Gradient Layer: Enhancing the Convergence of Adversarial Training for Generative Models

A The Other Usage

We introduce the usage that inserts a fixed number of gradient layers into the bottom of the generator to
assist overall training procedure, which is described in Algorithm [} Note that we always use latest parameters
of f, g for gradient layers in Algorithm [Il When gradient layers are inserted in the middle of the generator:
g1 0 ¢ o ga, we can apply Algorithm [T| by setting p,, < goagpin, g < g1. After training, we can generate samples
by using parameters of the critic and the generator, the learning rate, and the number of gradient layers,
which is described in Algorithm2}

Algorithm 1 Assisting WGAN-GP
Input: The base distribution p,, the minibatch size b, the number of iterations T, the initial parameters
7o and Oy of the critic and the generator, the number of iterations T for the critic, the regularization
parameter ¢, learning rate n for gradient layers, the number of gradient layers [.
for k=0toT —1do
T < Tk
for kp =0to Ty — 1 do
{zi}i—y ~ up, {ziYi—y ~ py,, {ei}i—y ~ U[0,1)°
# GZ]’“Q’“ is applied [ times.
{zi}0_1 < {90, © G:,’“’Gk 00 G:;k’ek (2i) o=y
{zi}ioy « {aw + (1 — &)z}l
0= Vo g Y fr () = fr (@) + ARy, (2)])
T+ A(T,v)
end for
T4l < T
{zi ?:1 ~ M%
# G;’C“’ek is applied [ times.
(e e (G oo G
v 4= _VQ% le?:l f’rk+1 (gek (ZZ))
9k+1 — A(@k, ’U)
end for
Return 7T, QT.

Algorithm 2 Data Generation for Algorithm
Input: the seed drawn from the base measure z ~ p,,, the parameter 7 and 6 of the critic and the generator,
the learning rate 7, the number of gradient layers [.

Apply gradient layers I times 2’ < G}? o--- 0 G}%(2)
Return the sample gg(z’).

We next briefly review Algorithm [T]in which a fixed number of gradient layers with latest parameters is
inserted in the bottom of a generator of WGAN-GP. That is, gradient layers modify a noise distribution g,
to improve the quality of a generator by the functional gradient method.

B Brief Review of Wasserstein Distance

We introduce some facts concerning the Wasserstein distance, which is used for the proof of Proposition
We first describe a primal form of the Wasserstein distance. For p > 1 let P, be the set of Borel probability
measures with finite p-the moment on X C R". For u,v € P, a probability measure v on X x X satisfying
myy = pand my = v is called a plan (coupling), where 7* denotes the projection from X' x X to the i-th space
X. We denote by I'(u, ) the set of all plans between p and v. We now introduce Kantorovich’s formulation
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of the p-Wasserstein distance W), for p > 1.
Wy = min [ o= yldre) 1)
YEL(1,v) J x x X

When p =1 and p, v have bounded supports, there is the Kantorovich-Rubinstein dual formulation of the
1-Wasserstein distance, which coincide with the definition introduced in the paper. The existence of optimal
plans is guaranteed under more general integrand (c.f. [6 2]) and we denote by T' the set of optimal plans.
Prior to this formulation, the optimal transport problem in Monge’s formulation was proposed.

Jnf [ = o(o)lauta), )

where the infimum is taken over all transport maps ¢ : X — X from p to v, i.e., ¢y = v. Because a transport
map ¢ gives a plan v = (id X ¢)su, we can easily find < . In general, an optimal transport map that
solves the problem does not always exist unlike Kantrovich problem . However, in the case where
p>1, X =R and pu is absolutely continuous with respect to the Lebesgue measure, the existence of optimal
transport maps is guaranteed [3], 4] and it is extended to more general integrand (see [2]). Moreover, this
optimal transport map also solves Kantrovich problem , i.e., these two distances coincide. On the other
hand, in the case p = 1, the existence of optimal transport maps is much more difficult, but it is shown in
limited settings as follows.

Proposition A (Sudakov [5], see also [1]). Let X be a compact convex subset in RY and assume that p is
absolutely continuous with respect to Lebesgue measure. Then, there exists an optimal transport map ¢ from
w to v for the problem[3 with p = 1. Moreover, if v is also absolutely continuous with respect to Lebesque
measure, we can choose ¥ so that ¥~ is well defined pg-a.e., and ¢ﬁ_11/ = U.

Under the same assumption in Proposition [A} it is known that two distances and coincide [1], that
is, the Kantrovich problem is solved by an optimal transport map.

C Proofs

We here the give proof of Proposition

Proof of Proposition[]. Note that L£(¢) = /j(f:;,w). For ¢ € B(¢), we divide L(¢) into two terms as
follows.

L) = (L) = L(f5.9)) + L(f5.9)- (3)
We first bound the first term in by L-smoothness of EA(fJ)/, 1) with respect to 9" at ¢ in B ().

£(F3 ) = (L) (T £y @ = 0D 220)| < 216 = 61y
Since L(f;,,1) attains the maximum, we have V. L(f5,, )] —y = 0 and have
2075, 9) = £73,9)| < 216 = 1oy (@)
We next bound £(f7,%) in (3). We remember that

L(f3.0) = Barpup [£3(@)] = Bamp, [£5 0 9 (x)] — ARy (5)

By L-smoothness of f7, it follows that

[ (@) = o(2)]3-

v

F0(@)) = (F3(6(@) + (Vo F3(2)],_ 0y () — 0a)))| <
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By taking the expectation with respect to E,, , we get

Eonpy 15 0 (@) + By, [5(0(2))] +(Vafg 0 b9 — &) 12y, 1 = ¢ll72 )

<t

We substitute this inequality into , we have

. L
L(F5:0) < By [f5 @) + 510 = 0172y = B, [5(S@N] + (V= f5 0 6,0 = 0)12(,)) = ARy
R L
= L(£§:0) = (V=S50 6,0 = D) 1auy) + 5 1Y = 6l T2,
L
= L(9) + (VoL(9), ¥ = ) 12(y) + 510 = @ll72(4,, (6)

and the opposite inequality

N L
L(fg.1) = L(®) + (Ve L(9), %) — D) r2(,) — EW —0ll720,)s (7)
where we used V4L(¢) = =V, f5(2)].=¢(.)- By combining ,, and @, we have

L) < L() + (Vo L($), ¥ — @) 12(u,) + Ll — ¢l132,,

Moreover, since ﬁ(fw, P) — ﬁ(f;, ) > 0in 1) we have L(y) > ﬁ(f;f, ). Therefore, we get the opposite
inequality by .

L
L) = L(8) + (VoL(0), ¥ = D) 12(uy) = 516 = PllT2 (-
This finishes the proof. O

We next provide the proof of Theorem

Proof of Theorem[1l Noting that |1V, L£(¢k)]|cc < r and Lipschitz smoothness of £, we have

n?L
L(Pr1) < L(or) — ﬂ||V¢ﬁ(¢k)HL2(Hq)+ 5 IVeL(Pr)llr2(u,)
= L(d) = 1(1 = nL/2)|V 6 L(00) |22, )-

Since n < 1/L, we have L(¢r+1) < L(Px) — ||V¢£(qbk)||%2(#g). Summing up over k € {0,...,7 — 1} and
dividing by T we obtain

1 T-1

T S IVaL(0) g,y < (o) = £(or)).

This inequality finishes the proof of the theorem. O

Proof of Proposition[3 . By Proposition E there exists an optimal transport ¢ from p, to pp and an
optimal plan is given by v = (id X 9)gpg. We set ¢y = (1 —t)id + t¢p and py = yypg. Because (s, r)sptg
(0 <s <t <1) gives a plan between p, and pp, we have

Wi (pes ) < / & = yllad(tba, ¥1)sitg
- / (@) — () |2l
X
= (=) [ o= 0@ adity = (= Wly. an). (®)
X
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We next prove the opposite inequality. Noting that (id,vs)spg is a plan from pg to ps and (¢, ¥)spg is a
plan from p; to pp, we have the following two inequalities

Wi(pg, pis) S/ ||37—y||2d(id»¢s)ﬁ#g:/ [ = s (2)llodng = sWilug, i),
XXX x

Wi(pe, pp) < /X M= ylad(e Ve = /X [ (x) = b(@)ll2dng = (1 = )Wi (g, pip)-

X

Using these two inequalities and the triangle inequality, we get

Wipg, bp) < Wilpg, trs) + Wi(pis, pie) + Wi, pp) < (145 — ) Wi(pg, pip) + Wi(ps, pie)-

That is (t — s)Wi(pg, ip) < Wi(ps, p1e). By combining this inequality and (8)), we have (t — s)W1 (g, pip) =
W1 (s, 1¢) and this finishes the proof. O

D Labeled Faces in the Wild

In this section we provide the result on the Labeled Faces in the Wild dataset. The result is shown in Figure
After training WGAN-GP (left), we ran Algorithm [3|for a few iterations (right).

Figure 1: Random samples drawn from the generator trained by WGAN-GP (left) and the gradient layer
(right).
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