
Competing with Automata-based Expert Sequences

Mehryar Mohri Scott Yang∗

Courant Institute and Google Research
New York, NY 10012
mohri@cims.nyu.edu

D. E. Shaw & Co.
New York, NY 10036
yangs@cims.nyu.edu

Abstract

We consider a general framework of online learn-
ing with expert advice where regret is defined
with respect to sequences of experts accepted
by a weighted automaton. Our framework cov-
ers several problems previously studied, includ-
ing competing against k-shifting experts. We
give a series of algorithms for this problem, in-
cluding an automata-based algorithm extending
weighted-majority and more efficient algorithms
based on the notion of failure transitions. We
further present efficient algorithms based on an
approximation of the competitor automaton, in
particular n-gram models obtained by minimiz-
ing the ∞-Rényi divergence, and present an exten-
sive study of the approximation properties of such
models. Finally, we also extend our algorithms
and results to the framework of sleeping experts.

1 Introduction

Online learning is a general model for sequential prediction.
Within that framework, the setting of prediction with ex-
pert advice has received widespread attention [Littlestone
and Warmuth, 1994, Cesa-Bianchi and Lugosi, 2006, Cesa-
Bianchi et al., 2007]. In this setting, the algorithm maintains
a distribution over a set of experts, or selects an expert from
an implicitly maintained distribution. At each round, the
loss assigned to each expert is revealed. The algorithm in-
curs the expected loss over the experts and then updates its
distribution on the set of experts. Its objective is to mini-
mize its expected regret, that is the difference between its
cumulative loss and that of the best expert in hindsight.

∗Work done at the Courant Institute of Mathematical Sciences.

Proceedings of the 21st International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2018, Lanzarote, Spain. PMLR:
Volume 84. Copyright 2018 by the author(s).

However, this benchmark is only significant when the best
expert in hindsight is expected to perform well. When that is
not the case, then the learner may still play poorly. As an ex-
ample, it may be that no single baseball team has performed
well over all seasons in the past few years. Instead, different
teams may have dominated over different time periods. This
has led to a definition of regret against the best sequence
of experts with k shifts in the seminal work of Herbster
and Warmuth [1998] on tracking the best expert. The au-
thors showed that there exists an efficient online learning
algorithm for this setting with favorable regret guarantees.

This work has subsequently been improved to account for
broader expert classes [Gyorgy et al., 2012], to deal with
unknown parameters [Monteleoni and Jaakkola, 2003], and
has been further generalized [Vovk, 1999, Cesa-Bianchi
et al., 2012, Koolen and de Rooij, 2013]. Vovk [1999] and
Cesa-Bianchi and Lugosi [2006] showed how the work in
Herbster and Warmuth [1998] can be interpreted as an ef-
ficient implementation of the classical weighted majority
algorithm [Littlestone and Warmuth, 1994] over expert se-
quences with a specific choice of prior weights. Koolen and
de Rooij [2013] described a Bayesian framework for online
learning where the learner samples from a distribution of
expert sequences and predicts according to the prediction
of that expert sequence. In particular, they showed how
algorithms designed for k-shifting regret, e.g. [Herbster and
Warmuth, 1998, Monteleoni and Jaakkola, 2003], can be
interpreted as specific priors in this formulation. Another
approach for handling dynamic environments has consisted
of designing algorithms that guarantee small regret over any
subinterval during the course of play. This notion, coined as
adaptive regret by Hazan and Seshadhri [2009], has been
subsequently strengthened and generalized [Daniely et al.,
2015, Adamskiy et al., 2012]. Remarkably, it was shown
by Adamskiy et al. [2012] that the algorithm designed by
Herbster and Warmuth [1998] is also optimal for adaptive
regret. There has also been work deriving guarantees in the
bandit setting when the losses are stochastic [Besbes et al.,
2014, Wei et al., 2016].

The general problem of online convex optimization in the
presence of non-stationary environments has also been stud-

Competing with Automata-based Expert Sequences

�

��

�

���

��

�

�

��

�

���

�

��

�

�

�

�

� �

��

�

��
�

�

��

�

�

�

�

�

�

�

�

�

�

��������������

�
�������

�

���������

�������α

���α���

�������α���

���β���

������β

���β���

���γ���

���γ���

�������γ

�

��

�

���

��

�

�

���

��

�
�

�

�

���

�

�

�

�

(i) (ii) (iii)

Figure 1: WFAs representing sequences of experts in Σ = {a, b, c}. (i) Ck-shift with k = 2 shifts, all weights are equal to one
and not indicated; (ii) Cweighted-shift with α,β, γ ∈ [0, 1]; (iii) Chierarchy a hierarchical family of expert sequences: the learner
must select expert a from the start, can only shift onto b once, and can only shift onto c twice.

ied by many researchers. One perspective has been the
design of algorithms that maintain a guarantee against se-
quences that do not vary too much [Mokhtari et al., 2016,
Shahrampour and Jadbabaie, 2016, Jadbabaie et al., 2015,
Besbes et al., 2015]. Another assumes that the learner has
access to a dynamical model that is able to capture the
benchmark sequence [Hall and Willett, 2013]. György and
Szepesvári [2016] reinterpreted the framework of Hall and
Willett [2013] to recover and extend the results of Herbster
and Warmuth [1998].

In this paper, we generalize the framework just described to
the case where the learner’s cumulative loss is compared to
that of sequences accepted by a weighted finite automaton
(WFA). This strictly generalizes the notion of k-shifting
regret, since k-shifting sequences can be represented by
an automaton (see Figure 1), and further extends it to a
notion of weighted regret which takes into consideration the
sequence weights. Our framework covers a very rich class
of competitor classes, including WFAs learned from past
observations.

Our contributions are mainly algorithmic but also include
several new theoretical results and guarantees. We first
describe an efficient online algorithm using automata op-
erations that achieves both favorable weighted regret and
unweighted regret (Section 3). Next, we present and an-
alyze more efficient solutions based on an approximation
of the WFA representing the set of competitor sequences
(Section 4), including a specific analysis of approximations
via n-gram models both when minimizing the ∞-Rényi di-
vergence and the relative entropy. Finally, we extend the
results above to the sleeping expert setting [Freund et al.,
1997], where the learner may not have access to advice from
all experts at every round (Section 5).

2 Learning setup

We consider the setting of prediction with expert advice over
T ∈ N rounds. Let Σ = {a1, . . . , aN} denote a set of N
experts. At each round t ∈ [T], an algorithm A specifies a
probability distribution pt over Σ, samples an expert it from

pt, receives the vector of losses of all experts lt ∈ [0, 1]N ,
and incurs the specific loss lt[it]. A commonly adopted goal
for the algorithm is to minimize its static (expected) regret
RegT (A,Σ), that is the difference between its cumulative
expected loss and that of the best expert in hindsight:

RegT (A,Σ) = max
x∈Σ

T�

t=1

pt · lt −
T�

t=1

lt[x]. (1)

Here, we will consider an alternative benchmark, typically
more demanding, where the cumulative loss of the algorithm
is compared against the loss of the best sequence of experts
x ∈ ΣT among those accepted by a weighted finite automa-
ton (WFA) C over the semiring (R+ ∪ {+∞},+,×, 0, 1).1

The sequences x accepted by C, which we will assume to
be non-empty, are those which are assigned a positive value
by C, C(x) > 0.2 We will denote by K ≥ 1 the cardinality
of that set of sequences.

We will take into account the probability distribution q de-
fined by the weights assigned by C to sequences of length T :
q(x) = C(x)�

x∈ΣT C(x) . This leads to the following definition
of weighted regret at time T given a WFA C:

RegT (A,C) (2)

= max
x∈ΣT

C(x)>0

�
T�

t=1

pt · lt −
T�

t=1

lt[x[t]] + log[q(x)K]

�
,

where x[t] denotes the tth symbol of x. The presence of
the factor K only affects the regret definition by a constant
additive term logK and is only intended to make the last
term vanish when the probability distribution q is uniform,
i.e. q(x) = 1

K for all x. The last term in the weighted
regret definition can be interpreted as follows: for a given

1Thus, the weights in C are non-negative; the weight of a path
is obtained by multiplying the transition weights along that path
and the weight assigned to a sequence is obtained by summing the
weights of all accepting paths labeled with that sequence.

2The weight of a sequence x is the sum of the weights of all
paths in the automaton from the intial state to a final state that are
labeled with x.

Mohri, Yang

value of an expert sequence loss
�T

t=1 lt[x[t]], the regret
is larger for sequences x with a larger probability q(x).3

Thus, with this definition of regret, the learning algorithm
is pressed to achieve a small cumulative loss compared
to expert sequences with small loss and high probability.
Notice that when C accepts only constant sequences, that is
sequences x with x[1] = . . . = x[T] and assigns the same
weight to them, then the notion of weighted regret coincides
with that of static regret (Formula 1).

We also define the unweighted regret Reg0T (A,C) of algo-
rithm A at time T given the WFA C as:

Reg0T (A,C) = max
x∈ΣT

C(x)>0

�
T�

t=1

pt · lt −
T�

t=1

lt[x[t]]

�
. (3)

The weights of the WFA C play no role in this notion of
regret. When C has uniform weights, then the unweighted
regret and weighted regret coincide.

As an example, the sequences of experts with k shifts stud-
ied by Herbster and Warmuth [1998] can be represented by
the WFA Ck-shift of Figure 1(i). Figure 1(ii) shows an alter-
native weighted model of shifting experts, and Figure 1(iii)
shows a hierarchical family of expert sequences.

3 Automata Weighted-Majority algorithm

In this section, we describe a simple algorithm, Automata
Weighted-Majority (AWM), that can be viewed as an en-
hancement of the weighted-majority algorithm [Littlestone
and Warmuth, 1994] to the setting of experts paths rep-
resented by a WFA.4 We will show that it benefits from
favorable weighted and unweighted regret guarantees.

We first present the mathematical calculations and concepts
behind the algorithm before providing an efficient imple-
mentation. As with standard weighted-majority, AWM
maintains a distribution qt over the set of expert sequences
x ∈ ΣT accepted by C at any time t and admits a learn-
ing parameter η > 0. The initial distribution q1 is defined
in terms of the distribution q induced by C over ΣT , and
qt+1 is defined from qt via an exponential update: for all
x ∈ ΣT , t ≥ 1,

q1[x] =
q[x]η�

x∈ΣT q[x]η
,

qt+1[x] =
e−η lt[x[t]]qt[x]�

x∈ΣT e−η lt[x[t]]qt[x]
, (4)

3The choice of an additive weight penalty is motivated by
the log loss setting, where the loss is the log probability of a
sequence and the penalty can be interpreted as a prior weight.
However, a multplicative penalty is also reasonable and could
serve as interesting future work.

4This algorithm is in fact closer to the EXP4 algorithm [Auer
et al., 2002]. However, EXP4 is designed for the bandit setting, so
we use the weighted-majority naming convention.

where we denote by x[t] ∈ Σ the tth symbol in x. qt
induces a distribution pt over the expert set Σ defined for
all a ∈ Σ by

pt[a] =

�
x∈ΣT qt[x]1x[t]=a�

a∈Σ

�
x∈ΣT qt[x]1x[t]=a

. (5)

Thus, pt[a] is obtained by summing up the qt-weights of
all sequences with the tth symbol equal to a and normal-
ization. The distributions pt define the AWM algorithm.
Note that in contrast to a standard implementation of the
weighted-majority algorithm with a fixed prior distribution,
the algorithm here uses an initial distribution q1 that is de-
fined in terms of qη and changes with the learning rate.

The following regret guarantees hold for AWM.
Theorem 1. Let q denote the probability distribution over
expert sequences of length T defined by C and let K denote
the cardinality of its support. Then, the following upper
bound holds for the weighted regret of AWM:

RegT (AWM,C) ≤ ηT

8
+

1

η
log

�
Kη

�

x∈ΣT

q[x]η
�

≤ ηT

8
+

1

η
logK.

Furthermore, when K ≥ 2, for any T > 0, there exists
η∗ > 0, decreasing as a function of T , such that:

RegT (AWM,C) ≤
�

THη∗(q)

2
−Hη∗(q) + logK,

where Hη(q) = 1
1−η log

��
x∈ΣT q[x]η

�
is the η-Rényi

entropy of q. The unweighted regret of AWM can be upper-
bounded as follows:

Reg0T (AWM,C) ≤ ηT

8
+

1

η
logK.

The proof is an extension of the standard proof for the
weighted-majority algorithm and is given in Appendix C.
The bound in terms of the Rényi entropy shows that the
regret guarantee can be substantially more favorable than
standard bounds of the form O(

√
T logK), depending on

the properties of the distribution q. First, since the η-Rényi
entropy is non-increasing in η [Van Erven and Harremos,
2014], we have Hη∗(q) ≤ H0(q) = log(| supp(q)|) ≤
logK. Second, if the distribution q is concentrated on
a subset Δ with a small cardinality, |Δ| � K, that is�

x�∈Δ q[x]η
∗
< �(1 − η∗)

�
x∈Δ q[x]η

∗
for some � > 0

and for η∗ < 1, then, by Jensen’s inequality, the following
upper bound holds:

H∗
η (q) ≤

1

1− η∗
log

� �

x∈Δ

q[x]η
∗
�
+ �

≤ 1

1− η∗
log

�
|Δ|

�
1

|Δ|
�

x∈Δ

q[x]

�η∗�
+ �

≤ log(|Δ|) + �.

Competing with Automata-based Expert Sequences

Algorithm 1: AUTOMATAWEIGHTEDMAJORITY(AWM).
Algorithm: AWM(C, η)
B ← C ∩ ST
A ← WEIGHT-PUSHING(Bη)
β ← BWDDIST(A)
α ← 0; α[IA] ← 1
for each e ∈ E0→1

A do
p1[lab[e]] ← weight[e].

for t ← 1 to T do
it ←SAMPLE(pt); PLAY(it); RECEIVE(lt)
Z ← 0; w ← 0
for each e ∈ Et→t+1

A do
weight[e] ← weight[e] e−ηlt[lab[e]]

w[lab[e]] ←
w[lab[e]] +α[src[e]] weight[e]β[dest[e]]
Z ← Z +w[lab[e]]
α[dest[e]] ← α[dest[e]] +α[src[e]] weight[e]

pt+1 ← w
Z

Efficient algorithm. We now present an efficient compu-
tation of the distributions pt. Algorithm 1 gives the pseu-
docode of our algorithm. We will assume throughout that
C is deterministic, that is it admits a single initial state and
no two transitions leaving the same state share the same la-
bel. We can efficiently compute a WFA accepting the set of
sequences of length T accepted by C by using the standard
intersection algorithm for WFAs (see Appendix A for more
detail on this algorithm). Let ST be a deterministic WFA
accepting the set of sequences of length T and assigning
weight one to each (see Figure 2). Then, the intersection of
C and ST is a WFA denoted by C∩ ST which, by definition,
assigns to each sequence x ∈ ΣT the weight

(C ∩ ST)(x) = C(x)× ST (x) = C(x), (6)

and assigns weight zero to all other sequences. Further-
more, the WFA B = (C ∩ ST) returned by the intersection
algorithm is deterministic since both C and ST are determin-
istic. Next, we replace each transition weight of B by its
η-power. Since B is deterministic, this results in a WFA
that we denote by Bη and that associates to each sequence
x the weight C[x]η. Normalizing Bη results in a WFA A

assigning weight A[x] = B[x]η�
x B[x]η = q1[x] to any x ∈ ΣT .

This normalization can be achieved in time that is linear in
the size of the WFA Bη using the WEIGHT-PUSHING algo-
rithm [Mohri, 1997, 2009]. For completeness, we describe
this algorithm in Appendix B. Note that since Bη is acyclic,
its size is in O(|EA|), where EA is the set of transitions of
A.5 We will denote by A the resulting WFA.

5The WEIGHT-PUSHING algorithm has been used in many
other contexts to make a directed weighted graph stochastic. This
includes network normalization in speech recognition [Mohri and
Riley, 2001], and online learning with large expert sets [Taki-
moto and Warmuth, 2003, Cortes et al., 2015], where the resulting

��� �

���

���

���
�

���

���

���
���

���

���

���

Figure 2: WFA ST , for Σ = {a, b, c} and T = 3.

src[e]

↵t[src[e]]

dest[e]

t1Y

s=1

e⌘ls[x[s]]q1[x[s]]

[dest[e]]

a/e⌘lt[a]weight[e]

Figure 3: Illustration of algorithm AWM.

For any state u of A, we will denote by β[u] the sum of the
weights of all paths from u to a final state. The vector β can
be computed in time that is linear in the number of states
and transitions of A using a simple single-source shortest-
distance algorithm in the semiring (R+∪{+∞},+,×, 0, 1)
[Mohri, 2009], or the forward-backward algorithm. We call
this subroutine BWDDIST in the pseudocode.

We will denote by Qt the set of states in A that can be
reached by sequences of length t and by Et→t+1

A the set
of transitions from a state in Qt to a state in Qt+1. For
each transition e, let src[e] denote its source state, dest[e]
its destination state, lab[e] ∈ Σ its label, and weight[e] ≥ 0
its weight. Since A is normalized, the expert probabilities
p1[a] for a ∈ Σ can be read off the transitions leaving the
initial state: p1[a] is the weight of the transition in E0→1

A

labeled with a.

Let αt[u] denote the forward weights, that is the sum of
the weights of all paths from the initial state to state u
just before the tth round. At round t, the weight of each
transition e in Et→t+1

A is multiplied by e−ηlt[lab[e]]. This
results in new forward weights αt+1[u] at the end of the
t-th iteration. αt+1 can be straightforwardly derived from
αt since for u ∈ Qt+1, αt+1[u] is given by αt+1[u] =�

e : dest[e]=u αt[src[e]]weight[e].

Observe that for any t ∈ [T] and x, qt[x] can be written as
follows by unwrapping its recursive update definition:

qt[x] =
e−η

�t−1
s=1 ls[x[s]]q1[x]�

x∈ΣT e−η
�t−1

s=1 ls[x[s]]q1[x]
.

In view of that, for any a ∈ Σ, pt+1[a] can be written as

stochastic graph enables efficient sampling. The problem setting,
algorithms and objectives in the last two references are completely
distinct from ours. In particular, (a) in those, each path of the
graph represents a single expert, while in our case each path is
a sequence of experts; (b) in those, weight-pushing is applied at
every round, while in our case it is used once at the start of the
algorithm; (c) the regret is with respect to a static expert, while in
our case it is with respect to a WFA of expert sequences.

Mohri, Yang

follows:

pt+1[a] =

�
x∈ΣT e−η

�t
s=1 ls[x[s]]q1[x]1x[t]=a�

a∈Σ

�
x∈ΣT e−η

�t
s=1 ls[x[s]]q1[x]1x[t]=a

.

Since the WFA A is deterministic, for any x accepted by
A there is a unique accepting path π in A labeled with x.
The numerator of the expression of pt+1[a] is then the sum
of the weights of all paths in A with the tth symbol a at
the end of tth iteration. This can be expressed as the sum
over all transitions e in Et→t+1

A with label a of the total flow
through e, that is the sum of the weights of all accepting
path going through e: αt[src[e]] weight[e]β[dest[e]] (see
Figure 3). This is precisely the formula determining pt+1 in
the pseudocode, where Z is the normalization factor.

The AWM algorithm is closely related to the Expert Hid-
den Markov Model of Koolen and de Rooij [2013] given
for the log loss. It can be viewed as a generalization of
that algorithm to arbitrary loss functions. A key difference
between our setup and the perspective adopted by Koolen
and de Rooij [2013] is that they assume a Bayesian setting
where a prior distribution over expert sequences is given and
must be used. We assume the existence of a competitor au-
tomaton C, but do not necessarily need to sample from it for
making predictions. This will be crucial in the next section,
where we use a different WFA than C to improve computa-
tional efficiency while preserving regret performance. Also,
the prior distribution in [Koolen and de Rooij, 2013] would
be over CT (for a large T) and not C.

The computational complexity of AWM at each round t is
O
�
|Et→t+1

A |
�
, that is the time to update the weights of the

transitions in Et→t+1
A and to incrementally compute α for

states reached by paths of length t+ 1. The total computa-
tional cost of the algorithm is thus O

��T
t=1 |Et→t+1

A |
�
=

O(|EA|).6 Note that A and C∩ST admit the same topology,
thus the total complexity of the algorithm depends on the
number of transitions of the intersection WFA C∩ST , which
is at most |C|NT , where |C| is the size of the automaton C

(i.e. the total number of states and transitions). This can be
substantially more favorable than a naïve algorithm, whose
worst-case complexity is exponential in T .

When the number of transitions of the intersection WFA
C ∩ ST is not too large compared to the number of experts
N , the AWM algorithm is quite efficient. However, it is
natural to ask whether one can design efficient algorithms
even if the number of transitions Et→t+1

A to process per
round is large (which may be the case even for a minimized
WFA C ∩ ST [Mohri, 2009]).

We will give two sets of solutions to derive a more efficient

6By the discussion above and Appendix A, the total complex-
ity of the intersection and weight-pushing operations is also in
O(|EA|), so that they do not add any additional cost. Moreover,
these two operations need only be carried out once and can be
performed offline.

algorithm, which can be combined for further efficiency. In
the next section, we discuss a solution that consists of using
an approximate WFA with a smaller number of transitions.
In Appendix E, we show that the notion of failure transition,
originally used in the design of string-matching algorithms
and recently employed for parameter estimation in back-
off n-gram language models [Roark et al., 2013], can be
used to derive a more compact representation of the WFA
C ∩ ST , thereby resulting in a significantly more efficient
online learning algorithm that still admits compelling regret
guarantees.

4 Approximation algorithms

In this section, we present approximation algorithms for
the problem of online learning against a weighted sequence
of experts represented by a WFA C. Rather than using the
intersection WFA CT = C∩ ST , we will assume that AWM
is run with an approximate WFA �CT . The main motivation
for doing so is that the algorithm can be substantially more
efficient if �CT admits significantly fewer transitions than CT .
Of course, this comes at the price of a somewhat weaker
regret guarantee that we now analyze in detail.

4.1 Effect of WFA approximation

We first analyze the effect of automata approximation on
the regret of AWM. As in the previous section, we de-
note by q the distribution defined by CT over sequences
of length T . We will similarly denote by �q the distri-
bution defined by �CT over the same set. The effect of
the WFA approximation on the regret can be naturally
expressed in terms of the ∞-Rényi divergence D∞(q��q)
between the distributions q and �q, which is defined by
D∞(q��q) = supx∈ΣT log[q(x)/�q(x)].
Theorem 2. The weighted regret of the AWM algorithm
with respect to the WFA C when run with �CT instead of CT

can be upper bounded as follows:

RegT (A,C) ≤ ηT

8
+

1

η
log

�
Kη

�

x

�q[x]η
�
+D∞(q��q)

≤ ηT

8
+

1

η
logK +D∞(q��q).

Its unweighted regret can be upper bounded as follows:

Reg0T (A,C) ≤ max
C(x)>0

ηT

8
+

1

η
log

�
1

q[x]

�
+

1

η
D∞(q��q).

The proof is given in Appendix D. Theorem 2 shows that the
extra cost of using an approximate WFA �CT instead of CT is
D∞(q��q) for the weighted regret and similarly 1

ηD∞(q��q)
for the unweighted regret. The bound is tight since the best
sequence in hindsight in the regret definition may also be
the one maximizing the log-ratio.

Competing with Automata-based Expert Sequences

The theorem suggests a general algorithm for selecting an
approximate WFA �C out of a family C of WFAs with a
relatively small number of transitions. This consists of
choosing �C to minimize the Rényi divergence as defined by
the following program:

min
�C∈C

D∞(q��q), (7)

where �q is the distribution induced by �C over ΣT (the one
obtained by computing �CT = �C ∩ ST and normalizing the
weights). The theorem ensures that the solution benefits
from the most favorable regret guarantee among the WFAs
in C. When the set of distributions associated to C is convex,
then the set of distributions defined over ΣT is also convex.
This is then a convex optimization problem, since �q �→
log(q/�q) is a convex function and a supremum of convex
functions is convex.

The choice of the family C is subject to a trade-off: ap-
proximation accuracy versus computational efficiency of
using WFAs in C. This raises a model selection question for
which we discuss in detail a solution in Section 4.2: given
a sequence of families (Cn)n∈N with growing complexity
and computational cost, the problem consists of selecting
the best n.

In the following, we will consider the case where the family
C of weighted automata is that of n-gram models, for which
we can upper bound the computational complexity.

4.2 Minimum Rényi divergence n-gram models

Let Σ≤n−1 denote the set of sequences of length at most
n − 1. An n-gram language model is a Markovian model
of order (n− 1) defined over Σ∗, which can be compactly
represented by a WFA with each state identified with a
sequence x ∈ Σ≤n−1, thereby encoding the sequence just
read to reach that state. The WFA admits a transition from
state (x[1] · · ·x[n − 1]) to state (x[2] · · ·x[n − 1]a) with
weight w

�
a |x[1] · · ·x[n− 1]

�
, for any a ∈ Σ, and, for any

k ≤ n−1, a transition from state (x[1] · · ·x[k−1]) to state
(x[1] · · ·x[k− 1]a) with weight w

�
a |x[1] · · ·x[k− 1]

�
, for

any a ∈ Σ. It admits a unique initial state which is the one
labeled with the empty string � (sequence of length zero)
and all its states are final. The WFA is stochastic, that is
outgoing transition weights sum to one at every state: thus,�

a∈Σ w[a|x] = 1 for all x ∈ Σ≤n−1. Notice that this
WFA is also deterministic since it admits a unique initial
state and no two transitions with the same label leaving any
state. Figure 4 illustrates this definition in the case of a
simple bigram model.

Note that the transition weights w[a|x], with a ∈ Σ and
x ∈ ∪k≤n−1Σ

k fully specify an n-gram model. Since for a
fixed x ∈ ∪k≤n−1Σ

k, w[·|x] is an element of the simplex,
an n-gram model can be viewed as an element of the product
of

�n−1
k=0 Σ

k simplices, a convex set. We will denote by Wn

�

�

�������������

�
������

�

��������

�����������
����������

������������

����������

����������

����������

����������

����������
�����������

Figure 4: A bigram language model over the alphabet Σ =
{a, b, c}.

the family of all n-gram models.

One key advantage of n-gram models in this context is
that the per-iteration complexity can be bounded in terms
of the number of symbols. Since an n-gram model has
at most |Σ|n−1 states, its per-iteration computational cost
is in O

�
|Σ|n

�
as each state can take one of |Σ| possible

transitions. For n small, this can be very advantageous
compared to the original CT , since in general the maximum
out-degree of states reached by sequences of length t in
the latter can be very large. For instance, the automaton
Cweighted-shift in Figure 1 (ii) can itself be viewed as a bigram
model and admits efficient computation.

For n-gram models, our approximation algorithm (Prob-
lem 7) can be written as follows:

min
w∈Wn

D∞(q�qw) = min
w∈Wn

sup
x∈ΣT

log

�
q[x]

qw[x]

�
, (8)

where qw is the distribution induced by the n-gram model
w on sequences in ΣT . By definition of the n-gram model,
for any x ∈ ΣT , qw[x] is given by the following:

qw[x] =
TY

t=1

w
�
x[t]

��xt−1
max(t−n+1,1)

�
,

since the weights of sequences of any fixed length sum to
one in an n-gram model. Problem 8 is a convex optimization
problem over Wn. The problem can be solved using as an
an extension of the Exponentiated Gradient (EG) algorithm
of Kivinen and Warmuth [1997], which we will refer to
as PROD-EG. The pseudocode of PROD-EG, a general
convergence guarantee, and its convergence guarantee in
the specific case of n-gram models are given in detail in
Appendix F as Algorithm 6, Theorem 5, and Corollary 1
respectively.

Model selection. In practice, we seek an n-gram model
that balances the tradeoff between approximation error and
computational cost. Assume that we are given a max-
imum per-iteration computational budget B. We there-
fore wish to determine an n-gram approximation model
affordable within our budget and with the most favor-
able regret guarantee. Let F (q, qw) denote the objective

Mohri, Yang

Algorithm 2: n-GRAMMODELSELECT.
Algorithm: n-GRAMMODELSELECT(q, τ , B)
n ← 1; qw ← qun ; s ← 0
while s ≤ τ do

qw ← PROD-EG-UPDATE(qw,Wn)
s ← s+ 1
if F (q, qw)−Δ(s, n) >

√
T and |Σ|n ≤ B then

n ← 2n; s ← 0; qw ← qun
nmax ← n.
qw ← BINARYSEARCH([1, nmax], F (q, qw)−
Δ(τ, n) ≤

√
T)

return qw

function of Problem (8): F (q, qw) = D∞(q�qw). By
the convergence guarantee of Corollary 1, if qw is the n-
gram model returned by PROD-EG after τ iterations, we
can write F (q, qw) − F (q, qw∗) ≤ Δ(τ, n), where w∗ is
the n-gram model minimizing Problem (8) over Wn and
Δ(τ, n) the upper bound given by Corollary 1. Thus, if
F (q, qw)−Δ(τ, n) >

√
T for some n, then, even the opti-

mal n-gram model for this n will cause an increase in the
regret.

Let n∗ be the smallest n such that F (q, qw) − Δ(τ, n) ≤√
T (or the smallest value that exceeds our budget). We can

find this value in log(n∗) time using a two-stage process. In
the first stage, we double n after every violation until we
find an upper bound on n∗, which we denote by nmax. In the
second stage, we perform a binary search within [1, nmax] to
determine n∗. Each stage takes log(n∗) iterations, and each
iteration is the cost of running PROD-EG for that specific
value of n. Thus, the overall complexity of the algorithm
is O (log(n∗)Cost(PROD-EG)), where Cost(PROD-EG) is
the cost of a call to PROD-EG. The full pseudocode of
this algorithm, n-GRAMMODELSELECT, is presented as
Algorithm 2, where un denotes the uniform n-gram model
and PROD-EG-UPDATE(qw,Wn) denotes one update made
by PROD-EG when optimizing over Wn.

In the simple case of a unigram automaton model over
two symbols and when the distribution q defined by the
intersection WFA CT is uniform, we can give an explicit
form of the solution of Problem 8. The solution is obtained
from the paths with the smallest number of occurrences of
each symbol, which can be straightforwardly found via a
shortest-path algorithm in linear time.
Theorem 3. Assume that CT admits uniform weights over
all paths and Σ = {a1, a2}. For j ∈ {1, 2}, let n(aj) be
the smallest number of occurrences of aj in a path of CT .
For any j ∈ {1, 2}, define

q[aj] =
max

�
1,

n(aj)
T−n(aj)

�

1 + max
�
1,

n(aj)
T−n(aj)

� .

Then, the unigram model w ∈ W1 solution of ∞-

Rényi divergence optimization problem is defined by
w[aj∗] = q[aj∗], w[aj�] = 1 − w[aj∗], with j∗ =
argmaxj∈{1,2} n(aj) log q[aj] + [T − n(aj)] log

�
1 −

q[aj]
�
.

The proof of this result is provided in Appendix G.

Theorem 3 shows that the solutions of the ∞-Rényi di-
vergence optimization are based on the n-gram counts of
sequences in CT with “high entropy”. This can be very
different from the maximum likelihood solutions, which are
based on the average n-gram counts. For instance, sup-
pose we are under the assumptions of Theorem 3, and
specifically, assume that there are T sequences in CT .
Assume that one of the sequences has

�
1
2 + γ

�
T occur-

rences of a1 for some small γ > 0 and that the other
T − 1 sequences have T − 1 occurrences of a1. Then,
n(a1) =

�
1
2 + γ

�
T , and the solution of the ∞-Rényi diver-

gence optimization problem is given by q∞(a1) = 1+2γ
2

and q∞(a2) = 1−2γ
2 . On the other hand, the maximum-

likelihood solution would be q1(a1) = 1+ γ
T − 3

2T + 1
T 2 ≈ 1

and q1(a2) =
3
2T − γ

T − 1
T 2 ≈ 0 for large T .

4.3 Maximum-Likelihood n-gram models

A standard method for learning n-gram models is via
Maximum-Likelihood, which is equivalent to minimizing
the relatively entropy between the target distribution q and
the language model, that is via

min
w∈Wn

D(q�qw), (9)

where, D(q�qw) denotes the relative entropy, D(q�qw) =�
x q[x] log

�
q[x]
qw[x]

�
. Maximum likelihood n-gram solu-

tions are simple. For standard text data, the weight of each
transition is the frequency of appearance of the correspond-
ing n-gram in the text. For a probabilistic CT , the weight
can be similarly obtained from the expected count of the
n-gram in the paths of CT , where the expectation is taken
over the probability distribution defined by CT and can be
computed efficiently [Allauzen et al., 2003]. In general, the
solution of this optimization problem does not benefit from
the guarantee of Theorem 2 since the ∞-Rényi divergence
is an upper bound on the relative entropy. However, in some
cases, maximum likelihood solutions do benefit from fa-
vorable regret guarantees. In particular, as shown by the
following theorem, remarkably, the maximum-likelihood
bigram approximation to the k-shifting automaton coincides
with the FIXED-SHARE algorithm of Herbster and Warmuth
[1998] and benefits from a constant approximation error.
Thus, we can view and motivate the design of the FIXED-
SHARE algorithm as that of a bigram approximation of the
desired competitor automaton, which represents the family
of k-shifting sequences.
Theorem 4. Let CT be the k-shifting automaton for some k.
Then, the bigram model w2 obtained by minimizing relative

Competing with Automata-based Expert Sequences

entropy is defined for all a1, a2 ∈ Σ by

pw2
[a1a2]=

�
1− k

(T−1)

�
1a1=a2 +

�
k

(T−1)(N−1)

�
1a1 �=a2

N
.

Moreover, its approximation error can be bounded by a
constant (independent of T):

D∞(q�qw2
) ≤ − log

�
1− 2e−

1
12k

�
.

The proof of the theorem as well as other details about
Maximum-Likelihood are given in Appendix H. The proof
technique is illustrative because it reveals that the maxi-
mum likelihood n-gram model has low approximation error
whenever (1) the model’s distribution is proportional to
the distribution of CT on CT ’s support and (2) most of the
model’s mass lies on the support of CT . When the automa-
ton CT has uniform weights, then condition (1) is satisfied
when the n-gram model is uniform on CT . This is true
whenever all sequences in CT have the same set of n-gram
counts, and every permutation of symbols over these counts
is a sequence that lies in CT , which is the case for the k-
shifting automaton. Condition (2) is satisfied when n is
large enough, which necessarily exists since the distribution
is exact for n = T . On the other hand, note that a unigram
approximation would have satisfied condition (1) but not
condition (2) for the k-shifting automaton.

To the best of our knowledge, this is the first framework that
motivates the design of FIXED-SHARE with a focus on min-
imizing tracking regret. Other works that have recovered
FIXED-SHARE (e.g. [Vovk, 1999, Cesa-Bianchi and Lugosi,
2006, Cesa-Bianchi et al., 2012, Koolen and de Rooij, 2013,
György and Szepesvári, 2016]) have generally viewed the al-
gorithm itself as the main focus and have not systematically
derived it from first principles.7

Our derivation of FIXED-SHARE also allows us to natu-
rally generalize the setting of standard k-shifting experts to
k-shifting experts with non-uniform weights. Specifically,
consider the case where CT is an automaton accepting up
to k-shifts but where the shifts now occur with probability
q[a2|a1, a1 �= a2] �= 1

N−11{a2 �=a1}. Since the bigram ap-
proximation will remain exact on CT , we recover the exact
same guarantee as in Theorem 4.

Maximum likelihood n-gram models can further benefit
from our use of failure transitions and the ϕ-conversion
algorithm presented in Appendix E. This can reduce the
size of the automaton and often dramatically improve its
computational efficiency without affecting its accuracy.

7Section 5.2 of Cesa-Bianchi and Lugosi [2006] provides some
intuition on why the choice of prior weights in the weighted major-
ity interpretation of Fixed-Share is reasonable, but this is conducted
a posteriori.

5 Extension to sleeping experts

In many real-world applications, it may be natural for some
experts to abstain from making predictions on some of the
rounds. For instance, in a bag-of-words model for document
classification, only a subset of features may be active for
each document. This extension of standard prediction with
expert advice is also known as the sleeping experts frame-
work [Freund et al., 1997]. The experts are said to be asleep
when they are inactive and awake when they are active and
available to be selected. This framework is distinct from
the permutation-based setting adopted in [Kleinberg et al.,
2010, Kanade et al., 2009, Kanade and Steinke, 2014].

Formally, at each round t, the adversary chooses an awake
set At ⊆ Σ from which the learner is allowed to query an
expert. The algorithm then chooses an expert it from At,
receives a loss vector lt ∈ [0, 1]|Σ| supported on At and
incurs loss lt[it]. Since some experts may be asleep, it is not
reasonable to compare the loss against that of the best static
expert. In [Freund et al., 1997], the comparison is made
against the best fixed mixture of experts normalized at each

round over the awake set: minu∈ΔN

�T
t=1

�
a∈At

u[a]lt[a]�
a�∈At

u[a�] ,

where ΔN is the (N − 1)-dimensional simplex.

We extend the notion of sleeping experts to the path setting,
so that instead of comparing against fixed mixtures over
experts, we compare against fixed mixtures over the family
of expert sequences. With some abuse of notation, let At

also represent the automaton accepting all paths of length
T whose t-th transition has label in At. Then, we want to
design an algorithm that performs well with respect to the

following quantity: minu∈ΔK

�T
t=1

�
x∈CT ∩At

u[x]lt[x[t]]�
x∈CT ∩At

u[x] ,

where K is the number of accepting paths of CT . We de-
scribe our new algorithm, AWAKEAWM, along with its
accompanying theoretical guarantee, in Appendix I.

6 Conclusion

We studied a general framework of online learning against
a competitor class represented by a WFA and presented a
number of algorithmic solutions for this problem achieving
sublinear regret guarantees using automata approximation
and failure transitions. We also extended our algorithms and
results to the sleeping experts framework (Section 5). Our
results can be straightforwardly extended to the adversarial
bandit scenario using standard surrogate losses based on
importance weighting techniques and to the case of more
complex formal language families such as (probabilistic)
context-free languages over expert sequences.

Acknowledgements

This work was partly funded by NSF CCF-1535987 and
NSF IIS-1618662.

Mohri, Yang

References

D. Adamskiy, W. M. Koolen, A. Chernov, and V. Vovk. A
closer look at adaptive regret. In ALT, pages 290–304,
2012.

C. Allauzen, M. Mohri, and B. Roark. Generalized algo-
rithms for constructing statistical language models. In
Proceedings of ACL, pages 40–47, 2003.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire.
The nonstochastic multiarmed bandit problem. SIAM
Journal on Computing, 32(1):48–77, 2002.

O. Besbes, Y. Gur, and A. Zeevi. Stochastic multi-armed-
bandit problem with non-stationary rewards. In NIPS,
pages 199–207, 2014.

O. Besbes, Y. Gur, and A. Zeevi. Non-stationary stochastic
optimization. Operations Research, 63(5):1227–1244,
2015.

S. Bubeck et al. Convex optimization: Algorithms and com-
plexity. Foundations and Trends R� in Machine Learning,
8(3-4):231–357, 2015.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and
Games. Cambridge University Press, 2006.

N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved
second-order bounds for prediction with expert advice.
Machine Learning, 66(2-3):321–352, 2007.

N. Cesa-Bianchi, P. Gaillard, G. Lugosi, and G. Stoltz. Mir-
ror descent meets fixed share (and feels no regret). In
NIPS, pages 980–988, 2012.

C. Cortes, V. Kuznetsov, M. Mohri, and M. K. Warmuth.
On-line learning algorithms for path experts with non-
additive losses. In COLT, 2015.

A. Daniely, A. Gonen, and S. Shalev-Shwartz. Strongly
adaptive online learning. In Proceedings of ICML, pages
1405–1411, 2015.

Y. Freund, R. E. Schapire, Y. Singer, and M. K. Warmuth.
Using and combining predictors that specialize. In STOC,
pages 334–343. ACM, 1997.

A. György and C. Szepesvári. Shifting regret, mirror de-
scent, and matrices. In ICML, 2016.

A. Gyorgy, T. Linder, and G. Lugosi. Efficient tracking of
large classes of experts. IEEE Transactions on Informa-
tion Theory, 58(11):6709–6725, 2012.

E. C. Hall and R. M. Willett. Online optimization in dy-
namic environments. arXiv:1307.5944, 2013.

E. Hazan and C. Seshadhri. Efficient learning algorithms for
changing environments. In Proceedings of ICML, pages
393–400. ACM, 2009.

M. Herbster and M. K. Warmuth. Tracking the best expert.
Machine Learning, 32(2):151–178, 1998.

A. Jadbabaie, A. Rakhlin, S. Shahrampour, and K. Srid-
haran. Online optimization: Competing with dynamic
comparators. In AISTATS, 2015.

V. Kanade and T. Steinke. Learning hurdles for sleep-
ing experts. ACM Transactions on Computation Theory
(TOCT), 6(3):11, 2014.

V. Kanade, H. McMahan, and B. Bryan. Sleeping experts
and bandits with stochastic action availability and adver-
sarial rewards. In AISTATS, pages 272–279, 2009.

J. Kivinen and M. K. Warmuth. Exponentiated gradient
versus gradient descent for linear predictors. Information
and Computation, 132(1):1–63, 1997.

R. Kleinberg, A. Niculescu-Mizil, and Y. Sharma. Regret
bounds for sleeping experts and bandits. Machine learn-
ing, 80(2-3):245–272, 2010.

W. M. Koolen and S. de Rooij. Universal codes from switch-
ing strategies. IEEE Transactions on Information Theory,
59(11):7168–7185, 2013.

N. Littlestone and M. K. Warmuth. The weighted majority
algorithm. Information and computation, 108(2):212–
261, 1994.

M. Mohri. Finite-State Transducers in Language and Speech
Processing. Computational Linguistics, 23:2, 1997.

M. Mohri. Weighted automata algorithms. In Handbook of
weighted automata, pages 213–254. Springer, 2009.

M. Mohri and M. Riley. A Weight Pushing Algorithm for
Large Vocabulary Speech Recognition. In Proceedings
of Eurospeech, 2001.

A. Mokhtari, S. Shahrampour, A. Jadbabaie, and A. Ribeiro.
Online optimization in dynamic environments: Improved
regret rates for strongly convex problems. In Proceedings
of CDC, pages 7195–7201. IEEE, 2016.

C. Monteleoni and T. S. Jaakkola. Online learning of non-
stationary sequences. In NIPS, page None, 2003.

B. Roark, C. Allauzen, and M. Riley. Smoothed marginal
distribution constraints for language modeling. In ACL,
pages 43–52, 2013.

S. Shahrampour and A. Jadbabaie. Distributed online opti-
mization in dynamic environments using mirror descent.
arXiv:1609.02845, 2016.

E. Takimoto and M. K. Warmuth. Path kernels and multi-
plicative updates. Journal of Machine Learning Research,
4(Oct):773–818, 2003.

T. Van Erven and P. Harremos. Rényi divergence and
Kullback-Leibler divergence. IEEE Transactions on In-
formation Theory, 60(7):3797–3820, 2014.

V. Vovk. Derandomizing stochastic prediction strategies.
Machine Learning, 35(3):247–282, 1999.

C.-Y. Wei, Y.-T. Hong, and C.-J. Lu. Tracking the best expert
in non-stationary stochastic environments. In NIPS, 2016.

