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Abstract

In this paper, we study the problem of con-
strained and stochastic continuous submod-
ular maximization. Even though the ob-
jective function is not concave (nor con-
vex) and is defined in terms of an expec-
tation, we develop a variant of the condi-
tional gradient method, called Stochastic

Continuous Greedy, which achieves a tight
approximation guarantee. More pre-
cisely, for a monotone and continuous DR-
submodular function and subject to a gen-
eral convex body constraint, we prove that
Stochastic Continuous Greedy achieves a
[(1�1/e)OPT�✏] guarantee (in expectation)
with O(1/✏3) stochastic gradient computa-
tions. This guarantee matches the known
hardness results and closes the gap between
deterministic and stochastic continuous sub-
modular maximization. By using stochastic
continuous optimization as an interface, we
also provide the first (1� 1/e) tight approxi-
mation guarantee for maximizing amonotone
but stochastic submodular set function sub-
ject to a general matroid constraint.

1 Introduction

Many procedures in statistics and artificial intelligence
require solving non-convex problems, including clus-
tering [Abbasi and Younis, 2007], training deep neu-
ral networks [Bengio et al., 2007], and performing
Bayesian optimization [Snoek et al., 2012], to name
a few. Historically, the focus has been to convex-
ify non-convex objectives; in recent years, there has
been significant progress to optimize non-convex func-
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tions directly. This direct approach has led to provably
good guarantees, for specific problem instances. Ex-
amples include latent variable models [Anandkumar
et al., 2014], non-negative matrix factorization [Arora
et al., 2016], robust PCA [Netrapalli et al., 2014], ma-
trix completions [Ge et al., 2016], and training certain
specific forms of neural networks [Mei et al., 2016].
However, it is well known that in general finding the
global optimum of a non-convex optimization problem
is NP-hard [Murty and Kabadi, 1987]. This computa-
tional barrier has mainly shifted the goal of non-convex
optimization towards two directions: a) finding an ap-
proximate local minimum by avoiding saddle points
[Ge et al., 2015, Anandkumar and Ge, 2016, Jin et al.,
2017, Paternain et al., 2017], or b) characterizing gen-
eral conditions under which the underlying non-convex
optimization is tractable [Hazan et al., 2016].

In this paper, we consider a broad class of non-convex
optimization problems that possess special combina-
torial structures. More specifically, we focus on con-
strained maximization of stochastic continuous sub-
modular functions (CSF) that demonstrate diminish-
ing returns, i.e., continuous DR-submodular functions,

max
x2C

F (x)
.
= max

x2C
E
z⇠P

[F̃ (x, z)]. (1)

Here, the functions F̃ : X ⇥ Z ! R
+

are stochastic
where x 2 X is the optimization variable, z 2 Z is a
realization of the random variable Z drawn from a dis-
tribution P , and X ⇢ Rn

+

is a compact set. Our goal
is to maximize the expected value of the random func-
tions F̃ (x, z) over the convex body C ✓ Rn

+

. Note that
we only assume that F (x) is DR-submodular, and not
necessarily the stochastic functions F̃ (x, z). We also
consider situations where the distribution P is either
unknown (e.g., when the objective is given as an im-
plicit stochastic model) or the domain of the random
variable Z is very large (e.g., when the objective is de-
fined in terms of an empirical risk) which makes the
cost of computing the expectation very high. In these
regimes, stochastic optimization methods, which oper-
ate on computationally cheap estimates of gradients,
arise as natural solutions. In fact, very recently, it was
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shown in [Hassani et al., 2017] that stochastic gradient
methods achieve a (1/2) approximation guarantee to
Problem (1). The authors also showed that current
versions of the conditional gradient method (a.k.a.,
Frank-Wolfe), such as continuous greedy [Vondrák,
2008] or its close variant [Bian et al.], can perform ar-
bitrarily poorly in stochastic continuous submodular
maximization settings.

Our contributions. We provide the first tight
(1 � 1/e) approximation guarantee for Problem (1)
when the continuous function F is monotone, smooth,
DR-submodular, and the constraint set C is a
bounded convex body. To this end, we develop a
novel conditional gradient method, called Stochastic

Continuous Greedy (SCG), that produces a solution
with an objective value larger than ((1�1/e)OPT�✏)
after O

�
1/✏3

�
iterations while only having access to

unbiased estimates of the gradients (here OPT de-
notes the optimal value of Problem (1)). SCG is also
memory e�cient in the following sense: in contrast
to previously proposed conditional gradient methods
in stochastic convex [Hazan and Luo, 2016] and non-
convex [Reddi et al., 2016] settings, SCG does not re-
quire using a minibatch in each step. Instead it simply
averages over the stochastic estimates of the previous
gradients.

Connection to Discrete Problems. Even though
submodularity has been mainly studied in discrete do-
mains [Fujishige, 2005], many e�cient methods for op-
timizing such submodular set functions rely on con-
tinuous relaxations either through a multi-linear ex-
tension [Vondrák, 2008] (for maximization) or Lovas
extension [Lovász, 1983] (for minimization). In fact,
Problem (1) has a discrete counterpart, recently con-
sidered in [Hassani et al., 2017, Karimi et al., 2017]:

max
S2I

f(S)
.
= max

S2I
E
z⇠P

[f̃(S, z)], (2)

where the functions f̃ : 2V ⇥Z ! R
+

are stochastic, S
is the optimization set variable defined over a ground
set V , z 2 Z is the realization of a random variable Z
drawn from the distribution P , and I is a general ma-
troid constraint. Since P is unknown, problem (2) can-
not be directly solved using the current state-of-the-art
techniques. Instead, Hassani et al. [2017] showed that
by lifting the problem to the continuous domain (via
multi-linear relaxation) and using stochastic gradient
methods on a continuous relaxation to reach a solution
that is within a factor (1/2) of the optimum. Contem-
porarily, [Karimi et al., 2017] used a concave relax-
ation technique to provide a (1 � 1/e) approximation
for the class of submodular coverage functions. Our
work also closes the gap for maximizing the stochastic
submodular set maximization, namely, Problem (2),
by providing the first tight (1 � 1/e) approximation

guarantee for general monotone submodular set func-
tions subject to a matroid constraint.

Notation. Lowercase boldface v denotes a vector
and uppercase boldface A a matrix. We use kvk to
denote the Euclidean norm of vector v. The i-th ele-
ment of the vector v is written as v

i

and the element
on the i-th row and j-th column of the matrix A is
denoted by A

i,j

.

2 Related Work

Maximizing a deterministic submodular set function
has been extensively studied. The celebrated result of
Nemhauser et al. [1978] shows that a greedy algorithm
achieves a (1 � 1/e) approximation guarantee for a
monotone function subject to a cardinality constraint.
It is also known that this result is tight under reason-
able complexity-theoretic assumptions [Feige, 1998].
Recently, variants of the greedy algorithm have been
proposed to extend the above result to non-monotone
and more general constraints [Feige et al., 2011, Buch-
binder et al., 2015, 2014, Feldman et al., 2017]. While
discrete greedy algorithms are fast, they usually do not
provide the tightest guarantees for many classes of fea-
sibility constraints. This is why continuous relaxations
of submodular functions, e.g., the multilinear exten-
sion, have gained a lot of interest [Vondrák, 2008, Cali-
nescu et al., 2011, Chekuri et al., 2014, Feldman et al.,
2011, Gharan and Vondrák, 2011, Sviridenko et al.,
2015]. In particular, it is known that the continuous
greedy algorithm achieves a (1 � 1/e) approximation
guarantee for monotone submodular functions under a
general matroid constraint [Calinescu et al., 2011]. An
improved ((1 � e�c)/c)-approximation guarantee can
be obtained if f has curvature c [Vondrák, 2010].

Continuous submodularity naturally arises in many
learning applications such as robust budget allocation
[Staib and Jegelka, 2017, Soma et al., 2014], online
resource allocation [Eghbali and Fazel, 2016], learn-
ing assignments [Golovin et al., 2014], as well as Ad-
words for e-commerce and advertising [Devanur and
Jain, 2012, Mehta et al., 2007]. Maximizing a detem-
inistic continuous submodular function dates back to
the work of Wolsey [1982]. More recently, Chekuri
et al. [2015] proposed a multiplicative weight update
algorithm that achieves (1 � 1/e � ✏) approximation
guarantee after Õ(n/✏2) oracle calls to gradients of a
monotone smooth submodular function F (i.e., twice
di↵erentiable DR-submodular) subject to a polytope
constraint. A similar approximation factor can be
obtained after O(n/✏) oracle calls to gradients of F
for monotone DR-submodular functions subject to a
down-closed convex body using the continuous greedy
method [Bian et al.]. However, such results require ex-
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act computation of the gradients rF which is not fea-
sible in Problem (1). An alternative approach is then
to modify the current algorithms by replacing gradi-
ents rF (x

t

) by their stochastic estimates rF̃ (x
t

, z
t

);
however, this modification may lead to arbitrarily poor
solutions as demonstrated in [Hassani et al., 2017].
Another alternative is to estimate the gradient by av-
eraging over a (large) mini-batch of samples at each
iteration. While this approach can potentially re-
duce the noise variance, it increases the computa-
tional complexity of each iteration and is not favor-
able. The work by Hassani et al. [2017] is perhaps
the first attempt to solve Problem (1) only by exe-
cuting stochastic estimates of gradients (without us-
ing a large batch). They showed that the stochastic
gradient ascent method achieves a (1/2 � ✏) approxi-
mation guarantee after O(1/✏2) iterations. Although
this work opens the door for maximizing stochastic
CSFs using computationally cheap stochastic gradi-
ents, it fails to achieve the optimal (1 � 1/e) approx-
imation. To close the gap, we propose in this paper
Stochastic Continuous Greedy which outputs a so-
lution with function value at least ((1� 1/e)OPT� ✏)
after O(1/✏3) iterations. Notably, our result only re-
quires the expected function F to be monotone and
DR-submodular and the stochastic functions F̃ need
not be monotone nor DR-submodular. Moreover, in
contrast to the result in [Bian et al.], which holds only
for down-closed convex constraints, our result holds
for any convex constraints.

Our result also has important implications for Prob-
lem (2); that is, maximizing a stochastic discrete
submodular function subject to a matroid constraint.
Since the proposed SCG method works in stochastic
settings, we can relax the discrete objective function
f in Problem (2) to a continuous function F through
the multi-linear extension (note that expectation is a
linear operator). Then we can maximize F within a
(1 � 1/e � ✏) approximation to the optimum value by
using only O(1/✏3) oracle calls to the stochastic gra-
dients of F . Finally, a proper rounding scheme (such
as the contention resolution method [Chekuri et al.,
2014]) results in a feasible set whose value is a (1�1/e)
approximation to the optimum set in expectation.

The focus of our paper is on the maximization of
stochastic submodular functions. However, there are
also very interesting results for minimization of such
functions [Staib and Jegelka, 2017, Ene et al., 2017,
Chakrabarty et al., 2017, iye].

3 Continuous Submodularity

We begin by recalling the definition of a submodular
set function: A function f : 2V ! R

+

, defined on the

ground set V , is called submodular if for all subsets
A,B ✓ V , we have

f(A) + f(B) � f(A \ B) + f(A [ B).

The notion of submodularity goes beyond the discrete
domain [Wolsey, 1982, Vondrák, 2007, Bach, 2015].
Consider a continuous function F : X ! R

+

where
the set X is of the form X =

Q
n

i=1

X
i

and each X
i

is a compact subset of R
+

. We call the continuous
function F submodular if for all x,y 2 X we have

F (x) + F (y) � F (x _ y) + F (x ^ y), (3)

where x _ y := max(x,y) (component-wise) and
x ^ y := min(x,y) (component-wise). In this paper,
our focus is on di↵erentiable continuous submodular
functions with two additional properties: monotonic-
ity and diminishing returns. Formally, a submodular
function F is monotone (on the set X ) if

x  y =) F (x)  F (y), (4)

for all x,y 2 X . Note that x  y in (4) means that
x
i

 y
i

for all i = 1, . . . , n. Furthermore, a di↵eren-
tiable submodular function F is called DR-submodular
(i.e., shows diminishing returns) if the gradients are
antitone, namely, for all x,y 2 X we have

x  y =) rF (x) � rF (y). (5)

When the function F is twice di↵erentiable, submodu-
larity implies that all cross-second-derivatives are non-
positive [Bach, 2015], i.e.,

for all i 6= j, for all x 2 X ,
@2F (x)

@x
i

@x
j

 0, (6)

and DR-submodularity implies that all second-
derivatives are non-positive [Bian et al.], i.e.,

for all i, j, for all x 2 X ,
@2F (x)

@x
i

@x
j

 0. (7)

4 Stochastic Continuous Greedy

In this section, we introduce our main algorithm,
Stochastic Continuous Greedy (SCG), which is a
stochastic variant of the continuous greedy method to
solve Problem (1). We only assume that the expected
objective function F is monotone and DR-submodular
and the stochastic functions F̃ (x, z) may not be mono-
tone nor submodular. Since the objective function F
is monotone and DR-submodular, continuous greedy
algorithm [Bian et al., Calinescu et al., 2011] can be
used in principle to solve Problem (1). Note that
each update of continuous greedy requires computing
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Algorithm 1 Stochastic Continuous Greedy

(SCG)

Require: Stepsizes ⇢
t

> 0. Initialize d
0

= x
0

= 0
1: for t = 1, 2, . . . , T do
2: Compute d

t

= (1 � ⇢
t

)d
t�1

+ ⇢
t

rF̃ (x
t

, z
t

);
3: Compute v

t

= argmax
v2C{hd

t

,vi};
4: Update the variable x

t+1

= x
t

+ 1

T

v
t

;
5: end for

the gradient of F , i.e., rF (x) := E[rF̃ (x, z)]. How-
ever, if we only have access to the (computationally
cheap) stochastic gradients rF̃ (x, z), then the contin-
uous greedy method will not be directly usable [Has-
sani et al., 2017]. This limitation is due to the non-
vanishing variance of gradient approximations. To re-
solve this issue, we introduce stochastic version of the
continuous greedy algorithm which reduces the noise of
gradient approximations via a common averaging tech-
nique in stochastic optimization [Ruszczyński, 1980,
2008, Yang et al., 2016, Mokhtari et al., 2017].

Let t 2 N be a discrete time index and ⇢
t

a given
stepsize which approaches zero as t approaches infinity.
Our proposed estimated gradient d

t

is defined by the
following recursion

d
t

= (1 � ⇢
t

)d
t�1

+ ⇢
t

rF̃ (x
t

, z
t

), (8)

where the initial vector is defined as d
0

= 0. It can
be shown that the averaging technique in (8) reduces
the noise of gradient approximation as time increases.
More formally, the expected noise of gradient estima-
tion E

⇥kd
t

� rF (x
t

)k2⇤ approaches zero asymptoti-
cally (Lemma 2). This property implies that the gra-
dient estimate d

t

is a better candidate for approxi-
mating the gradient rF (x

t

) comparing to the the un-
biased gradient estimate rF̃ (x

t

, z
t

) that su↵ers from
a high variance approximation. We therefore define
the ascent direction v

t

of SCG as follows

v
t

= argmax
v2C

{hd
t

,vi}, (9)

which is a linear objective maximization over the con-
vex set C. Indeed, if instead of the gradient estimate
d
t

we use the exact gradient rF (x
t

) for the updates
in (9), the continuous greedy update will be recovered.
Here, as in continuous greedy, the initial decision vec-
tor is the null vector, x

0

= 0. Further, the stepsize for
updating the iterates is equal to 1/T , and the variable
x
t

is updated as

x
t+1

= x
t

+
1

T
v
t

. (10)

The stepsize 1/T and the initialization x
0

= 0 en-
sure that after T iterations the variable x

T

ends up

in the convex set C. We should highlight that the
convex body C may not be down-closed or contain 0.
Nonetheless, the solution x

T

returned by SCG will be
a feasible point in C. The steps of the proposed SCG
method are outlined in Algorithm 1.

5 Convergence Analysis

In this section, we study the convergence properties
of SCG for solving Problem (1). To do so, we first
assume that the following conditions hold.

Assumption 1. The Euclidean norm of the elements
in the constraint set Care uniformly bounded, i.e., for
all x 2 C we can write

kxk  D. (11)

Assumption 2. The function F is DR-submodular
and monotone. Further, its gradients are L-Lipschitz
continuous over the set X , i.e., for all x,y 2 X

krF (x) � rF (y)k  Lkx � yk. (12)

Assumption 3. The variance of the unbiased stochas-
tic gradients rF̃ (x, z) is bounded above by �2, i.e., for
any vector x 2 X we can write

E
h
krF̃ (x, z) � rF (x)k2

i
 �2, (13)

where the expectation is with respect to the randomness
of z ⇠ P .

Due to the initialization step of SCG (starting from 0)
we need a bound on the furthest feasible solution from
0 that we can end up with; and such a bound is guar-
anteed by Assumption 1. The condition in Assump-
tion 2 ensures that the objective function F is smooth.
Note again that rF̃ (x, z) may or may not be Lipschitz
continuous. Finally, the required condition in Assump-
tion 3 guarantees that the variance of stochastic gradi-
ents rF̃ (x, z) is bounded by a finite constant �2 < 1
which is customary in stochastic optimization.

To study the convergence of SCG, we first derive an
upper bound for the expected error of gradient approx-
imation E[krF (x

t

) � d
t

k2] in the following lemma.

Lemma 1. Consider Stochastic Continuous

Greedy (SCG) outlined in Algorithm 1. If Assump-
tions 1-3 are satisfied, then the sequence of expected
squared gradient errors E

⇥krF (x
t

) � d
t

k2⇤ for the
iterates generated by SCG satisfies

E
⇥krF (x

t

) � d
t

k2⇤


⇣
1 � ⇢

t

2

⌘
E
⇥krF (x

t�1

) � d
t�1

k2⇤+ ⇢2
t

�2

+
L2D2

T 2

+
2L2D2

⇢
t

T 2

. (14)
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Proof. See Section 9.1. ⌅

The result in Lemma 1 showcases that the ex-
pected squared error of gradient approximation
E
⇥krF (x

t

) � d
t

k2⇤ decreases at each iteration by the
factor (1 � ⇢

t

/2) if the remaining terms on the right
hand side of (14) are negligible relative to the term
(1 � ⇢

t

/2)E[krF (x
t�1

) � d
t�1

k2]. This condition can
be satisfied, if the parameters {⇢

t

} are chosen prop-
erly. We formalize this claim in the following lemma
and show that the expected error E[krF (x

t

) � d
t

k2]
converges to zero at a sublinear rate of O(t�2/3).

Lemma 2. Consider Stochastic Continuous

Greedy (SCG) outlined in Algorithm 1. If Assump-
tions 1-3 are satisfied and ⇢

t

= 4

(t+8)

2/3 , then for

t = 0, . . . , T we have

E
⇥krF (x

t

) � d
t

k2⇤  Q

(t+ 9)2/3
, (15)

where Q := max{krF (x
0

)�d
0

k292/3, 16�2+3L2D2}.

Proof. See Section 9.2. ⌅

Let us now use the result in Lemma 2 to show that
the sequence of iterates generated by SCG reaches a
(1 � 1/e) approximation for Problem (1).

Theorem 1. Consider Stochastic Continuous

Greedy (SCG) outlined in Algorithm 1. If Assump-
tions 1-3 are satisfied and ⇢

t

= 4

(t+8)

2/3 , then the ex-

pected objective function value for the iterates gener-
ated by SCG satisfies the inequality

E [F (x
T

)] � (1 � 1/e)OPT � 2DQ1/2

T 1/3

� LD2

2T
, (16)

where OPT = max
x2C F (x).

Proof. Let x⇤ be the global maximizer within the con-
straint set C. Based on the smoothness of the function
F with constant L we can write

F (x
t+1

)

� F (x
t

) + hrF (x
t

),x
t+1

� x
t

i � L

2
||x

t+1

� x
t

||2

= F (x
t

) +
1

T
hrF (x

t

),v
t

i � L

2T 2

||v
t

||2, (17)

where the equality follows from the update in (10).
Since v

t

is in the set C, it follows from Assumption 1
that the norm kv

t

k2 is bounded above by D2. Apply

this substitution and add and subtract the inner prod-
uct hd

t

,v
t

i to the right hand side of (17) to obtain

F (x
t+1

)

� F (x
t

) +
1

T
hv

t

,d
t

i + 1

T
hv

t

,rF (x
t

) � d
t

i � LD2

2T 2

� F (x
t

) +
1

T
hx⇤,d

t

i + 1

T
hv

t

,rF (x
t

) � d
t

i � LD2

2T 2

.

(18)

Note that the second inequality in (18) holds
since based on (9) we can write hx⇤,d

t

i 
max

v2X {hv,d
t

i} = hv
t

,d
t

i. Now add and subtract
the inner product hx⇤,rF (x

t

)i/T to the RHS of (18)
to get

F (x
t+1

) � F (x
t

) +
1

T
hx⇤,rF (x

t

)i

+
1

T
hv

t

� x⇤,rF (x
t

) � d
t

i � LD2

2T 2

. (19)

We further have hx⇤,rF (x
t

)i � F (x⇤) � F (x
t

); this
follows from monotonicity of F as well as concav-
ity of F along positive directions; see, e.g., [Ca-
linescu et al., 2011]. Moreover, by Young’s in-
equality we can show that the inner product hv

t

�
x⇤,rF (x

t

) � d
t

i is lower bounded by �(�
t

/2)||v
t

�
x⇤||2 � (1/2�

t

)||rF (x
t

) � d
t

||2 for any �
t

> 0. By
applying these substitutions into (19) we obtain

F (x
t+1

) � F (x
t

) +
1

T
(F (x⇤) � F (x

t

)) � LD2

2T 2

� 1

2T

✓
�
t

||v
t

� x⇤||2 + ||rF (x
t

) � d
t

||2
�
t

◆
. (20)

Replace ||v
t

�x⇤||2 by its upper bound 4D2 and com-
pute the expected value of (20) to write

E [F (x
t+1

)] � E [F (x
t

)] +
1

T
E [F (x⇤) � F (x

t

))]

� 1

2T

"
4�

t

D2 +
E
⇥||rF (x

t

) � d
t

||2⇤

�
t

#
� LD2

2T 2

. (21)

Substitute E
⇥||rF (x

t

) � d
t

||2⇤ by its upper bound

Q/((t+ 9)2/3) according to the result in (15). Fur-
ther, set �

t

= (Q1/2)/(2D(t + 9)1/3) and regroup the
resulted expression to obtain

E [F (x⇤) � F (x
t+1

)] 
✓
1 � 1

T

◆
E [F (x⇤) � F (x

t

)]

+
2DQ1/2

(t+ 9)1/3T
+

LD2

2T 2

. (22)

By applying the inequality in (22) recursively for t =
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0, . . . , T � 1 we obtain

E [F (x⇤) � F (x
T

)] 
✓
1 � 1

T

◆
T

(F (x⇤) � F (x
0

))

+
T�1X

t=0

2DQ1/2

(t+ 9)1/3T
+

T�1X

t=0

LD2

2T 2

. (23)

Simplifying the terms on the right hand side (23) leads
to the expression

E [F (x⇤) � F (x
T

)]

 1

e
(F (x⇤) � F (x

0

)) +
2DQ1/2

T 1/3

+
LD2

2T
. (24)

Here, we use the fact that F (x
0

) � 0, and hence the
expression in (24) can be simplified to

E [F (x
T

)] � (1 � 1/e)F (x⇤) � 2DQ1/2

T 1/3

� LD2

2T
, (25)

and the claim in (16) follows. ⌅

The result in Theorem 1 shows that the sequence of
iterates generated by SCG, which only has access to
a noisy unbiased estimate of the gradient at each it-
eration, is able to achieve the optimal approximation
bound (1 � 1/e), while the error term vanishes at a
sublinear rate of O(T�1/3).

6 Discrete Submodular Maximization

According to the results in Section 5, the SCG method
achieves in expectation a (1�1/e)-optimal solution for
Problem (1). The focus of this section is on extending
this result into the discrete domain and showing that
SCG can be applied for maximizing a stochastic sub-
modular set function f , namely Problem (2), through
the multilinear extension of the function f . To be more
precise, in lieu of solving the problem in (2) one can
solve the continuous optimization problem

max
x2C

F (x), (26)

where F is the multilinear extension of the function f
defined as

F (x) =
X

S⇢V

f(S)
Y

i2S

x
i

Y

j /2S

(1 � x
j

), (27)

and the convex set C = conv{1
I

: I 2 I} is the matroid
polytope [Calinescu et al., 2011]. Note that in (27), x

i

denotes the i-th element of the vector x.

Indeed, the continuous greedy algorithm is able to
solve the program in (26); however, each iteration of
the method is computationally costly due to gradi-
ent rF (x) evaluations. Instead, Badanidiyuru and

Vondrák [2014] and Chekuri et al. [2015] suggested
approximating the gradient using a su�cient number
of samples from f . This mechanism still requires ac-
cess to the set function f multiple times at each itera-
tion, and hence is not feasible for solving Problem (2).
The idea is then to use a stochastic (unbiased) esti-
mate for the gradient rF . In Appendix 9.3, we pro-
vide a method to compute an unbiased estimate of the
gradient using n samples from f̃(S

i

, z), where z ⇠ P
and S

i

’s, i = 1, · · · , n, are carefully chosen sets. In-
deed, the stochastic gradient ascent method proposed
in [Hassani et al., 2017] can be used to solve the mul-
tilinear extension problem in (26) using unbiased esti-
mates of the gradient at each iteration. However, the
stochastic gradient ascent method fails to achieve the
optimal (1�1/e) approximation. Further, the work in
[Karimi et al., 2017] achieves a (1�1/e) approximation
solution only when each f̃(·, z) is a coverage function.
Here, we show that SCG achieves the first (1 � 1/e)
tight approximation guarantee for the discrete stochas-
tic submodular Problem (2). More precisely, we show
that SCG finds a solution for (26), with an expected
function value that is at least (1 � 1/e)OPT � ✏, in
O(1/✏3) iterations. To do so, we first show in the fol-
lowing lemma that the di↵erence between any coordi-
nates of gradients of two consecutive iterates generated
by SCG, i.e., r

j

F (x
t+1

)�r
j

F (x
t

) for j 2 {1, . . . , n},
is bounded by kx

t+1

�x
t

k multiplied by a factor which
is independent of the problem dimension n.

Lemma 3. Consider Stochastic Continuous

Greedy (SCG) outlined in Algorithm 1 with iterates
x
t

, and recall the definition of the multilinear exten-
sion function F in (27). If we define r as the rank of
the matroid I and m

f

, max
i2{1,··· ,n} f(i), then

|r
j

F (x
t+1

) � r
j

F (x
t

)|  m
f

p
rkx

t+1

� x
t

k, (28)

holds for j = 1, . . . , n.

Proof. See Section 9.4. ⌅

The result in Lemma 3 states that in an ascent direc-
tion of SCG, the gradient is m

f

p
r-Lipschitz continu-

ous. Here, m
f

is the maximum marginal value of the
function f and r is the rank for the matroid. Using
the result of Lemma 3 and a coordinate-wise analysis,
the bounds in Theorem 1 can be improved and speci-
fied for the case of multilinear extension maximization
problem as we show in the following theorem.

Theorem 2. Consider Stochastic Continuous

Greedy (SCG) outlined in Algorithm 1. Recall the def-
inition of the multilinear extension function F in (27)
and the definitions of r and m

f

in Lemma 3. Further,
set the averaging parameter as ⇢

t

= 4/(t+8)2/3. If As-
sumptions 1 and 3 hold, then the iterate x

T

generated
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by SCG satisfies the inequality

E [F (x
T

)] � (1�1/e)OPT � 2DK

T 1/3

� m
f

p
rD2

2T
, (29)

where K := max{krF (x
0

)�d
0

k91/3, 4�+p
3rm

f

D}.

Proof. The proof is similar to the proof of Theorem 1.
The main di↵erence is to write the analysis coordinate-
wise and replace L by m

f

p
r, as shown in Lemma 3.

For more details, check Section 9.5 in the supplemen-
tary material. ⌅

The result in Theorem 2 indicates that the sequence of
iterates generated by SCG achieves a (1� 1/e)OPT�
✏ approximation guarantee. Note that the constants
on the right hand side of (29) are independent of n,
except K which depends on �. It can be shown that,
in the worst case, the variance � depends on the size
of the ground set n and the variance of the stochastic
functions f̃(·, z).
Let us now explain how the variance of the stochastic
gradients of F relates to the variance of the marginal
values of f . Consider a generic submodular set func-
tion g and its multilinear extension G. It can be shown

r
j

G(x) = G(x;x
j

= 1) � G(x;x
j

= 0). (30)

Hence, from submodularity we have r
j

G(x)  g({j}).
Using this simple fact we can deduce that

E
h
krF̃ (x, z) � rF (x)k2

i
 nmax

j2[n]

E[f̃({j}, z)2].
(31)

Therefore, the constat � can be upper bounded by

�  p
nmax

j2[n]

E[f̃({j}, z)2]1/2. (32)

As a result, we have the following guarantee for SCG
in the case of multilinear functions.

Corollary 1. Consider Stochastic Continuous

Greedy (SCG) outlined in Algorithm 1. Suppose the
conditions in Theorem 2 are satisfied. Then, the se-
quence of iterates generated by SCG achieves a (1 �
1/e)OPT � ✏ solution after O(n3/2/✏3) iterations.

Proof. According to the result in Theorem 2, SCG
reaches a (1� 1/e)OPT �O(n1/2/T 1/3) solution after
T iterations. Therefore, to achieve a ((1�1/e)OPT�✏)
approximation, O(n3/2/✏3) iterations are required. ⌅

7 Numerical Experiments

In our experiments, we consider a movie recommenda-
tion application [Stan et al., 2017] consisting ofN users
and n movies. Each user i has a user-specific utility

function f(·, i) for evaluating sets of movies. The goal
is to find a set of k movies such that in expectation
over users’ preferences it provides the highest utility,
i.e., max|S|k

f(S), where f(S)
.
= E

i⇠P

[f(S, i)]. This
is an instance of the (discrete) stochastic submodular
maximization problem defined in (2). For simplicity,
we assume f has the form of an empirical objective
function, i.e. f(S) = 1

N

P
N

i=1

f(S, i). In other words,
the distribution P is assumed to be uniform on the
integers between 1 and N . The continuous counter-
part of this problem is to consider the the multilin-
ear extension F (·, i) of any function f(·, i) and solve
the problem in the continuous domain as follows. Let
F (x) = E

i⇠D[F (x, i)] for x 2 [0, 1]n and define the
constraint set C = {x 2 [0, 1]N :

P
n

i=1

x
i

 k}. The
discrete and continuous optimization formulations lead
to the same optimal value [Calinescu et al., 2011]:

max
S:|S|k

f(S) = max
x2C

F (x). (33)

Therefore, by running SCG we can find a solution in
the continuous domain that is at least 1 � 1/e ap-
proximation to the optimal value. By rounding that
fractional solution (for instance via randomized Pipage
rounding [Calinescu et al., 2011]) we obtain a set whose
utility is at least 1 � 1/e of the optimum solution set
of size k. We note that randomized Pipage rounding
does not need access to the value of f . We also remark
that each iteration of SCG can be done very e�ciently
in O(n) time (the argmax step reduces to finding the
largest k elements of a vector of length n). Therefore,
such approach easily scales to big data scenarios where
the size of the data set N (e.g. number of users) or the
number of items n (e.g. number of movies) are large.

In our experiments, we use the following baselines:

(i) Stochastic Continuous Greedy (SCG) with ⇢
t

=
1

2

t�2/3 and mini-batch size B. The details for
computing an unbiased estimator for the gradient
rF are given in Section 9.3 in the supplementary
material.

(ii) Stochastic Gradient Ascent (SGA) of [Hassani
et al., 2017]: with stepsize µ

t

= c/
p
t and mini-

batch size B.

(iii) Frank-Wolfe (FW) variant of [Bian et al., Cali-
nescu et al., 2011]: with parameter T for the total
number of iterations and batch size B (we further
let ↵ = 1, � = 0, see Algorithm 1 in [Bian et al.] or
the continuous greedy method of [Calinescu et al.,
2011] for more details).

(iv) Batch-mode Greedy (Greedy): by running the
vanilla greedy algorithm (in the discrete domain)
in the following way. At each round of the al-
gorithm (for selecting a new element), B random
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Figure 1: Comparison of the performances of SG, Greedy, FW, and SCG in a movie recommendation application.
Fig. 1a illustrates the performance of the algorithms in terms of the facility-location objective value w.r.t. the
cardinality constraint size k after T = 2000 iterations. Fig. 1b compares the considered methods in terms of
runtime (for a fixed k = 40) by illustrating the facility location objective function value vs. the number of
(simple) function evaluations. Fig. 1c demonstrates the concave-over-modular objective function value vs. the
size of the cardinality constraint k after running the algorithms for T = 2000 iterations.

users are picked and the function f is estimated
by the average over of the B selected users.

To run the experiments we use the MovieLens data
set. It consists of 1 million ratings (from 1 to 5) by
N = 6041 users for n = 4000 movies. Let r

i,j

denote
the rating of user i for movie j (if such a rating does
not exist we assign r

i,j

to 0). In our experiments,
we consider two well motivated objective functions.
The first one is called “facility location ” where the
valuation function by user i is defined as f(S, i) =
max

j2S

r
i,j

. In words, the way user i evaluates a set S
is by picking the highest rated movie in S. Thus, the
objective function is

f
fac

(S) =
1

N

NX

i=1

max
j2S

r
i,j

. (34)

In our second experiment, we consider a di↵erent user-
specific valuation function which is a concave func-
tion composed with a modular function, i.e., f(S, i) =
(
P

j2S

r
i,j

)1/2. Again, by considering the uniform dis-
tribution over the set of users, we obtain

f
con

(S) =
1

N

NX

i=1

⇣X

j2S

r
i,j

⌘
1/2

. (35)

Figure 1 depicts the performance of di↵erent algo-
rithms for the two proposed objective functions. As
Figures 1a and 1c show, the FW algorithm needs a
higher mini-batch size to be comparable to SCG. Note
that a smaller batch size leads to less computational ef-
fort (under the same value for B, T , the computational
complexity of FW, SGA, SCG is almost the same).
Figures 1b shows the performance of the algorithms

with respect to the number of times the (simple) func-
tions (i.e., f(·, i)’s) are evaluated. Note that the total
number of (simple) function evaluations for SGA and
SGA is nBT , where T is the number of iterations.
Also, for Greedy the total number of evaluations is
nkB. This further shows that SCG has a better com-
putational complexity requirement w.r.t. SGA as well
as the Greedy algorithm (in the discrete domain).

8 Conclusion

In this paper, we provided the first tight approxi-
mation guarantee for maximizing a stochastic mono-
tone DR-submodular function subject to a general
convex body constraint. We developed Stochastic

Continuous Greedy that achieves a [(1�1/e)OPT�✏]
guarantee (in expectation) with O(1/✏3) stochastic
gradient computations. We also demonstrated that
our continuous algorithm can be used to provide the
first (1� 1/e) tight approximation guarantee for max-
imizing a monotone but stochastic submodular set
function subject to a general matroid constraint. We
believe that our results provide an important step to-
wards unifying discrete and continuous submodular
optimization in stochastic settings.
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S. J. Reddi, S. Sra, B. Póczos, and A. Smola. Stochas-
tic Frank-Wolfe methods for nonconvex optimization.
In 54th Annual Allerton Conference on Communication,
Control, and Computing, pages 1244–1251. IEEE, 2016.
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M. Sviridenko, J. Vondrák, and J. Ward. Optimal approx-
imation for submodular and supermodular optimization
with bounded curvature. In Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1134–1148, 2015.

J. Vondrák. Submodularity in combinatorial optimization.
2007.

J. Vondrák. Optimal approximation for the submodular
welfare problem in the value oracle model. In Proceed-
ings of the 40th Annual ACM Symposium on Theory of
Computing, pages 67–74. ACM, 2008.
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