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Abstract

We develop a general approach for solving con-
strained classification problems, where the loss
and constraints are defined in terms of a general
function of the confusion matrix. We are able to
handle complex, non-linear loss functions such
as the F-measure, G-mean or H-mean, and con-
straints ranging from budget limits, to constraints
for fairness, to bounds on complex evaluation
metrics. Our approach builds on the framework
of Narasimhan et al. (2015) for unconstrained
classification with complex losses, and reduces
the constrained learning problem to a sequence
of cost-sensitive learning tasks. We provide al-
gorithms for two broad families of problems,
involving convex and fractional-convex losses,
subject to convex constraints. Our algorithms are
statistically consistent, generalize an existing ap-
proach for fair classification, and readily apply to
multiclass problems. Experiments on a variety of
tasks demonstrate the efficacy of our methods.

1 INTRODUCTION

In numerous prediction tasks, one is required to learn a
classifier that optimizes a loss function, subject to a set of
constraints. The following are some constrained classifica-
tion problems that arise in the real-world:

e Precision/budget constraints: In applications such as
information retrieval, one often wishes to maximize the
recall of a classifier subject to its precision being above
a certain limit. In applications where there is a mon-
etary cost associated with a positive prediction, one
might want to optimize classification performance sub-
ject to a budget on the fraction of positive predictions.

e Fairness constraints: In applications involving social
data (e.g. college admissions), it is important that the
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learned classifier is fair across different social groups.
This results in a set of constraints on the classifier, such
as, the proportion of positive predictions being similar
for all subgroups, or the proportion of true/false posi-
tives being similar for all subgroups [20, [12].

e Quantification constraints: The problem of quantifi-
cation aims at estimating the prevalance/frequency of a
class in a population [8]]. This arises, for e.g. in senti-
ment analysis, where in addition to predicting the sen-
timent for individual articles, one often wishes to esti-
mate the overall prevalence of a sentiment in the pop-
ulation. This results in a classification problem with
two competing objectives: (a) the classification perfor-
mance of the model and (b) the quantification error of
the model, usually measured by the KL-divergence (or
f1 error) between the estimated class distribution and
the true class distribution [7,[10]]. One way to formulate
this problem is to optimize the classification loss sub-
ject to the quantification error being within a threshold.

e Churn constraints: In applications where a classifier
needs to be improved over time, it is desirable that the
new classifier does not differ from an existing classifier
on more than a certain proportion of examples, i.e. the
churn rate of the classifier is within a desired limit [[L1].

In the above examples, the performance measure that one
seeks to optimize need not be a simple error metric that can
be expressed as a sum or expectation of point-wise losses.
For example in many retrieval tasks, it is desirable to opti-
mize the F'-measure [23,19]; in classification tasks with
class imbalance, a classifier is often evaluated using met-
rics such as the G-mean or the H-mean measure that em-
phasize equitable performance on all classes [30} 32l 22]].
These evaluation measures are complex, non-linear func-
tions of the confusion matrix of the classifier. Similarly, the
constraints imposed on the classifier may also have a com-
plex structure. E.g. in the quantification example, the KL-
divergence is a non-linear function of the confusion matrix,
and does not decompose into a sum of point-wise terms.

Our focus is on a general classification problem with a loss
L(h) that is possibly a non-linear function of the confu-
sion matrix of classifier h, and with constraints g (h) <
€x, Yk = 1,... K, where each g, is a function of the con-
fusion matrix of h.
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Previous approaches for constrained classification handle
a simpler version of the above problem where the loss
and constraint functions are linear in the confusion matrix
[L1} [1]. Much of these works have focused on learning
classifiers under constraints for fairness [[12, 20]. A com-
mon approach here is to either introduce a regularization
term that penalizes violations in constraints, or to formulate
an unconstrained weighted version of the problem, and re-
place the non-continuous portions of the objective and con-
straints with continuous surrogate functions [[15} 3} 33] [4].
These approaches are tailored to specific fairness metrics,
and do not generalize to problems where the loss or con-
straint functions are complex and non-decomposable.

In a recent work that departs from the surro-
gate/regularization route, Agarwal et al. [[1]] point out that
for two popular fairness metrics, the fairness-constrained
classification problem can be reduced to cost-sensitive
classification tasks. However, their approach does not
apply to general, non-linear losses and constraints.

In this paper, we develop a generic approach for con-
strained classification that enjoys several advantages.
Firstly, our approach applies to a broad family of com-
plex loss functions and constraints used widely in prac-
tice. Secondly, our approach does not use convex relax-
ations, and instead proceeds by formulating a sequence of
cost-sensitive learning problems. Thirdly, the algorithms
developed come with provable consistency guarantees. Fi-
nally, our approach readily applies to multiclass classifi-
cation settings, with running time polynomial in the num-
ber of classes. This is in contrast to common learning al-
gorithms for unconstrained complex losses (e.g. SVMPerf
[14]), which are intractable for large multiclass problems.

Our approach builds on the framework of Narasimhan et
al. (2015) for unconstrained problems with complex loss
functions [27]. The key idea is to formulate the problem
of constrained classification as an optimization problem
over the space of confusion matrices, and to employ op-
timization solvers that operate through a sequence of linear
minimization steps. The individual steps reduce to cost-
sensitive classification problems, with the final classifier
being a randomized classifier that combines multiple plug-
in classifiers (e.g. cost-weighted logistic regression).

We provide algorithms for two families of constrained clas-
sification problems that cover all the examples seen above:
(a) loss functions that are convex functions of the confusion
matrix (e.g. G-mean or H-mean used in class-imbalanced
problems), under constraint functions that are convex in the
confusion matrix; and (b) loss functions that are fractional-
convex functions of the confusion matrix (e.g. F; measure
in text retrieval), under convex constraint functions.

The proposed algorithms are statistically consistent, i.e.
converge in the large sample limit to the optimal loss and to
zero constraint violation. As a byproduct of our results, we

provide consistent algorithms for classification under con-
straints for fairness. To the best of our knowledge, this is
the first such result in the fair classification literature.

Related Work. The last few years has seen much work
on algorithms and theory for complex loss functions.
These include the SVMPerf method [14], plug-in classi-
fiers [28 21], and online optimization methods for non-
decomposable losses [18} [17, 26, |29} [16]]. None of these
methods however apply to settings with constraints. Some
recent results in the fairness literature characterize the form
of the optimal classifier for different fairness metrics, but
again consider only linear losses [12} 6} 25]. The most gen-
eral work that we are aware of on constrained classification
is that of Goh et al. (2016) [11], who provide a surrogate-
style approach for optimizing linear losses with linear con-
straints. Their approach requires solving a non-convex op-
timization problem, and does not extend to complex losses.
The work closest to ours is [[1], who provide a cost-sensitive
reduction scheme for optimizing linear losses under two
fairness criteria: demographic parity and equal odds. Both
these criteria essentially reduce to linear constraints on the
confusion matrix. Our approach can be seen as a general-
ization of their scheme to non-linear losses and constraints,
while additionally enjoying consistency guarantees.

2 PRELIMINARIES

Notations: We denote [n] = {1,...,n}, the n-dimensional
probability simplex A, = {p € [0,1]"| >, p; = 1},
and the set of non-negative real numbers by R .

We consider a general multiclass classification problem
with an instance space X and output space ) = {1,...,n}.
Let D denote a probability distribution over the instances
and labels X x [n], and ny(z) = P(Y = y| X = z) de-
note the conditional class probability. Let 7, = P(Y = y)

We will work with randomized classifiers A : X—A,,
that map instances * € X to a distribution over labels
h(z) € A,. Let H be the space of all randomized clas-
sifiers. We measure the performance of a classifier w.r.t.
distribution D using a loss function L : H—R, that as-
sociates a non-negative value L(h; D) € R to each clas-
sifier h € H (with lower values indicating better perfor-
mance). We also require a classifier to satisfy a set of
K inequality constraint gx(h; D) < €, k € [K], where
each gr : H—R associates a real value to each classi-
fier and ¢, € R is a threshold. Given a finite sample
S = {(z1,v1), .-, (®m,Ym)} drawn iid. from D, our
goal is to solve the following optimization problem:

inf L(h;D) s.t.

it gx(h; D) < e, Yk € [K].

(OP1)
We assume that there exists a classifier A* that achieves
the optimal objective value in (OPI) and satisfies all the
constraints, and henceforth replace ‘inf’ with ‘min’.
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Table 1: Examples of complex loss functions.

Table 2: Examples of (convex) constraint functions.

For binary settings, the label space is {0, 1}.

Constraint »(C)
Loss P(C)
(Binary) Demographic maxae M] |(C01 +C%)
(Binary) Fy 1 — —2u .
2011+001+C'11;J Parlty -7 Za 1(001 + Cll)’
G-mean 1 - (H?:l %‘) (Binary) Equal Odds max,e[n] ’C’gl — M Z 1
, -1 f 1
H-mean 1_-n (Z:L . 57 ) ory € {0, }
i (Binary) Coverage Co1 + C11
Q-mean \/ 2lic1 1 - 7) Normalized Absolute Error m doic T = 2=y Cii
1 1= 2
Micro F} :L L Cri— ZI L Cit KLD Error Z?Zl m; log (ﬁ)
Min-max max; ey (1 - T) Churn rate > iz Ciy

We denote the confusion matrix for classifier h as CP[h] €
[0, 1", where each C[J[h] = P(Y = i,h(X) = j).
Here the probability is over both the draw of (X,Y") from
D and the randomness in h, with h(X) = j denot-
ing the event that h predicts j on X. We will be in-
terested in loss functions L and constraint functions g
that can be expressed as general functions of the confu-
sion matrix of the classifier, i.e. L(h; D) = ¢(CP[h]) and
g(h; D) = ¢r(CPI[h]) for some ¢ : [0,1]"*"—[0, R],
¢r = [0,1]"*"—[0,R], k€ {1,...,K}and R > 0.

Examples of loss functions of the above form include lin-
ear functions of the confusion matrix such as the classifica-
tion error ¢(C) = »,,; Cy;, and the cost-sensitive clas-
sification error ¢(C) =}, ; Wi;Cy; with costs Wi; €
R4,Vi,j € [n]. Our primary focus is on loss functions
that are complex non-linear functions of the confusion ma-
trix, examples of which are provided in Table [T} These
include convex functions of the confusion matrix such as
the G-mean, H-mean, and Q-mean losses popularly used
in class-imbalanced classification problems [22} |30} 32], as
well as, fractional-convex losses such as the F}-measure or
its multiclass variants popular in information retrieval [23]].
See [16] for more examples of losses of the above form.

The following are examples of constraints on a classifier:

Example 1 (Budget/coverage constraint). The simplest
constraint on a binary classifier is that the proportion of
positive predictions by the classifier Cyy + C11 is within a
budget e € (0,1).

Example 2 (Fairness constraints). Consider a scenario
where there is an additional protected attribute A € [M]
associated with each instance, and one needs to ensure that
the learned classifier is fair for all values of the protected
attribute. For example, in a credit risk assessment task, the
protected attribute could be the race of an individual; when
using a classifier to aid in college admission decisions, the
protected attribute could be the gender of the applicant.
Here D is a distribution over instances, labels, and values
of A. Let D, denote the distribution of (X,Y) conditioned
on A = aand C* € [0,1]™*" denote the confusion ma-

trix of a classifier w.r.t. D,. The following are two popular
notions of fairness for binary classification [20, 12|]:

Demographic parity: A classifier is fair if the probability of
positive prediction conditioned on the protected attribute A
is the same for all values of A. For a small ¢ € (0,1), a
relaxed version of this constraint requires that Ya € [M]:

(€8 + 1) — & T (Co + )| < eI

Equalized odds: A classifier is fair if the true/false positive
rate of the classifier conditioned on the protected attribute
A is the same for all values of A. A relaxed version of this
constraint requires that for each a € [M] and y € {0,1}:

C’a M a.| < e forasmalle € (0,1) [IJ.

M a=1 “y,1

Example 3 (Quantification constraints). One version of
the quantification problem seeks to learn a model that
optimizes a classification loss L subject to the KL-
divergence or absolute error between true class distri-
bution (m1,...,m,) and the predicted class distribution
(>, Ci, ..., >,; Cin) being within a limit € > 0.

Example 4 (Churn constraints). Suppose there is an exist-
ing, deployed classifier h/ : X —A,,, and we wish to learn a
new classifier h that optimizes a loss L subject to the churn
rate (the probability of disagreement with h') being within
a threshold € € (0,1), i.e. Px(h(X) # b (X)) < €. De-
noting C}; = Px(h(X) # I'(X)),Vi j, this constraint
can be eqmvalent written as y_, ,; Ci;

Before proceeding to algorithms for solving (OPI), we
define the empirical confusion matrix for a classifier
h on sample S as conf(h,S) € [0,1]"*", where
[conf(h,S)];; = &> Uye = i,h(zp) = j). We
define the regret of a learning algorithm that takes sample
S ~ D™ and outputs classifier h,,, as the difference be-
tween the loss of h,, and that of an optimal classifier A* to
(OPI): L(hy,) — L(h*). We say the algorithm is statisti-
cally consistent if it converges in the large sample limit to
the optimal loss and to zero constraint violation, i.e. for any
v > 0,as m—o0, Pgpm (L(hy) — L(h*) > v)—0and
Ps..pm (Qk(hm) — € > V)—)O,Vk’ € [K]
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3 ALGORITHMS

In this section, we describe a general framework for solving
by building on top of the ideas in Narasimhan et al.
(2015) [27]. We first define the set of all confusion matrices
that can be generated by some randomized classifier:

Cp = {CP[h]|h € H}.

The set Cp is convex as for any CP[hy],CP[hs] € Cp
and a € (0,1), aCP[h] + (1 — @)CP[hy] € Cp. This
confusion matrix is achieved by a classifier that predicts for
any x, hq (x) with probability « and ho () with probability
1 — a. The classification problem in can then be
viewed as a constrained optimization problem over Cp:

Zoin (C) st or(C) < e, Yk € [K]
If ¢ is linear, i.e. Y(C) = >, W;;Cy; for some W €
R™" and there are no constraints, the above problem
reduces to a simple cost-sensitive learning problem with
cost matrix . This can be solved, for example, using a
standard plug-in approach. Here we obtain an estimator
7 : X—A, for the conditional class probability 7 using an
algorithm like logistic regression, and construct the Bayes
optimal classifier for the cost matrix W from the estimated
class probabilities: h(z) = argmin; ¢, o7, 7 () Wi

(OP2)

When 1 is non-linear, we can consider applying an opti-
mization solver to that proceeds by optimizing lin-
ear approximations to 1, so that each subproblem can be
solved using a cost-sensitive learner. This is the approach
taken by [27] for unconstrained convex losses 1), where
they apply the Frank-Wolfe method [13]] to solve and
formulate a sequence of cost-sensitive learning tasks. They
also handle the case where 1) is an (unconstrained) ratio of
linear functions of C' using the bisection method [5]].

Below, we extend the work of [27] to optimize convex
and fractional-convex losses under constraint functions
¢1, ..., ¢ that are convex in C. The classifier learned is
a randomized combination of multiple plug-in classifiers
(e.g. cost-weighted logistic regression classifiers).

3.1 Convex Losses with Constraints

We start with the case where 1) is convex over Cp. Intro-
ducing Lagrange multipliers A = [\1,...,Ax] € RE for
the constraints, we formulate the Lagrangian for (OP2):

K
LICA) = 9(C) + > M (du(C) —ex) (1)
k=1
and the optimization problem in (OP2)) is equivalent to:

max min L(C,\), (OP3)
>0 CeCp

where notice that £ is convex over Cp and linear in A.

(OP3)) can be seen as a maximization of a concave objective
function FI(A) = mingec, £(C,\) in A. We can now ap-
ply a gradient ascent procedure to maximize F' over A. This

Algorithm 1 COCO: Algorithm for Convex losses with
Convex Constraints
1: Input: ¢, ¢1,...,¢x : [0,1]"*"—>R,
S = ((Ila yl)v KRR (gjmyym))
- Initialize: \° = 0%, 7y > 0
: Fort =1toT do
(Ct,ht) = FrankWolfe(y, ¢1,..., 05, \171,S)
X = Top (A7 + (0x(C) — ), Wk
: End For
: Output: Classifier h : X—A,, that for any x € X
outputs hf(z) with probability 4

Algorithm 2 Frank-Wolfe based algorithm of [27]
1: Input: ¢, ¢1,...,¢x : [0,1]"*"—[0, R], A € RY
S = ((xla yl)v R (xmaym))
Split S into Sy and Sy with sizes [Z2'] and | 2|
I'% = conf(H,S;) for some H® : X —A,,
Forr =1to () do X«
W= V) + SR Ve
H" = cost-sensitive(W,Ss)
I = (1 — Til)l—‘ril + %COHf(HT, Sl)
End For N N
Output: C = I'?, Classifier h : X —A,, that for z €

X outputs H" (x) with prob. -2- ]2, (1 - -2;)

R A A R o

would involve computing the supergradient of GG at a given
A, by performing the minimization over C' € Cp, and eval-
uating the gradient V,£(C, A) at the minimizer C. So all
we need is a way to solve the inner minimization problem.
Since this is an unconstrained convex minimization over
Cp, we can make use of the Frank-Wolfe based algorithm
proposed in [27] for unconstrained convex losses.

The overall algorithm, which we refer to as COCO, is
shown in Algorithm [T} The algorithm maintains iterates
AL AT € RE. In each iteration ¢, the algorithm in-
vokes the Frank-Wolfe method to find a confusion ma-
trix C* that (approximately) minimizes £(C,\!"!), and
a classifier ht whose (empirical) confusion matrix evalu-
ates to C*. This is followed by a gradient ascent update:
A= H[07B]K ()\t —|—7]tV)\£(6t,)\t_1)), where HA(-)
denotes the ¢5 projection onto set A, B is a parameter that
we will set later, and ¢ > 0 is the step-size. The final so-
lution after 7" iterations is given by C' = %Zthl ct. A
classifier that achieves this confusion matrix A is an equal-
weighted randomized combination of A, ..., AT .

For completeness, we also outline the inner Frank-Wolfe
(FW) method for a given A (see Algorithm . In each iter-
ation r, the FW method maintains an iterate I'", computes
the gradient W = Vo L£(T"~1, ), and minimizes a linear
approximation of £(C, A) at T~ mincecy, Y-, ; Wi Cij
(lines 5-6). This is equivalent to minimizing a cost-
sensitive loss with cost matrix W. The minimizing classi-
fier H" is used to compute the next iterate (line 7). The fi-
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Algorithm 3 FRACO: Algorithm for Fractional Convex
Losses with Convex Constraints

1: Input: ¢(C) = ff,((%)) where f, f' : [0,1]"*"—[0, R)
are f is convex and f’ is concave in C
S = ((331, yl)v R (xmaym))

. Initialize: h° : X —[n],a® =0,8° =R

: Fort=1to 7 do

,yt — (at—l + Bt_l)/2

(Ct, 1) + coco(f —4Lf! d1,..., bk, S)

If 1/}(6%) > ! then ol = !, Bt = Bt=1 pt = pt-1

elseat = at~1, Bt =4t bt =1

: End For -
: Output: h = h7 : X =A,

nal classifier is a randomized combination of H', ..., H®?.
Due to a technical requirement for our theoretical results
(see Section [), we use separate samples for the learning
step in line 6, and the evaluation steps in lines 3 and 7.

We perform cost-sensitive learning using the plug-
in approach mentioned previously, where we suitably
weight a class probability estimator 7) such as logistic re-
gression. Note that 7 needs to be learned only once and can
be re-used in each invocation of the cost-sensitive learner

It is worth mentioning that the COCO method is a gener-
alization of the fair classification technique of [[1] for lin-
ear losses and constraints. The authors similarly formu-
late a Lagrangian for the constrained classification problem
and observe that for any assignment of the Lagrange mul-
tipliers, the inner minimization can be solved using a cost-
sensitive learner. On the other hand, our approach handles
general convex losses and constraints by nesting a gradient
ascent procedure together with the Frank-Wolfe method,
and additionally comes with consistency guarantees.

3.2 Fractional-convex Losses with Constraints

The second family of constrained classification problems
that we consider involves fractional-convex losses ¢(C) =
J{,((%)) , where f is convex and f’ is concave over Cp. Exam-
ples include the F; measure loss and the micro F; measure
loss shown in Table[I] In this case, we prescribe a variant
of the Bisection method proposed in [27] for unconstrained
fractional-linear losses. This algorithm is based on the fol-
lowing simple observation: if C* is an optimal solution to
(OP2), then checking whether ¥)(C*) > ~ is equivalent to
checking if the inequality f(C) —~f’(C) > 0 holds for all
C € Cp that satisfy ¢ (C) < €k, Vk € [K]. Thus to solve
(OP2), it is enough to solve the following simpler optimiza-
tion problem for different values of v € [0, R], and pick the
largest «y for which the objective value is non-negative:

Juin f(C) =7f/(C) st ¢i(C) < e, Vk € [K]. (2)

Notice that this is a convex minimization problem over Cp
with convex constraint functions. One can therefore apply

the COCO algorithm described in the previous section to
perform this optimization. The overall method, referred to
as FRACO, is outlined in Algorithm[3] Rather than perform-
ing a linear search on ~, the algorithm performs a more effi-
cient binary search: at each iteration ¢, the algorithm main-
tains an upper bound 3% < R and a lower bound o > 0 on
1 (C*), uses the COCO method to check if (2) yields a non-
negative value for v* = (! + %) /2, if true raises the lower
bound to a! = ~*%, and if false, lowers the upper bound to
Bt = ~t. The algorithm outputs a classifier h” with loss
between T and 87, and which satisfies the constraints.

3.3 Extension to Fairness Constraints

In the special case of fairness constraints, there is a pro-
tected attribute A € [M] associated with each instance,
and a classifier h : X x [M]—A, maps a given in-
stance and its protected attribute (z,a) to h(z,a) €
A,. Recall that here D is a distribution over in-
stances, labels and the values of A, and we will be in-
terested in the conditional distributions D+, ..., Dy, and
the conditional class probabilities 7, (z,a) = P(Y =
y|X = 2, A = a),Vy € [n]. The loss function
takes the form L(h) = (CP1[n),...,CPM[h]) for
some ¢ : ([0,1]"*™)M [0, R], with constraint func-
tions gx(h) = ¢r(CP1[h],..., CPM[h]) for some ¢y, :
([0,1]*™M -0, R], Vk € [K]. We define the space of
confusion matrices Cp = {(CP[h],...,CPM[h])|h €
71} and the optimization problem in becomes:

. 1 M

(1. "OMeen V(e 0T

st. op(Ch,...,CM) < ¢, VEk € [K]

(OP4)

Given a sample S = {(z1,y1,01),-- -, (Tm, Ym, am)} of
instances, labels and protected attribute values, the COCO
and FRACO methods readily apply to this setting. We out-
line the variant of COCO for fairness constraints in Algo-
rithm 4] in the appendix and highlight the changes below.

Firstly, in the place of confusion matrix C' maintained in
each iteration, we will have a set of M confusion matri-
ces Ot .. .CM*t Secondly, the Frank-Wolfe solver will
maintain M iterates T'1", ... , T'™" and M cost-matrices
wl ... .wM ¢ R}*", one for each protected group.
Thirdly, the cost-sensitive learner in the algorithm
takes M cost matrices W', ..., W™ as input and seeks to
minimize the loss Ziu:l >2i; WiCF;. The plug-in clas-
sifier that optimizes this loss uses an estimator 7 : X X
[M]—A,, for the conditional class probabilities, and takes
the form: h(z,a) = argmin;e () > 0i(2, @)W

We close by noting that all our methods apply to a general
n-class problem, with run-time polynomial in n. In con-
trast, standard methods for complex losses such as SVM-
Perf [14] or plug-in methods [21] do not extend tractably to
multiclass problems as they need to perform a search over
a parameter space of size exponential in n.
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4 CONSISTENCY GUARANTEES

‘We now provide regret bound guarantees for the algorithms
developed in the previous section. We will assume (OPI)
is feasible and use h* to denote an optimal solution to the
problem. The proofs are provided in the appendix.

Convex Losses with Constraints. We first derive a regret
bound for the COCO algorithm in terms of the regret of the
inner Frank-Wolfe algorithm. Our result applies to settings
where strong duality holds for (OP3). Indeed, this is the
case for all the constraint functions in Table [2] (e.g. they
satisfy Slater’s conditions for strong duality [3]). Let \* €
RX be the optimal Lagrange multipliers for (OP3). We
also assume that ¥, ¢1,... ¢ : [0,1]"*"—[0, R] are G-
Lipschitz w.r.t. the £; norm.

Theorem 1 (Regret Bound for COCO). Forany ¢ € (0,1],
let the following hold wp. > 1 — 6 (over S ~ D™):
for each iteration t € [T, the Frank-Wolfe algorithm sat-
isfies L(Ct,\') < mincec, L(C,AY) + 6(8,m), and
|CP[RY] — Ctly < £(8,m), where 6,€ : (0,1] x N>R
Let parameter B be s.t. B > 2maxye[x) A, Let h
X— A, be the classifier obtained after T = Tm iterations,
for some T € N. Thenw.p. > 1 —§ (over S ~ D™):

L(R) < L(h*) + 0(6,m) + GE@,m) + 6(\%)

and Vk € [K],

_ 2 ~( 1
< = — .
() <t Z06m) + GeGo.m) + O )
The regret of the Frank-Wolfe algorithm can be further
bounded using a result from [27].

Theorem 2 (Regret Bound for Frank-Wolfe Algorithm
[270). Let v, ¢1,...,¢K : [0,1]"*"—=[0, R] be B-smooth
w.r.t. the {1 norm. Let 7] : X—A,, be the conditional class
probability model used to construct the plug-in classifier
Jor the cost-sensitive learner in the Frank-Wolfe algorithm.
For a given \ € [0, B]¥, let (C, h) be returned by the al-
gorithm after () = km iterations, for some k € N. Then
foranyé € (0,1], wp. > 1 —§ (over S ~ D™)

L(C,\) — min £(C,\)

CeCp

< G [J700 0] + 22 o )

A —/ n3

and |71~ Clh < 6 =),

where p = 4(1 + K B).

This theorem requires the loss and constraint functions to

be strongly smooth. If this is not true (e.g. with the G-mean
or H-mean), we can apply the Frank-Wolfe algorithm to a

suitable smooth approximation to the loss/constraint func-
tions and derive a similar guarantee; see [27] for detailsﬂ

The above bound depends on the quality of the class prob-
ability estimates 7) used by the plug-in classifier, as cap-
tured by the term Ex[||n(X) — n(X)||1] Combining
Theorems [I] and 2] we get that as sample size m— o0,
both €(d, m)—0 and £(8, m)—0. Suppose in addition, the
class probability estimation algorithm we use is such that
Ex[|n(X) — n(X)]1]—0 as m—oo0, i.e. the estimation
error goes to zero with increasing sample size Then when
m—00, COCO converges to the optimal loss and to zero
constraint violation, and is statistically consistent.

Recall that in the Frank-Wolfe algorithm, we use separate
samples for the cost-sensitive learning (line 6), and for es-
timating the confusion matrix of the learned classifier (line
7). This is a technical requirement for proving Theorem
that ensures that the samples used for the training and
evaluation steps within the algorithm are independent and
identically distributed[]

As another technical requirement, the projection parameter
B in the Frank-Wolfe algorithm needs to be set to a value
> 2maxyc(g] Ag- This is required to ensure convergence
of the outer gradient ascent solver. In our experiments, we
find it sufficient to set B to a large value.

Fractional-convex Losses with Constraints. We bound
the regret for the FRACO in terms of the regret for the
COCO algorithm, invoked in each iteration. Assume
£y f o1,..., ¢ are G-Lipschitz w.r.t. the 1 norm.

Theorem 3 (Regret Bound for FRACO). Let f'(C) >

b,VC € Cp,forb > 0. Let forany 6 € (0,1], w.p. > 1—3,
in each iteration t, COCO satisfies: f(C') —~'f'(Ct) <
mingee, f(C)=7'f(C) + 0(3,m), with each ¢(C*) <
e + 0'(8,m), and ||CP[h] — C*||; < &(6,m). Let h be
the classifier returned after T' = Tm iterations, for some
7 €N. Then V¥V € (0,1], wp. > 1 — 6§ (over S ~ D™)

L(h) < L(h™) + %9(5, m) + %5(6, m)+2""R

and gi(h) < e + 0'(6,m), Vk € [K].

One can verify that the conditions required in the above
result are satisfied by both the Fj-measure and the micro
F loss functions. Clearly, as long as the COCO routine
is statistically consistent, i.e. (8, m)—0, (5, m)—0 and
£(8, m)—0 as m— o0, so is the FRACO algorithm.

"The KLD error can be unbounded when Zj Cj; = 0 for any
i € [n]. For our theorems to hold, we can work with a smoothed
variant, e.g. Y. m; log (ﬁ) , for a small v > 0.

2For example, this estimation error can be high when the con-
ditional class probabilities are not well-calibrated.

3This includes algorithms that minimize a strictly proper com-
posite loss (e.g. logistic) over a sufficiently rich function class [31]

“In our experiments, to make the best use of the available data,
we use the same sample in both steps.
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Table 3: Datasets used in experiments.

Dataset #instances  # features # classes  p.attr
adult 32561 106 2 gender
compas 4020 20 2 race
crimes 1993 198 2 race
default 30000 24 2 gender
pageblocks 5473 10 5 -
abalone 4177 10 12 -
Dataset € COCO FW-unc LogReg
adult 0.25 | 0.23(0.244) | 0.18 (0.345) | 0.27 (0.196)
compas | 0.25 | 0.38 (0.242) | 0.31(0.385) | 0.67 (0.069)
crimes | 0.25 | 0.27 (0.250) | 0.16 (0.397) | 0.18 (0.331)
default | 0.25 | 0.40(0.242) | 0.34 (0.405) | 0.61 (0.075)

Table 4: Minimizing H-mean loss s.t. coverage < ¢. The
test H-mean loss is shown for each method and the propor-
tion of positive predictions is provided in parenthesis. A
constant classifier would receive a H-mean loss of 1.

Consistency under Fairness Constraints. The above
guarantees easily extend to constraints for fairness. Be-
low, we present a regret bound result for the COCO algo-
rithm with fairness constraints. Let h* : X x [M]—[n]
denote the optimal solution to (OP4), and A* € R denote
optimal Lagrange multipliers. Assume that ¥, ¢1, ... ¢ :
([0, 1]7*m)M [0, R] are G-Lipschitz w.r.t. the ¢; norm.

Theorem 4 (Regret Bound for COCO with fairness con-
straints). For any 6 € (0,1], ler the following hold
wp. > 1 — 6: in each iteration t € [T)|, the
Frank-Wolfe algorithm satisfies: L(CVt, ... CMt \t) <
min(cl7..‘,cl\l)EcD L(Ol, ceey CM, /\t) + 9(5, m), with
|CP[nt] — C*t|y < &(8,m),Ya € [M]. Let B >
2maxye (k] Af. Let h: X x [M]—A,, be the classifier re-
turned by the algorithm after T' = Tm iterations, for some
7 €N Thenw.p. > 1— 6 (over S ~ D™)

L(R) < L(h*) + 0(6,m) + GME(,m) + (5(\/1%)

and Vk € [K],

- 2 ~( 1
gr(h) < e + B9(5,m) + GME(6,m) + O(ﬁ)
We show in Appendix [A.3] that under the smoothness
conditions in Theorem 2] €(d,m)—0 and £(§,m)—0 as
m—oo. This together with Theorem |4 implies that the
COCO algorithm is consistent under fairness constraints. To
the best of our knowledge, this the first work to study the
statistical consistency of algorithms for fair classification.

S EXPERIMENTS

We ran experiments on four benchmark datasets for fair
classification: (i) adult: the task is to predict if a per-
son’s income is greater than $50K/yr, with gender as the
protected attribute [9]]; (ii) compas: the task is to predict
whether a convicted person would commit a crime in the

0.7 0.35

-1
06 = m COCO || 30} e
§ 05 ® @ FW-unc|| @ 025) .m |
= | | A A logReg ® -
5 0.4 1 @020 A 1
€ 03 u 1 § o5t !// 1
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0.2 "\ {1 o010} .- 1
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Figure 1: Plot of H-mean and coverage values achieved by
COCO for different € (left) and plot of coverage as a func-
tion of e (right), for the crimes dataset.

next two years, with race as the protected attribute [2]; (iii)
crimes: the task is to predict if the crime rate in a given re-
gion in the US is above the average, with the majority race
as the protected attribute [9]]; (iv) default: the task is to pre-
dict if a credit card user would default on a payment, with
gender as the protected attribute [9]]. We also included two
multiclass UCI datasets [9] (see Table [3).

We used 2/3-rd of the data for training and 1/3-rd for test-
ing, averaging the results over 5 random train-test splits.
The cost-sensitive learner in the Frank-Wolfe algorithm
was implemented using the plug-in approach. We used lin-
ear logistic regression to estimate 7}, with the protected at-
tribute included as one of the features FIf]

Convex Losses with Constraints

Coverage. We begin with the H-mean loss subject to a cov-
erage constraint (the proportion of positive predictions be
within a given ¢€). For comparison, we included the Frank-
Wolfe method (FW-unc) [27] for optimizing H-mean with-
out constraints, and plain (unweighted) logistic regression
that optimizes the 0-1 error. The results for the four binary
datasets are summarized in Table 4] with the coverage val-
ues provided in parenthesis. The average run-time of COCO
across train-test splits varied from 20 to 200 secs (e.g. 19.1
sec on the crimes data and 202.2 secs on the adult data).

COCO yields very small constraint violations, with signifi-
cantly lower losses than LogReg. As expected, the uncon-
strained FW method yields the lowest loss, but incurs large
constraint violations. This is further confirmed by the left
side plots in Figure |1} which show loss and coverage val-
ues for different values of e. Smaller values of € lead to
larger losses. On the right side, we have plots of coverage
as a function of e. Clearly, the proposed method closely
satisfies the coverage constraint.

Fairness. We next considered the task of fair classification.
Given that the datasets considered have imbalanced classes,
Q-mean could be a loss function of interest here. We op-

CoCO was run for 100 iterations and the inner FW algorithm
was run for 10 iterations, resulting in a total of 1000 plug-in clas-
sifiers in the final model. FRACO was run till | — B*| < 0.01.
The parameter 70 in COCO was chosen from {1072,...,10°} to
minimize maxy |gr(h) — €| on the training set.

®Code for the algorithms is available at https://github.
com/hnarasimhan/constrained-classification
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Learning with Complex Loss Functions and Constraints

Dataset € COCO FW-unc Lin-con Dataset € FRACO BS-unc LogReg
adult 0.05 | 0.33(0.035) | 0.19(0.152) | 0.39 (0.027) adult 0.001 | 0.31(0.001) | 0.31(0.003) | 0.34 (0.007)
compas | 0.20 | 0.41(0.206) | 0.33(0.279) | 0.57 (0.107) compas | 0.001 | 0.64 (0.003) | 0.51(0.020) | 0.70 (0.105)
crimes | 0.20 | 0.32(0.197) | 0.16 (0.436) | 0.52 (0.190) crimes | 0.001 | 0.21(0.001) | 0.21(0.002) | 0.22 (0.002)
default | 0.05 | 0.37 (0.032) | 0.35(0.060) | 0.54 (0.015) default | 0.001 | 0.49 (0.001) | 0.50 (0.005) | 0.64 (0.107)

Table 5: Optimizing Q-mean s.t. Demographic Parity < e.
The Q-mean loss and DP values (in parenthesis) are re-
ported. A constant classifier would receive a loss of 0.71.

Table 6: Optimizing F-measure loss s.t. KLD error < e.
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Figure 3: Optimizing (multiclass) Q-mean loss s.t. NAE
< ¢, for the pageblocks dataset.
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Figure 2: Optimizing Q-mean s.t. Demographic Parity < e.

timized the Q-mean loss subject to the demographic parity
(DP) being within a given e. In this case, we additionally
compare with a classifier that optimizes (linear) classifica-
tion loss subject to the DP constraint (Lin-con). This base-
line is a representative of the kind of formulations adopted
by existing fair classification algorithms (e.g. [1]]).

Our results are shown in Table[5]and Figure[2] cOCO often
yields significantly lower loss than Lin-con. While Lin-
con satisfies the constraints, it tapers at a certain value of €
and is unable to improve on the Q-mean even when higher
constraint violations are allowed. This shows the benefit of
directly optimizing the Q-mean instead of the 0-1 error.

Quantification. We also considered a multiclass quantifica-
tion task. The goal was to minimize the Q-mean loss sub-
ject to the normalized absolute error (NAE), being within
a given €. NAE measures a classifier’s ability to predict
the prevalence of each class accurately. As seen in Figure
E} COCO incurs small constraint violations, and yields Q-
mean values between that of FW-unc and LogReg.

Fractional-convex Losses with Constraints

Continuing with quantification tasks, we now seek to opti-
mize the F; measure loss subject to the KLD error being
within e. The loss is fractional-convex, while the constraint
function is convex. We compared the FRACO method with
the Bisection based algorithm (BS-unc) in [27] for uncon-
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Figure 4: Optimizing (multiclass) micro F loss s.t. cover-
age of all classes except 1 is within ¢, for abalone.

strained optimization of the F measure, and plain logistic
regression. As seen in Table [6f FRACO satisfies the con-
straint for all datasets except compas, where there is a mild
violation. In terms of the loss, FRACO often performs com-
parable to BS-unc, and better than LogReg.

Our final experiment was on the multiclass micro F} loss.
The version presented in Table [I] treats class 1 as a default
class (e.g. the non-relevant class in a retrieval task), and
evaluates performance relative to this class. We constrained
the proportion of all classes other than class 1 to be within
a desired coverage value e. The results shown in Figure f]
once again confirm the effectiveness of our method.

6 CONCLUSION

We have developed algorithms for optimizing complex loss
functions under complex constraints, and demonstrated
their utility on a variety of problems. In the future, it would
be interesting to explore ways to reduce the number of base
classifiers needed to construct the final classifier in our al-
gorithms, and to scale our approach to large settings.
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