidefi-
nite.

To evaluate the convergence behavior of ZOO-ADMM,
we will derive its expected average regret (Hazan,

2016)

T
D (Fxe;we) + d(y)

t=1

R‘egretT (Xt7 Y, X, y

NI~

1 T
fz (x*;wy) + o(y ))] (8)

H

where (x*,y*) denotes the best batch offline solution.

3 Algorithm and Convergence
Analysis of ZOO-ADMM

In this section, we begin by stating assumptions used
in our analysis. We then formally define the ZOO-
ADMM algorithm and derive its convergence rate.

We assume the following conditions in our analysis.

o Assumption A: In problem (1), X and ) are bounded
with finite diameter R, and at least one of A and B
in Ax + By = c is invertible.

o Assumption B: f(-;w;) is convex and Lipschitz con-
tinuous with /E[[|[Vxf(x;w;)||[3] < Ly for all ¢ and
xeX.

e Assumption C: f(:;
B[(Lg(w:)?)]-

o Assumption D: ¢ is convex and Lo-Lipschitz contin-
uous with ||0¢(y)|l2 < L for all y € Y, where 9¢(y)
denotes the subgradient of ¢.

wy) is Ly(wy)-smooth with L, =

o Assumption E: In (5), given z ~ pu, the quantity
M(p) == /E[||z||§] is finite, and there is a function
s : N — R, satisfying E[||(a, z)z|3] < s(m)|al3 for
all a € R™, where (-,-) denotes the inner product of
two vectors.

We remark that Assumptions A-D are standard for
stochastic gradient-based and ADMM-type methods
(Boyd et al., 2011; Hazan, 2016; Shalev-Shwartz, 2012;
Suzuki, 2013). We elaborate on the rationale behind
them in Sec.1 of Supplementary Material. Assump-
tion E places moment constraints on the distribution
1 that will allow us to derive the necessary concen-
tration bounds for our convergence analysis. If p is
uniform on the surface of the Euclidean-ball of radius
vm, we have M(p) = m*® and s(m) = m. And if
pu=N(0,1,,%m), we have M () =~ m!'5 and s(m) ~m
(Duchi et al., 2015). For ease of representation, we re-
strict our attention to the case that s(m) = m in the
rest of the paper. It is also worth mentioning that the
convex and strongly convex conditions of f(-;w;) can
be described as

Fswe) > f(&we) 4 (x — %) Vi f (X5 W)

+ 2 lx— %% vxx, (9)
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where ¢ > 0 is a parameter controlling convexity. If
o > 0, then f(-; w;) is strongly convex with parameter
o. Otherwise (¢ = 0), (9) implies convexity of f(-; wy).

The ZOO-ADMM iterations are given as Algorithm 1.
Compared to O-ADMM in (Suzuki, 2013), we only re-
quire querying two function values for the generation
of gradient estimate at step 3. Also different from (Gao
et al., 2017), steps 7-11 of Algorithm 1 imply that the
equality constraint of problem (1) is always satisfied
at {x;,y;} or {x},y:}. The average regret of ZOO-
ADMM is bounded in Theorem 1.

Theorem 1 Suppose B is invertible in problem (1).
For {x;,y,} generated by ZOO-ADMM, the expected
average regret is bounded as

Regret, (x4, y3, X", y")

1 & « « o mL? )
< & TR L
-T ;max{ 2 2m—q 27 bR+ T ;nt
M(uPL2 &,
B+ (10)

where « is introduced in (7), R, L1, Ly, s(m) and
M(u) are defined in Assumptions A-E, and K denotes
a constant term that depends on o, R, m, A, B, A,
p and Lo. Suppose A is invertible in problem (1).
For {x},y:}, the regret Regretp(x},y:,x*,y*) obeys
the same bounds as (10).

Proof: See Sec.2 of Supplementary Material. |
In Theorem 1, if the step size 1 and the smoothing

parameter (3; are chosen as
Ch Cs
m=—rz Bbt= 7
mvi T Mt

for some constant C; > 0 and Cs > 0, then the regret
bound (10) simplifies to

(11)

aR?/m

Regrety (x4, y;, x*,y*) < —— =

~ 201 VT
N . 5C1C3L2 1 K
YT 12

—. 12
The above simplification is derived in Sec. 3 of Supple-
mentary Material.

It is clear from (12) that ZOO-ADMM converges
at least as fast as O(y/m/V/T), which is similar to
the convergence rate of O-ADMM found by (Suzuki,
2013) but involves an additional factor /m. Such a
dimension-dependent effect on the convergence rate
has also been reported for other zeroth-order opti-
mization algorithms (Duchi et al., 2015; Ghadimi and
Lan, 2013; Shamir, 2017), leading to the same con-
vergence rate as ours. In (12), even if we set Cy = 0

+2CL

Algorithm 1 ZOO-ADMM for solving problem (1)

1: Input: x; € X, y1 € Y, A1 =0, p > 0, step
sizes {n; }, smoothing constants {f;}, distribution
p, and @ > pnsAmax(ATA) + 1 so that Gy = 1,
where Apax () denotes the maximum eigenvalue of
a symmetric matrix

2: fort=1,2,...,T do

3: sample z; ~ u to generate g; using (5)

4 update x;y1 via (7) under g; and (xq, yi, A¢)

5: update y;y1 via (3) under (x¢41, A¢)

6: update Apyq via (4) under (Xe11,¥Ye4+1,At)

7 if B is invertible then

8 compute y; , :=B ! (c — Ax41)

9

: else
10: compute x; ; :== A7 (c — By;41)
11: end if
12: end for
13: output: {xy,y;} or {x},y:}, running average

(X7, §7%) or (X, ¥7), where Xp = L S0 xp.

(namely, 8; = 0) for an unbiased gradient estimate (5),
the dimension-dependent factor v/m is not eliminated.
That is because the second moment of the gradient
estimate also depends on the number of optimization
variables. In the next section, we will propose two
minibatch strategies that can be used to reduce the
variance of the gradient estimate and to improve the
convergence speed of ZOO-ADMM.

4 Convergence for Special Cases

In this section, we specialize ZOO-ADMM to three
cases: a) stochastic optimization, b) strongly convex
cost function in (1), and c) the use of minibatch strate-
gies for evaluation of gradient estimates. Without loss
of generality, we restrict analysis to the case that B is
invertible in (1).

The stochastic optimization problem is a special case
of the OCO problem (1). If the objective function be-
comes F(x,y) := Ew[f(x; w)] + ¢(y) then we can link
the regret with the optimization error at the running
average X7 and yr under the condition that F' is con-
vex. We state our results as Corollary 1.

Corollary 1 Consider the stochastic optimization
problem with the objective function F(x,y) =
Ewlf(x;w)]+ &(y), and set n, and B; using (11). For
{Xt,y;} generated by ZOO-ADMM, the optimization
error E [F(Xp,¥) — F(x*,y%)] obeys the same bound
as (12).

Proof: See Sec.4 of Supplementary Material. |

We recall from (9) that o controls the convexity of f;,
where o > 0 if f; is strongly convex. In Corollary 2, we
show that o affects the average regret of ZOO-ADMM.
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Corollary 2 Suppose f(-;wy) is strongly convex, and
the step size m; and the smoothing parameter B are
chosen as ny = 2 and By = % for Co > 0. Given
{xt,y}} generated by ZOO-ADMM, the expected aver-
age regret can be bounded as

- v e _aL?mlogT
RegretT(Xt,yi,X Y )STlT
3aC3L21 K
S (13)
8¢ T T
Proof: See Sec.5 of Supplementary Material. |

Corollary 2 implies that when the cost function is
strongly convex, the regret bound of ZOO-ADMM
could achieve O(m/T) up to a logarithmic factor log T'.
Compared to the regret bound O(y/m/+/T) in the gen-
eral case (12), the condition of strong convexity im-
proves the regret bound in terms of the number of
iterations 7', but the dimension-dependent factor now
becomes linear in the dimension m due to the effect of
the second moment of gradient estimate.

The use of a gradient estimator makes the convergence
rate of ZOO-ADMM dependent on the dimension m,
i.e., the number of optimization variables. Thus, it is
important to study the impact of minibatch strategies
on the acceleration of the convergence speed (Cotter
et al., 2011; Duchi et al., 2015; Li et al., 2014; Suzuki,
2013). Here we present two minibatch strategies: gra-
dient sample averaging and observation averaging. In
the first strategy, instead of using a single sample as
in (5), the average of ¢ sub-samples {z;;}7_; are used
for gradient estimation

q ) .
& = éz J(xt + B3 W) — f(Xe;wy) (14)

Zt,,
i=1 B
where ¢ is called the batch size. The use of (14) is anal-
ogous to the use of an average gradient in incremental
gradient (Blatt et al., 2007) and stochastic gradient
(Roux et al., 2012). In the second strategy, we use a
subset of observations {w; ;}{_; to reduce the gradient
variance,

f(Xt; Wt,z’)

ﬁt Zy. (15)

&, = li f(x¢ + Bz Wi i) —
Ert
We note that in the online setting, the subset of
observations {w;;}7_; can be obtained via a sliding
time window of length ¢, namely, w;: = w;_;11 for
i=1,2,...,q.

Combination of (14) and (15) yields a hybrid strategy

. 1 K& flxe+ Bize,jiWei) — f(Xe; Wi i)

g =— J ) g e

" e ;; Bt b
(16)

In Corollary 3, we demonstrate the convergence behav-
ior of the general hybrid ZOO-ADMM.

Corollary 3 Consider the hybrid minibatch strategy

(16) in ZOO-ADMM, and set n, = ﬁ and

91492

By = % The expected average regret is bounded as

s(m)
< aR? V 1+ q192

Regret (x4, y3, x*,y") < ﬁ Nii

s(m)

2712
+20, L2 wee | S 1 K
JT 6 T T

where ¢1 and ga are number of sub-samples {z;;} and
{wy i}, respectively.

(17)

Proof: See Sec. 6 of Supplementary Material. |

It is clear from Corollary 3 that the use of minibatch
strategies can alleviate the dimension dependency,
leading to the regret bound O(y/1+ m/(q142)/VT).
The regret bound in (17) also implies that the conver-
gence behavior of ZOO-ADMM is similar using either
gradient sample averaging minibatch (14) or observa-
tion averaging minibatch (15). If ¢; = 1 and ¢ = 1,
the regret bound (17) reduces to O(y/m/v/T), which
is the general case in (12). If ¢1¢2 = O(m), we obtain
the regret error O(1/y/T) as in the case where an ex-
plicit expression for the gradient is used in the OCO
algorithms.

5 Applications of ZOO-ADMM

In this section, we demonstrate several applications of
ZOO-ADMM in signal processing, statistics and ma-
chine learning.

5.1 Black-box optimization

In some OCO problems, explicit gradient calculation is
impossible due to the lack of a mathematical expres-
sion for the loss function. For example, commercial
recommender systems try to build a representation of
a customer’s buying preference function based on a dis-
crete number of queries or purchasing history, and the
system never has access to the gradient of the user’s
preference function over their product line, which may
even be unknown to the user. Gradient-free meth-
ods are therefore necessary. A specific example is the
Yahoo! music recommendation system (Dror et al.,
2012), which will be further discussed in the Sec.6.
In these examples, one can consider each user as a
black-box model that provides feedback on the value
of an objective function, e.g., relative preferences over
all products, based on an online evaluation of the ob-
jective function at discrete points on its domain. Such
a system can benefit from ZOO-ADMM.
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5.2 Sensor selection

Sensor selection for parameter estimation is a funda-
mental problem in smart grids, communication sys-
tems, and wireless sensor networks (Hero and Cochran,
2011; Liu et al., 2016). The goal is to seek the optimal
tradeoff between sensor activations and the estimation
accuracy. The sensor selection problem is also closely
related to leader selection (Lin et al., 2014) and exper-
imental design (Boyd and Vandenberghe, 2004).

For sensor selection, we often solve a (relaxed) convex
program of the form (Joshi and Boyd, 2009)

T m
1
mlm}znlze E l ogae ( E I;a ,ta17t>‘| (18)

t=1 i=1
subject to 1Tx =mg, 0 < x <1,

where x € R™ is the optimization variable, m is the
number of sensors, a;; € R" is the observation coef-
ficient of sensor i at time ¢, and mq is the number of
selected sensors. The objective function of (18) can be
interpreted as the log determinant of error covariance
associated with the maximum likelihood estimator for
parameter estimation (Rao, 1973). The constraint
0 < x < 1 is a relaxed convex hull of the Boolean
constraint x € {0,1}™, which encodes whether or not
a sensor is selected.

Conventional methods such as projected gradient
(first-order) and interior-point (second-order) algo-
rithms can be used to solve problem (18). However,
both of them involve calculation of inverse matrices
necessary to evaluate the gradient of the cost function.
By contrast, we can rewrite (18) in a form amenable
to ZOO-ADMM that avoids matrix inversion,

minimize
X,y

1 T
- ;f(X; W)+ L)+ L)

subject to x—y =0,

where y € R™ is an auxiliary variable, f(x;w;) =
—logdet(}_", @ia; al,) with wy = {a;,}7,, and {Z;}

are indica( or funct ions

Li(x) = { oo otherwise,

We specify the ZOO-ADMM algorithm for solving (19)
in Sec. 7 of Supplementary Material.

oo otherwise.

5.3 Sparse Cox regression

In survival analysis, Cox regression (also known as pro-
portional hazards regression) is a method to investi-
gate effects of variables of interest upon the amount of
time that elapses before a specified event occurs, e.g.,
relating gene expression profiles to survival time (time

to cancer recurrence or death) (Sohn et al., 2009). Let
{a;, € R™,6; € {0,1},t; € Ry}, be n triples of m
covariates, where a; is a vector of covariates or factors
for subject 7, d; is a censoring indicator variable taking
1 if an event (e.g., death) is observed and 0 otherwise,
and t; denotes the censoring time.

This sparse regression problem can be formulated as
the solution to an ¢; penalized optimization problem
(Park and Hastie, 2007; Sohn et al., 2009), which yields

T
§ eaj X

JER

minimize
P

1 n
— Z 6 { —al x + log
[t

+ 1%l (20)

where x € R™ is the vector of covariates coefficients
to be designed, R; is the set of subjects at risk at
time t;, namely, R; = {j : t; > t;}, and v > 0 is
a regularization parameter. In the objective function
of (20), the first term corresponds to the (negative)
log partial likelihood for the Cox proportional hazards
model (Cox, 1972), and the second term encourages
sparsity of the covariate coefficients.

By introducing a new variable y € R™ together with
the constraint x —y = 0, problem (20) can be cast as
the canonical form (1) amenable to the ZOO-ADMM
algorithm. This helps us to avoid the gradient calcu-
lation for the involved objective function in Cox re-
gression. We specify the ZOO-ADMM algorithm for
solving (20) in Sec. 8 of Supplementary Material.

6 Experiments

In this section, we demonstrate the effectiveness of
ZOO-ADMM, and validate its convergence behavior
for the applications introduced in Sec.5. In Algo-
rithm 1, we set x; = 0, y1 = 0, Ay = 0, p = 10,
ne = 1/v/mt, By = 1/(m'5t), a@ = pniAmax(ATA) + 1,
and the distribution pu is chosen to be uniform on the
surface of the Euclidean-ball of radius y/m. Unless
specified otherwise, we use the gradient sample aver-
aging minibatch of size 30 in ZOO-ADMM. Through
this section, we compare ZOO-ADMM with the con-
ventional O-ADMM algorithm in (Suzuki, 2013) un-
der the same parameter settings. Our experiments are
performed on a synthetic dataset for sensor selection,
and on real datasets for black-box optimization and
Cox regression. Experiments were conducted by Mat-
lab R2016 on a machine with 3.20 GHz CPU and 8
GB RAM.

Black-box optimization: We consider prediction of
users’ ratings in the Yahoo! music system (Dror et al.,
2012). Our dataset, provided by (Lian et al., 2016),
include n’ = 131072 true music ratings r € ]R”/, and
the predicted ratings of m = 237 individual models
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—&— ZOO-ADMM: no minibatch
O-ADMM: no minibatch
— - — Optimal solution in [Lian et al., 2016]
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Figure 1: Convergence of ZOO-ADMM: a) RMSE under
different minibatch strategies, b) update error with mini-
batch size equal to 50.

created from the NTU KDD-Cup team (Chen et al.,
2011). Let C € R™*"™ represent a matrix of each mod-
els’ predicted ratings on Yahoo! music data sample.
We split the dataset (C,r) into two equal parts, lead-
ing to the training dataset (C; € R"*™,r; € R")
and the test dataset (Cy € R™ ™ ry € R™), where
n=n'/2.

Our goal is to find the optimal coefficients x to blend
m individual models such that the mean squared error
flx) =5 3 fawi) = 5 500 ([Cilf x = [r1],) s
minimized, where W; = ([Cl]za [I‘ﬂi), [Cl}z is the ith
row vector of Cy, and [ry]; is the ith entry of ry. Since
(C,r) includes predicted ratings on Yahoo! Music data
using NTU KDD-Cup team’s models, it is private in-
formation known only to other users. Therefore, the
information (C,r) cannot be accessed directly (Lian
et al., 2016), and explicit gradient calculation for f is
not possible. We thus treat the loss function as a black
box, where it is evaluated at individual points x in its
domain but not over any open region of its domain.

As discussed in Sec. 5.1, we can apply ZOO-ADMM
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Figure 2: ZOO-ADMM for sensor selection: a) MSE ver-
sus number of selected sensors mg, b) computation time
versus number of optimization variables.

to solve the proposed linear blending problem, and
the prediction accuracy can be measured by the root
mean squared error (RMSE) of the test data RMSE =

V/|Ir2 — Cax||3/n, where an update of x is obtained at

each iteration.

In Fig. 1, we compare the performance of ZO-ADMM
with O-ADMM and the optimal solution provided by
(Lian et al., 2016). In Fig.1-(a), we present RMSE
as a function of iteration number under different mini-
batch schemes. As we can see, both gradient sample
averaging (over {z;}) and observation averaging (over
{w}) significantly accelerate the convergence speed of
ZOO-ADMM. In particular, when the minibatch size
q is large enough (50 in our example), the dimension-
dependent slowdown factor of ZOO-ADMM can be
mitigated. We also observe that ZOO-ADMM reaches
the best RMSE in (Lian et al., 2016) after 10000 it-
erations. In Fig.1-(b), we show the convergence er-
ror ||X¢41 — X¢||2 versus iteration number using gradi-
ent sample averaging minibatch of size 50. Compared
to O-ADMM, ZOO-ADMM has a larger performance
gap in its first few iterations, but it thereafter con-
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Figure 3: Partial likelihood and number of selected genes
versus sparsity promoting parameter ~y.

verges quickly resulting in comparable performance to
O-ADMM.

Sensor selection: We consider an example of esti-
mating a spatial random field based on measurements
of the field at a discrete set of sensor locations. As-
sume that m = 100 sensors are randomly deployed
over a square region to monitor a vector of field in-
tensities (e.g., temperature values). The objective is
to estimate the field intensity at n = 5 locations over
a time period of T' = 1000 secs. In (18), the obser-
vation vectors {a;;} are chosen randomly, and inde-
pendently, from a distribution A (p;1,,1,). Here p; is
generated by an exponential model (Liu et al., 2016),
i = bedoi=1 I8i=sillz/n where §; is the j-th spatial lo-
cation at which the field intensity is to be estimated
and §; is the spatial location of the i sensor.

In Fig. 2, we present the performance of ZOO-ADMM
for sensor selection. In Fig.2-(a), we show the mean
squared error (MSE) averaged over 50 random trials
for different number of selected sensors mg in (18).
We compare our approach with O-ADMM and the
method in (Joshi and Boyd, 2009). The figure shows
that ZOO-ADMM yields almost the same MSE as O-
ADMM. The method in (Joshi and Boyd, 2009) yields
slightly better estimation performance, since it uses
the second-order optimization method for sensor selec-
tion. In Fig.2-(b), we present the computation time of
ZO0O-ADMM versus the number of optimization vari-
ables m. The figure shows that ZOO-ADMM becomes
much more computationally efficient as m increases
since no matrix inversion is required.

Sparse Cox regression: We next employ ZOO-
ADMM to solve problem (20) for building a sparse pre-
dictor of patient survival using the Kidney renal clear
cell carcinoma dataset?. The aforementioned dataset
includes clinical data (survival time and censoring in-
formation) and gene expression data for 606 patients

2 Available at http://gdac.broadinstitute.org/

Table 1: Percentage of common genes found using ZOO-
ADMM and Cox scores (Witten and Tibshirani, 2010).

vy=15|~y=0.05 | v=0.001
# selected genes 19 56 93
Overlapping (%) | 80.1% 87.5% 92.3%

(534 with tumor and 72 without tumor). Our goal
is to seek the best subset of genes (in terms of opti-
mal sparse covariate coefficients) that make the most
significant impact on the survival time.

In Fig.3, we show the partial likelihood and number
of selected genes as functions of the regularization pa-
rameter . The figure shows that ZOO-ADMM nearly
attains the accuracy of O-ADMM. Furthermore, the
likelihood increases as the number of selected genes
increases. There is thus a tradeoff between the (nega-
tive) log partial likelihood and the sparsity of covariate
coefficients in problem (20). To test the significance of
our selected genes, we compare our approach with the
significance analysis based on univariate Cox scores
used in (Witten and Tibshirani, 2010). The percent-
age of overlap between the genes identified by each
method is shown in Table1 under different values of
~. Despite its use of a zeroth order approximation to
the gradient, the ZOO-ADMM selects at least 80% of
the genes selected by the gradient-based Cox scores of
(Witten and Tibshirani, 2010).

7 Conclusion

In this paper, we proposed and analyzed a
gradient-free (zeroth-order) online optimization al-
gorithm, ZOO-ADMM. We showed that the re-
gret bound of ZOO-ADMM suffers an additional
dimension-dependent factor in convergence rate over
gradient-based online variants of ADMM, leading to
O(y/m/v/T) convergence rate, where m is the num-
ber of optimization variables. To alleviate the di-
mension dependence, we presented two minibatch
strategies that yield an improved convergence rate of
O(\/1+q 'm/V/T), where ¢ is the minibatch size.
We illustrated the effectiveness of ZOO-ADMM via
multiple applications using both synthetic and real-
world datasets. In the future, we would like to relax
the assumptions on smoothness and convexity of the
cost function in ZOO-ADMM.
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