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Abstract

Informative priors are often difficult, if not
impossible, to elicit for modern large-scale
Bayesian models. Yet, often, some prior
knowledge is known, and this information is in-
corporated via engineering tricks or methods
less principled than a Bayesian prior. How-
ever, employing these tricks is difficult to rec-
oncile with principled probabilistic inference.
For instance, in the case of data set augmen-
tation, the posterior is conditioned on arti-
ficial data and not on what is actually ob-
served. In this paper, we address the problem
of how to specify an informative prior when
the problem of interest is known to exhibit
invariance properties. The proposed method
is akin to posterior variational inference: we
choose a parametric family and optimize to
find the member of the family that makes the
model robust to a given transformation. We
demonstrate the method’s utility for dropout
and rotation transformations, showing that
the use of these priors results in performance
competitive to that of non-Bayesian methods.
Furthermore, our approach does not depend
on the data being labeled and thus can be
used in semi-supervised settings.

1 INTRODUCTION

Bayesian inference is characterized by its ability to
naturally incorporate existing information. This in-
formation is encoded by the prior distribution, and
its specification is widely regarded as “the most im-
portant step” in the Bayesian approach given that it
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can “drastically alter the subsequent inference” [30)].
Unfortunately, for modern large-scale machine learning
models, setting the prior based on existing knowledge
is often hard, if not impossible, due to limitations in
human intuition. Modelers can have difficulty reason-
ing about how parameters behave in high dimensions
and translating abstract concepts into formal probabil-
ity distributions. As an alternative, the modeler must
resort to specifying a diffuse, noninformative prior with
the hope that the data can overwhelm any pathology
the arbitrary prior may introduce.

Nonetheless, the modeler often knows some prior infor-
mation that is essential for obtaining good performance,
and it is common to incorporate this knowledge via
‘engineering tricks’ or methods less principled than
Bayesian inference. For example, achieving state-of-
the-art performance on image classification frequently
requires data set augmentation [I5]: creating new train-
ing instances by flipping, scaling, rotating, etc. the
original images [2]. Another example is using feature
dropout on bag-of-words representations to simulate
the effect of varying a document’s length [35]. Training
a model under these stochastic augmentation or per-
turbation strategies is in effect inducing a prior, one
that encourages robustness with respect to these known
invariances.

While methods for including prior information via
means other than the likelihood or prior are undoubt-
edly highly effective in practice, they are difficult to
reconcile with principled probabilistic inference. One
problem is that the resulting Bayesian posteriors are
conditioned on an artificial training set, not on what
is truly observed. Another issue is that, as is the case
when training with dropout, it is unclear how to inter-
pret the regularization mechanism: are the masking
variables model parameters and if so should we be
computing their posterior? These and related ques-
tions motivate recent work on formulating dropout as
(approximate) Bayesian inference [10] 1T}, 20].

In this paper, we propose a method for transferring
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a modeler’s knowledge about invariances into a cor-
responding Bayesian prior. Doing so allows data set
augmentation, dropout, and other effective regulariza-
tion strategies to be incorporated into the model as
a proper Bayesian prior. Once this is done, Bayesian
inference can proceed as usual without complication of
or the need to re-interpret the inference strategy (what-
ever it may be: Markov Chain Monte Carlo, variational
inference, maximum a posteriori estimation, etc.).

Our proposed approach is to formulate a variational
problem [5]: given a parameteric family, find the mem-
ber of the family that, when used as a prior, makes the
model as near to invariant as possible. To do this, we
first derive a lower bound that quantifies the model’s in-
variance under some specific perturbation process. We
then maximize this bound with respect to the parame-
ters of the parameteric family. An important detail to
note is that we are not performing empirical Bayesian
inference. Rather, we learn the prior from the data
model, similarly to how objective priors are specified
[17, [ 4, 26]. For supervised models, this means that
only the features are needed, making our method well
suited for semi-supervised settings, as the experiments
demonstrate.

2 PRELIMINARIES

Before describing the proposed methods, we begin by
defining perturbation processes and invariant statisti-
cal models. We use the following notation throughout
the paper. As our primary focus is on supervised
learning, we denote input features as x; € R? and
labels (indicating class membership or a real-valued re-
sponse) as y;, where ¢ indexes the observed data. Define
the data model (likelihood function) to be p(y;|x;, 0)
where 8 € © are the model parameters. Thus, in the
Bayesian setting, p(0) denotes the prior and p(8|y, X)
the posterior. We write all expectations, entropies,
and divergences in their continuous form (i.e. with
integrals), but sums should be used when the support
is discrete.

2.1 Perturbation Processes

Many of the recent successes in supervised machine
learning have come from data augmentation and cor-
ruption processes that perturb observations and param-
eters. These processes have the effect of regularizing
the classifier to which they are applied by implicitly
encoding user knowledge. We define them formally
and generally as follows. Call a generative process that
takes in a random variable z € Z and samples a ran-
dom transformation 2 € Z(z) a perturbation process
(PP):

z ~q(z;2,() (1)

where 2z denotes the random variable pre-
transformation, 2z denotes the same variable
post-transformation, and ( are the parameters
of q. Below we describe dropout and rotation as a PP

acting on the features (i.e. z = x).

Dropout. Dropout corruption—where elements of
the data or model parameters are set to zero at random—
has been observed to consistently improve the held-out
performance of logistic regression [36l 25] and deep
neural networks [33]. In this paper we focus on feature
dropout, which can be written as a PP as follows:

x=box where b~ Bernoulli(l-¢) (2)
where ® denotes an element-wise product and ¢ € (0,1)
the dropout probability. The random variable b acts,
simply, as a element-wise mask on the feature vector
x.

Rotation. As mentioned in the Introduction, many
image data sets exhibit rotations, and classifier perfor-
mance can be improved by augmenting the data set
with rotated version of the true observations. As a PP,
2D rotation can be written as

e[ el

where ¢ ~ Uniform(¢ € [0,27]). Usually padding or
some other standardization is used to keep the image
size consistent.

In this paper, we focus on dropout and rotation transfor-
mations, illustrating the proposed technique for point-
wise and affine transformations, respectively. Apply-
ing the techniques to other operations in these classes
would proceed in a similar manner. The techniques
we propose can also be applied to just about any func-
tional transform as long as the parameterized prior is
sufficiently expressive.

2.2 Invariant Models

Invariant statistical models have been well studied,
both in theory [9] and in practice [8] [3I]. The classic
formulation is group theoretic, as in Eaton (1989) [9].
We use a similar definition except that we require in-
variance with respect to all members of a PP’s support,
which may not form a proper algebraic group.

Definition 2.1. Let X € X(x) be a realization from a
perturbation process q(-;¢) acting on x € X, and let
Py be a family of models indexed by their parameters.
A statistical model p € Py, is q¢-invariant if

V% € X(x).

p(ylx) = pyx)
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Intuitively, this invariance property can be thought
of as robustness: a dropout-invariant classifier, for
instance, should produce the same output distribution
no matter how the input features are corrupted. In
the case of the usual Bernoulli(0.5) noise, however, it
is unlikely a classifier could be meaningfully dropout-
invariant since the probability that all features will be
masked is non-zero.

3 LEARNING INVARIANT PRIORS

Having introduced PPs and defined model invariance,
we next detail the proposed methodology. We begin
by proposing a quantity representing a ‘nearness’ to
invariance and then discuss how to minimize such a
quantity with respect to the model’s prior.

3.1 Quantifying Approximate Invariance

Recall that our goal is to learn a prior that prefers
invariance, and thus we need some continuous quantity
that represents how near to invariant a model is. Def-
inition 2.1 is not appropriate as is, because it would
require the equality be checked for all x € X (x). In-
stead, we consider the expectation of the model under
g, which is also invariant:

Corollary 3.0.1. If p € P is ge-invariant, then
Eq [p(y|X)] is q¢-invariant:

p(yx) q(x;x) dx

X

= p(ylx) /X 4% %) d% = p(y|x).

Buelpyi) = |

This fact is useful for quantifying nearness to invari-
ance because it weights p(y|X) over X, meaning that
a lack of invariance for a particular X can be excused
or neglected if g(X;x) is near zero. Thus, quanti-
fying the degree of invariance of a model reduces
to computing some divergence between p(y|x) and
Eq [p(y%x)]. We use the Kullback-Leibler divergence—
KLD[ p(y[x) || Eq¢ [p(y|X)] |—which is zero if and only
if p(y|x) = Eg [p(y|X)] almost everywhere and is pos-
itive otherwise. Since Ey. [p(y|X)] will be intractable
for most models of interest, we use the following upper
bound on the divergence so that we can obtain an un-
biased Monte Carlo approximation of the expectation,
obtaining an upper bound via Jensen’s inequality:

KLD[ p(y[x) || Eq [p(y|x)] ]

= IEp(yIX) [logp(y|x)] - IE1a(y\X) [1Og qu [p(y‘f()]]
< Epypxllog p(y[x)] — Epy)x) Eqc [log p(y[%)]
= Eq KLD[ p(y[x) || p(y%) ].

3.2 Exposing the Prior

We now discuss how to introduce Bayesian think-
ing into our formulations of invariance. Consider
the aforementioned models as marginal likelihoods:
p(ylx) = [o p(y|x,0)p(0)d0 = E, ) [p(y|x,6)]. Look-
ing ahead, our ultimate goal is to optimize Equation [4]
with respect to p(8). Ideally we would do this in its cur-
rent marginalized form, but computing the marginal
likelihood is notoriously difficult, even for relatively
simple models. Hence, we again upper bound the di-
vergence, which in turn makes the quantity amenable
to an unbiased Monte Carlo approximation:

KLD[ p(y[x) || p(y[x) ]
= KLD[ E, ) [p(yx,0)] || Epe)[p(y[%,0)] ] (5)
< E,@KLD[ p(y[x,0) || p(y[%,0) ].

The bound follows directly from the fact that KLLD
is a convex function over the domain of probability
distributions. With this upper bound, we expose p(6)
and make it accessible for optimization.

3.3 Optimization Objective

Let A denote the parameters of the prior px(0). We
propose optimizing A by the following objective, which
is formed by combining Equations [ and [5] with an
entropy term:

L*(X;x)
= H[6] — KLD[ p(y[x) || Eq[p(y[%)] ]
> Ha[6] — Eq KLD[ p(y[x) || p(y|%) ]
> Ha[0] — E,, (0)Eq KLD[ p(y|x. 0) || p(y[%,0) ]
= J(A;x)
(6)

where Hx[0] = — [, pa(0) logpa(0) df. We assume
the objective is optimized under the empirical distri-
bution of feature observations, i.e. E,s)[J(A;x)] =
+ 3, T (A;x;). Maximizing J w.r.t. A means that we
are finding the distribution that minimizes the expected
divergence between the unperturbed and perturbed
model—or in other words, the invariance—under the
prior. We emphasize that this objective does not de-
pend on the observed y’s, only the model output distri-
bution over y. Because of this fact we can use unlabeled
feature observations during learning of the prior.

The inclusion of the entropy term in Equation [0] is
motivated by the principle of maximum entropy, i.e.,
that the appropriate distribution for representing prior
beliefs is one that obeys known constraints and has
maximum entropy otherwise [16], B4]. This behavior is
precisely what Equation [6] encourages; the first term
encourages maximum entropy and the second imposes
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the invariance constraints. In practice, the entropy
term encourages the prior to avoid spurious solutions.
For example, a neural network could become dropout-
invariant by learning as the prior a delta function at
zero. We will show this phenomenon analytically for
linear regression in Section

Equation [6] is amenable to a wide range of parametric
forms for the prior. For example, it supports mixture
densities px(0) = Zszl kDA, (0) where py, is the
kth component with parameters A; and m is the
corresponding mixture weight. When using a mixture
for the prior, the divergence component of the objec-
tive can be written as E,, (9)Eq ¢)KLD[psl|ps(¢)] =
>k TkEpy (0)Eqc (x:¢)KLDpe (ys[xi, 0)|Ipe (yil%i, 0)]
where the obJectlve is evaluated under each component
distribution and a weighted average taken according
to the mixture weights.

4 ANALYTICAL SOLUTION FOR
LINEAR REGRESSION

To build intuition and to further examine the proposed
objective (Equation @, we next show an analytical
solution for linear regression under dropout noise and
its connection to the popular g-prior [12]. We use
the unbiased form of dropout, meaning E[X] = x and
Var[x] = C 2 [25], and we set the prior to be a
multivariate normal px(0) = N(p,,diag(Xy)) with
diagonal covariance matrix. Define the data model
to be a standard linear model with Gaussian error:
y=x10 + ¢y, eg ~ N(0,02). The divergence portion
of the objective simplifies to:

E,, 0)Eq KLD[ p(y|x, 0) || p(y|x, ) ]

- chH)?]

(xTo
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If the proposed objective consisted of only the diver-
gence (invariance) term, minimizing the equation above
would clearly lead to both ) and 3y being set to zero.
In other words, the optimal prior would be px(0) = dy,
the delta function placed at zero.

The solution becomes much more interesting when the
entropy term is included. The full objective can be
written as:

(xTp13)? + X7 Srx
203(1-C)

Since the entropy term does not include the prior’s
mean, the optimal solution for this parameter is still

JLr(A;x) = logdet(Xy) — (8)

@y = 0. Differentiating Jir with respect to oy, the
optimal covariance matrix is o(1 — ¢)diag(x”x)~!.
Putting these together we obtain the final solution for
the prior: p}(0) = N(0,03(1 — ¢)diag(xTx)™1).

Interestingly, the solution is equivalent to a diag-
onalized version of the well-known g-prior [12]—
N(0, g(xTx)~1)—with g set by the dropout level. The
g-prior has the nice property that the posterior mean is
a linear combination of the prior mean and maximum
likelihood estimator: @05 = 1+g L Oy + (1 — ﬁ)u)\.
Thus, in the case of the prior learned by our proposed
method, we see the dropout rate plays the role of mul-
tiplicative shrinkage of the ML solution.

5 BLACK-BOX LEARNING FOR
INTRACTABLE MODELS

For most problems of interest we will not be able to an-
alytically solve the objective’s required integrals, as in
the previous section. Hence, in this section we describe
how to make learning derivation-free and ‘black-box’
using recently developed techniques from posterior vari-
ational inference |28 [I9]. Specifically, we use Monte
Carlo approximations combined with differentiable non-
centered parameterizations [I9] to make learning fully
gradient-based no matter how complicated the likeli-
hood function is. We also discuss how to use what we
call an ‘implicit prior’—a highly expressive functional
sampler.

Monte Carlo Expectations. For most modern,
large-scale models, computing the expectations w.r.t.
0 and ¢ will not be feasible analytically. Thus we turn
to a nested Monte Carlo (MC) approximation:

E,, 6)Eq. KLD[p(y(x, 8)|[p(y|%, 0)]

| S ) o 9)
~ i > > KLD[p(ylx, 0.)[Ip(y[%m. 65)]

such that M samples are drawn from the perturbation
process X, ~ q(X;¢) and S samples are drawn from
the prior we wish to learn 0 ~ px(0).

Differentiable Sampling. Using MC approxima-
tions makes computing derivatives w.r.t. the prior’s
parameters X difficult, as they need to be computed
through the samples 0,:

5 S M A o
E3N Z KLD[P(ZJ|X,93)||P(’(J|5<m793)] =
s=1m=1
S M aé (10)
Z Z KLD[ (Y%, 0.)[[p(y[Xm, 05)] 8)\3
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One way we can ensure %9)\3 is computable is by sam-
pling 8 by way of a differentiable non-centered param-
eterization [19] (DNCP), which has the general form
6 = g(X\, &) where €~ p(e). € is an auxiliary variable
drawn from some fixed distribution and g is a differen-
tiable function. A well-known example of a DNCP is
the Gaussian’s location-scale form p + o ® € where €

is drawn from a standard Normal distribution.

Implicit Priors. Notice that when using MC ap-
proximations of the integrals (Equation E[), the only
term in Equation [f] that requires the prior’s density
be evaluated is the entropy term. Thus, using a non-
parametric estimate for H[@] [3] can completely remove
the need to evaluate the prior. Doing so allows us to
use what we call an implicit prior: a prior from which
we can draw samples but which we cannot evaluate
as a density function, i.e. 6 = f(X, €) where € is a
sample drawn from some fixed distributions and f(-) is
some differentiable, sufficiently flexible function such
as a neural network. Treating the prior as a simulator
in this way is similar to the ideas behind Generative
Adversarial Networks [13] and Variational Programs
[29]. The benefit of using an implicit prior is that we
can have an extremely flexible distribution over @; the
downside is that we will eventually need to evaluate
the implicit prior’s density—possibly having to turn to
nonparametric density estimation.

6 RELATED WORK

The closest work to what we propose in this paper
is prior work on the definition and specification of
objective priors [I7, 4, 26]. We say that not because
our method learns noninformative priors—quite the
opposite—but because the method we propose here
learns a prior based on the data model, just as objective
priors do. For conditional models, the feature variables
must be included to define the model, and thus, the
prior is dependent on the observed data. This fact
links our method (and objective priors) to empirical
Bayesian inference [6]. However, a significant difference
between our method and empirical Bayesian methods
is that the variable being modeled (the classification
label or regression response) is not considered in our
prior’s specification, as it typically is for most empirical
Bayesian methods [0].

As for the specifics of the proposed optimization objec-
tive, its form is motivated by the principle of maximum
entropy, which has a long history dating back to sta-
tistical physics [16, [14]. There has been some work
on learning invariant maximum entropy distributions
[27] and approximations to such distributions [23], but
this previous work is tailored to specific settings (soil

analysis and pairwise moment mean parameters, re-
spectively). In contrast, our approach requires only
samples from the perturbation and the distribution to
be estimated (the prior).

More closely related is the work of Bachman et al. on
pseudo-ensemble agreement regularization [I]. They
propose a regularization penalty of the form: R(0) =
Eynp, Eenp VIfo(), fo(z;€)], where the first expecta-
tion is with respect to the empirical distribution of
the features, the second expectation is with respect
to a noise process (such as dropout corruption [33]),
and V[, -] is some way to measure the discrepancy be-
tween the unperturbed and pertrubed model fy. The
divergence term we propose in Equation [f]is a special
case of Bachman et al.’s penalty: Equation [f] can be
obtained by setting V|-, -] to be KLD (as Bachman et
al. do in some experiments) and adding an expectation
over the model parameters. The key difference between
Bachman et al.’s work and what we propose here is that
they use their regularization term within a penalized
likelihood framework. There is no concept of learning
a Bayesian prior nor one of transferring the stochastic
regularization into a probability distribution.

Lastly, we note that this work has been inspired by
recent efforts to analyze dropout both from the perspec-
tives of penalized likelihood [T}, [36] [37] and approximate
Bayesian inference [20, [I0, [11]. In the former category,
Bachman et al. [I], Wager et al. [36], and Wang & Man-
ning [37] carry out analyses of linear regression that are
similar to that in Section [d] However, their analyses
are motivated by seeking a closed-form regularization
penalty that mimics the effect of dropout. There are
no notions of Bayesian priors, and our development
of the connection to the g-prior is new. In the latter
category, Kingma et al. [20] and Gal & Ghahramani
[10], [IT] show that dropout can be interpreted as ap-
proximate Bayesian inference under certain variational
posteriors. Our work has similar motivations—that is,
to link dropout and Bayesian methodology—but we
do so via the Bayesian prior. We formulate the prior
that corresponds to dropout thus allowing inference
to proceed with no constraints and by way of either
MCMC or variational methods.

7 EXPERIMENTS

In this section we carry out empirical analyses of the
proposed methods, focusing on dropout and rotation
transformations. First, we discuss some qualitative
properties of the learned priors by visualizing them
as weight filters. Second, we quantitatively analyze
the degree of invariance of several distributions with
respect to dropout and rotation perturbations. And
lastly, we perform classification tasks to demonstrate
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Figure 1: Weight Visualization. Above we show filter
visualizations for 100 weight matrices sampled from
two learned implicit priors, one invariant to dropout
and one invariant to rotation. Both were trained on
MNIST. The dropout invariant prior can be seen to
down-weight features found around the center of the
image, which is where the active features usually are
found. The rotation invariant prior learns spiral feature
transformations roughly similar to some of the features
learned by Toroidal Subgroup Analysis (see Figure 3

in [7]).

that using the proposed invariant priors results in per-
formance on par with non-Bayesian methods. The
multi-class classification experiments use neural net-
work likelihoods of the form y; ~ Multinoulli(p =
vo(x;)) where vg(x;) = softmax(h;60r41), the soft-
max output of one or more neural network layers
with the form h;; = ReLU(h;0;1), where hy = x;.
The binary classification (sentiment analysis) experi-
ment uses a logistic regression likelihood of the form
y; ~ Bernoulli(p = logistic(x;0)).

Regarding hyperparameter selection, Adam [I8] was
used for all experiments with a learning rate chosen
from {.001,.0005,.0001,.00005} via a validation set
(other parameters kept at Tensorflow defaults). For the
Monte Carlo approximations used to learn the invariant
priors, 50 samples were used for both the parameters
and perturbation process. The best priors were selected
based on those which obtained the highest value of
Equation [6] upon convergence. All posteriors were
obtained via Stochastic Gradient Variational Bayes
[21], and the posterior mean was used to calculate test
performance in all cases.

Qualitative Analysis. We begin by performing vi-
sual inspection of the invariant priors. We do this by
learning an implicit prior (one-hidden-layer neural net-
work, 1000 hidden units) for the two weight matrices
of a one-hidden-layer neural network with 500 hidden
units. We trained the prior on the MNIST data set
under dropout and rotation perturbations (separately).

Samples from the prior on the first layer weights are
shown in Figure Subfigure (a) shows filter sam-
ples from the prior learned under dropout noise. The
weights near the center of the image are conspicuously
lower (i.e. darker) than those on the edges. This is ex-
pected, as placing low-weights on frequently active fea-
tures reduces the effect of dropping out those features.
Wager et al. come to a similar conclusion: dropout
penalizes the weights of rare features less harshly than
it does those of common features [36]. Subfigure (b)
shows the filter samples learned under rotation pertur-
bations. We see they exhibit spiral transformations,
which is expected since being rotation invariant would
require that features similar distances from the image
center receive near equal weight.

Quantitative Analysis. Next we quantitatively an-
alyze the invariance properties of the priors. We quan-
tify invariance based on the the proposed objective’s
KLD term, i.e. E,, 9)Eq KLD[ p(y|x,0) || p(y|x,0) ].
We calculate this quantity by drawing a sample from
the prior, drawing a sample perturbation, and comput-
ing the KLD between the unperturbed and perturbed
models with the sampled parameters and perturbation.
We repeat the process 500 times and average the runs
to obtain the final result. Again, the model we used
for the experiment was a one-hidden-layer neural net-
work (500 hidden units) and the data set was MNIST
undergoing dropout and rotation perturbations.

We trained three forms of invariant priors—a factor-
ized Gaussian (green), a three-component mixture of
factorized Gaussians (blue), and an implicit prior (red)
parameterized by a one-hidden-layer neural network
(1000 hidden units)—and compare them to a standard
Normal prior (pink) and a factorized Gaussian pos-
terior (black) in Figure The Gaussian posterior
was obtained by training the network on MNIST with
stochastic perturbations sampled for each forward pass.
We see that, in the case of dropout (Subfigure a), all
learned priors are markedly more robust to dropout
noise than the two Gaussian baselines. The Gaussian
mixture and implicit priors remain invariant at even
a high noise level (> 0.8), showing only a slight up-
ward trend. In the case of rotation (Subfigure b), the
factorized Gaussian posterior and invariant prior have
nearly identical invariance, but again the implicit and
mixture invariant priors are notably robust across all
perturbation levels.

Fully-Supervised Classification. Next we report
results on (fully) supervised classification experiments
on the rotated MNIST data set [22], which consists of
12,000 training images and 50,000 test images. 2,000
images were used as a validation set and recombined
into the training set to obtain the final test perfor-
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Figure 2: Invariance vs Perturbation Magnitude. The plots above shows the robustness of several distributions
(y-axis shows E,, (6)Eq KLD[ p(y|x, 0) || p(y|%,0) ]) to dropout and rotation perturbations of increasing magnitude
(x-axis). We compare the proposed invariant priors—three approximations: implicit (red), factorized Gaussian
(green), Gaussian mixture (blue)—to a standard Normal prior (pink) and the posterior (black) after training
on perturbed data. We see the learned invariant priors exhibit invariance across all perturbation magnitudes,
especially when using implicit or mixture approximations.

Prior Distribution Test Error (%)
SVM [22] 10.38
Bayesian Neural Net N(0,.0025) 10.08
Neural Net w/ Dropout 8.85
CNN [§] 5.03
Bayesian Neural Net Invariant Prior (Factorized Gaussian) 9.41
Bayesian Neural Net Invariant Prior (Mixture of Three Gaussians) 8.29
Rotation-Invariant RBM [32] 4.20
Rotation-Aware ConvRBM [31] 3.98
Group Equivariant CNN [§] 2.28
Harmonic Networks [3§] 1.69

Table 1: Rotated MNIST. Test classification error on a data set of rotated hand-written digits [22]. The first four
models (from the top) have no notion of rotation, the next two have rotation invariant priors (ours), and the last
two have rotations explicitly parameterized in the model and represent the current state-of-the-art.

Prior Distribution Test Error (%)
Logistic Regression w/ L2 14.22*
Bayesian Logistic Regression N(0, .25) 14.19*
Transductive SVM 13.98
Logistic Regression w/ MC Dropout 12.83*
Logistic Regression w/ CF Dropout 11.90
Bayesian Logistic Regression Invariant Prior (Factorized Gaussian) 11.93
Bayesian Logistic Regression Invariant Prior (Mixture of Three Gaussians) 11.81

Table 2: IMDB Sentiment Analysis. Test classification error on the (large) IMDB sentiment analysis data set [24].
x indicates a method was trained without the unlabeled examples. MC'": Monte Carlo, CF': Closed-Form.
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mance, following [8| 22]. We trained three Bayesian
neural networks (NNs)—one with a standard Normal
prior (variance chosen by validation set), one with a
factorized Gaussian rotation invariant prior, and one
with a mixture of Gaussians (K = 3) rotation invari-
ant prior—and a NN with Bernoulli(.5) dropout. All
networks had two hidden layers with 2,750 units each.

Test set classification error is shown in Table[Il The
table is divided into three sections: the first has no
concept of rotation, the second has a rotation invariant
prior, and the third has rotation-invariance built into
the data model. We see that the invariant priors allow
the Bayesian NNs to perform comparably to (factor-
tized Gaussian) or better than (mixture of Gaussians)
all of the models with no built-in concept of rotation ex-
cept the Convolutional NN. However, the performance
gap between the models with invariant priors and mod-
els with rotations explicitly parameterized (bottom
four) is still considerable. We conjecture that the gap
is due to the prior learning coarse rotational invariance.
To elaborate, the filters preferred by the prior (Figure 1
(b)) do not exhibit the fine, digit-specific rotated edge
detectors learned by the parameterized models, as seen
in [3I]. The ability to learn these refined rotations
likely boosts performance considerably. Moreover, we
note that these models have been extensively hand-
crafted to be rotationally invariant while our method
is general and requires no additional effort from the
modeler.

Semi-Supervised Classification. Lastly we report
results on semi-supervised classification experiments
on the large IMDB data set [24], which consists of
50,000 unlabeled examples and 25,000 for training and
testing each. 5,000 of the training examples were used
as a validation set. We trained several Bayesian and
non-Bayesian logistic regression models, including one
with the closed-form (CF) dropout penalty proposed
by Wager et al. [SGE We used the unlabeled data to
train dropout invariant priors as well as the CF dropout
penalty.

Test set classification error is shown in Table 2l The
Bayesian logistic regression model with a Gaussian
mixture invariant prior achieves the lowest error rate,
even besting the closed-form dropout penalty, which
has the ability to learn the regularization and data
model jointly. We conjecture that invariant priors were
able to achieve better comparative performance in this
setting because dropout is a simpler perturbation.

!The error is higher than what is reported by Wager
et al. [36] due to using unigrams and a smaller vocabulary
(20,000 words).

8 CONCLUSIONS

We have proposed an optimization objective (Equation
@ for learning priors that represent known invariance
constraints. When the objective has an analytical solu-
tion (Section, we see that the resulting distribution is
sensible and that both the objective’s components are
necessary. Experimentally, we demonstrated use of the
prior results in better performance than when the in-
variance is not accounted for. Only models extensively
hand-crafted for the invariance setting outperformed
use of our proposed prior. This work, we believe, rep-
resents an important first step in allowing subjective
priors to be specified for modern, large-scale Bayesian
models.
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