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9 Supplementary Material

9.1 Proof of Lemma 1
Use the definition d; := (1 — p;)d;_1 + p: VF (x4, 2¢) to write ||VF(x;) — d;||? as

IVF(xt) = di||* = [|[VF(x1) = (1 = pe)ds—1 — pe VEF (x1,24) || (36)
Add and subtract the term (1 — p;)VF(x:—1) to the right hand side of (36), regroup the terms to obtain

IVF(x;) — dy||> = [|pe(VF(x¢) — VE(x4,20)) + (1 — p) (VF(x¢) = VF(x4-1)) + (1 = pe) (VF(x4-1) — dtl)(327-)

Define F; as a sigma algebra that measures the history of the system up until time ¢. Expanding the square and
computing the conditional expectation E[- | F;] of the resulted expression yield

E[|VF(x) = dil]* | Fi] = pE [|VF(x) = VE(xt,20)|1* | Fo] + (1= p)2 [V F(xi-1) = doca |
+ (1= p)2[VF(x:) = VE(xe-1)|” +2(1 = po) (VF(x¢) = VE(x-1), VF(x¢-1) = di1)- (38)

The term E {HVF(xt) — VE(xq,2)|? | }"t} can be bounded above by o2 according to Assumption 3. Based

on Assumptions 1 and 2, we can also show that the squared norm |[VF(x;) — VF(x;_1)||? is upper bounded
by L2D?/T?. Moreover, the inner product 2(VF(x;) — VF(x;_1), VF(x¢—1) — d¢—1) can be upper bounded
by Bi||[VF(x¢—1) — d¢—1]|* + (1/B:)L*>D?/T? using Young’s inequality (i.e., 2(a,b) < 8|a||* + ||b||?/3 for any
a,b € R" and 5 > 0) and the conditions in Assumptions 1 and 2, where /3; > 0 is a free scalar. Applying these
substitutions into (38) leads to

1. L?D?

E[IVF(x:) = del” | Fe] < pfo® + (1= pe)?(1+ —

3) e T U= p (L B)IVF(xir) = dia P (39)

Replace (1 — p;)? by (1 — py), set 8 := ps/2, and compute the expectation with respect to Fy to obtain

E[[VF(x:) — di||’] < pio” +

I2D?  2L2D?
+ +(1-%

T2 rYch ) E [[|[VF(x¢-1) — dt,1||2] , (40)

and the claim in (14) follows.

9.2 Proof of Lemma 2

Define a; := E [||[VF(x;) — d¢|[?]. Also, assume p; = W where s is a fixed scalar and satisfies the condition

8 < s < T (so the proof is slightly more general). Apply these substitutions into(14) to obtain
(1 N 1602 N L?D? N L2D%(t + 5)?/3
= (t+s)23) 1T tyeis T T2 272

Now use the conditions s < T and ¢ < T to replace 1/T in (41) by its upper bound 2/(t + s). Applying this
substitution leads to

(41)

- (4 2 N 1602 N 4L2D? N 2L*D?
a — 575 | A¢+— = -
t= (t+5)23) " )BT (ts)2 " (t+s)8

Since t + s > 8 we can write (t + )2 = (t + s)4/3(t + 5)%/3 > (t + 5)*/38%/3 > 4(t + 5)*/3. Replacing the term
(t + 5)% in (42) by 4(t + 5)*/® and regrouping the terms lead to

(42)

2 1602 + 3L%D?
<[(1-——s _ _ 43
Clt_( (t+s)2/3>at 1+ TEE (43)
Now we prove by induction that for ¢t =0,...,T we can write
Q¢ < Q (44)

= (t+s+1)2/3
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where @ := max{ag(s +1)%/3,160% +3L?D?}. First, note that Q > ao(s +1)%/% and therefore ag < Q/(s+1)/3
and the base step of the induction holds true. Now assume that the condition in (44) holds for t =k — 1, i.e.,

Q

18—
-1 > (l{;+$)2/3

(45)

The goal is to show that (44) also holds for t = k. To do so, first set ¢ = k in the expression in (43) to obtain
a < (11— 2 - 1602 + 3L?D?
e (k+)23) T Tk s)t3

According to the definition of ), we know that QQ > 1602 +3L?D?. Moreover, based on the induction hypothesis
it holds that ar_1 < Using these inequalities and the expression in (46) we can write

(46)

Q
(k+s)2/3"

2 ) Q Q (47)

<|(1-— .
G = ( G+ 928 ) G923 T g

Pulling out % as a common factor and simplifying and reordering terms it follows that (47) is equivalent

(k+s
to
(k+s)2/3 -1
ap <Q (W’ : (48)
Based on the inequality
((k+ )2 = 1)((k + 5)*/* +1) < (k+ )", (49)
the result in (48) implies that
Q
o < (o) (50)
Since (k + 5)%/3 +1 > (k + s+ 1)?/3, the result in (50) implies that
Q
ak < ((k"‘s"‘l)?/?’ ) (51)

and the induction step is complete. Therefore, the result in (44) holds for all ¢t = 0,...,T. Indeed, by setting
s = 8, the claim in (15) follows.

9.3 How to Construct an Unbiased Estimator of the Gradient in Multilinear Extensions

Recall that f(S) = E,~p[f(S,2)]. In terms of the multilinear extensions, we obtain F'(x) = E,~p[F(x,2)], where
F and F' denote the multilinear extension for f and f, respectively. So VF'(x,z) is an unbiased estimator of
VF(x) when z ~ P. Note that F'(x,z) is a multilinear extension.

It remains to provide an unbiased estimator for the gradient of a multilinear extension. We thus consider an
arbitrary submodular set function g with multilinear G. Our goal is to provide an unbiased estimator for VG(x).
We have G(x) = > gcy [Lies i [1j25(1 — 27)9(S). Now, it can easily be shown that

oG
3%—

=G(x;2; < 1) — G(x;2; < 0). (52)

where for example by (x;x; < 1) we mean a vector which has value 1 on its i-th coordinate and is equal to x
elsewhere. To create an unbiased estimator for g—g at a point x we can simply sample a set S by including each
element in it independently with probability z; and use g(SU {i}) — g(S \ {¢}) as an unbiased estimator for the
i-th partial derivative. We can sample one single set S and use the above trick for all the coordinates. This
involves n function computations for g. Having a mini-batch size B we can repeat this procedure B times and
then average.
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9.4 Proof of Lemma 3

Based on the mean value theorem, we can write

VF(x, + %vt) — VF(xr) = %H(it)vt, (53)

where X; is a convex combination of x; and x; + %vt and H(x;) := V2F(%X;). This expression shows that the
difference between the coordinates of the vectors VF(x; + +v¢) and VF(x;) can be written as

1

Zve) = ViF(x) = TZHJZ £) Vit (54)

where v; ¢ is the i-th element of the vector v; and H;; denotes the component in the j-th row and i-th column
of the matrix H. Hence, the norm of the difference |V;F(x; + 7v;) — V;F(x,)| is bounded above by

ZH]’L vzt

i=1

1
|VjF(Xt + =

(55)

Note here that the elements of the matrix H(k;) are less than the maximum marginal value (i.e.
max; j |H; j(X)| < max;eqq,... ny f(i) = my). We thus get

1 my
Vi (x4 ve) = ViF(xe)| < 2D [vial. (56)
i=1

Note that at each round ¢ of the algorithm, we have to pick a vector v¢ € C s.t. the inner product (v¢,d;) is
maximized. Hence, without loss of generality we can assume that the vector v; is one of the extreme points of
C, i.e. it is of the form 1; for some I € Z (note that we can easily force integer vectors). Therefore by noticing
that v; is an integer vector with at most r ones, we have

1 me/T |
VPt vi) — Vi F ()] < P2V S o 67)

=1

which yields the claim in (28).

9.5 Proof of Theorem 2

According to the Taylor’s expansion of the function F' near the point x; we can write

Flxis1) = Fx) + (VE(x0), %1 %) + 3 (k01 — 0, &) (xe1 — )
= F(x0) + o (VF(x0), vi) + g (v, Ho ), (58)

where X; is a convex combination of x; and x; + %v; and H(%X;) := V2F(%;). Note that based on the inequality
max; ; |H; j(X)| < max;eqq,... »y f(i) = my, we can lower bound H;; by —my. Therefore,

n n

(ve, H(x¢)vy) ZZ’UZ 0 Hj (%) > mfZZUZ Ut = —Mf (Zvl t) = —myr||ve|?, (59)

j=11i=1 j=11i=1

where the last inequality is because v; is a vector with 7 ones and n — r zeros (see the explanation in the proof
of Lemma 3). Replace the expression (v, H(X;)v:) in (58) by its lower bound in (59) to obtain

Flxian) 2 Fx) + m(VFGe),ve) — 0wl (60)

2T2 |

In the following lemma we derive a variant of the result in Lemma 2 for the multilinear extension setting.
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Lemma 4. Consider Stochastic Continuous Greedy (SCG) outlined in Algorithm 1, and recall the definitions
of the function F in (27), the rank r, and my £ max;eq1.... »y f(i). If we set p; = W, then fort=0,...,T
and for j=1,...,n it holds

B{I9F0x) — i) < = S (61)

where Q := max{9%/3||VF(xq) — dg||?, 1602 + 3m?ch2}.

Proof. The proof is similar to the proof of Lemma 1. The main difference is to write the analysis for the j-th
coordinate and replace and L by m¢+/7 as shown in Lemma 3. Then using the proof techniques in Lemma 2 the
claim in Lemma 4 follows. n

The rest of the proof is identical to the proof of Theorem 1, by following the steps from (17) to (25) and
considering the bound in (61) we obtain

2DQ/? B mrD?

E[F(xr)] = (1 -1/e)F(x") —

where Q := max{||VF(xo) — do||?9%/3, 1602 + 37"m§D2}. Therefore, the claim in Theorem 2 follows.



