
Gradient Layer: Enhancing the Convergence of Adversarial Training for Generative Models

A The Other Usage

We introduce the usage that inserts a fixed number of gradient layers into the bottom of the generator to
assist overall training procedure, which is described in Algorithm 1. Note that we always use latest parameters
of f, g for gradient layers in Algorithm 1. When gradient layers are inserted in the middle of the generator:
g1 ◦ φ ◦ g2, we can apply Algorithm 1 by setting µn ← g2]µn, g ← g1. After training, we can generate samples
by using parameters of the critic and the generator, the learning rate, and the number of gradient layers,
which is described in Algorithm2.

Algorithm 1 Assisting WGAN-GP

Input: The base distribution µn, the minibatch size b, the number of iterations T , the initial parameters
τ0 and θ0 of the critic and the generator, the number of iterations T0 for the critic, the regularization
parameter c, learning rate η for gradient layers, the number of gradient layers l.

for k = 0 to T − 1 do
τ ← τk
for k0 = 0 to T0 − 1 do
{xi}bi=1 ∼ µbD, {zi}bi=1 ∼ µbn, {εi}bi=1 ∼ U [0, 1]b

# Gτk,θkη is applied l times.

{zi}bi=1 ← {gθk ◦Gτk,θkη ◦ · · · ◦Gτk,θkη (zi)}bi=1

{x̃i}bi=1 ← {εixi + (1− εi)zi}bi=1

v = ∇τ 1
b

∑b
i=1[fτ (zi)− fτ (xi) + λRfτ (x̃i)])

τ ← A(τ, v)
end for
τk+1 ← τ

{zi}bi=1 ∼ µbn
# G

τk+1,θk
η is applied l times.

{zi}bi=1 ← {G
τk+1,θk
η ◦ · · · ◦Gτk+1,θk

η }bi=1

v ← −∇θ 1
b

∑b
i=1 fτk+1

(gθk(zi))
θk+1 ← A(θk, v)

end for
Return τT , θT .

Algorithm 2 Data Generation for Algorithm 1

Input: the seed drawn from the base measure z ∼ µn, the parameter τ and θ of the critic and the generator,
the learning rate η, the number of gradient layers l.

Apply gradient layers l times z′ ← Gτ,θη ◦ · · · ◦Gτ,θη (z)
Return the sample gθ(z

′).

We next briefly review Algorithm 1 in which a fixed number of gradient layers with latest parameters is
inserted in the bottom of a generator of WGAN-GP. That is, gradient layers modify a noise distribution µn
to improve the quality of a generator by the functional gradient method.

B Brief Review of Wasserstein Distance

We introduce some facts concerning the Wasserstein distance, which is used for the proof of Proposition 2.
We first describe a primal form of the Wasserstein distance. For p ≥ 1 let Pp be the set of Borel probability
measures with finite p-the moment on X ⊂ Rv. For µ, ν ∈ Pp a probability measure γ on X × X satisfying
π1
] γ = µ and π2

] γ = ν is called a plan (coupling), where πi denotes the projection from X ×X to the i-th space
X . We denote by Γ(µ, ν) the set of all plans between µ and ν. We now introduce Kantorovich’s formulation
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of the p-Wasserstein distance Wp for p ≥ 1.

W p
p (µ, ν) = min

γ∈Γ(µ,ν)

∫
X×X

‖x− y‖p2dγ(x, y) (1)

When p = 1 and µ, ν have bounded supports, there is the Kantorovich-Rubinstein dual formulation of the
1-Wasserstein distance, which coincide with the definition introduced in the paper. The existence of optimal
plans is guaranteed under more general integrand (c.f. [6, 2]) and we denote by Γ the set of optimal plans.
Prior to this formulation, the optimal transport problem in Monge’s formulation was proposed.

inf
φ]µ=ν

∫
X
‖x− φ(x)‖p2dµ(x), (2)

where the infimum is taken over all transport maps φ : X → X from µ to ν, i.e., φ]µ = ν. Because a transport
map φ gives a plan γ = (id× φ)]µ, we can easily find (1) ≤ (2). In general, an optimal transport map that
solves the problem (2) does not always exist unlike Kantrovich problem (1). However, in the case where
p > 1, X = Rv, and µ is absolutely continuous with respect to the Lebesgue measure, the existence of optimal
transport maps is guaranteed [3, 4] and it is extended to more general integrand (see [2]). Moreover, this
optimal transport map also solves Kantrovich problem (1), i.e., these two distances coincide. On the other
hand, in the case p = 1, the existence of optimal transport maps is much more difficult, but it is shown in
limited settings as follows.

Proposition A (Sudakov [5], see also [1]). Let X be a compact convex subset in Rv and assume that µ is
absolutely continuous with respect to Lebesgue measure. Then, there exists an optimal transport map φ from
µ to ν for the problem 2 with p = 1. Moreover, if ν is also absolutely continuous with respect to Lebesgue
measure, we can choose ψ so that ψ−1 is well defined µ0-a.e., and φ−1

] ν = µ.

Under the same assumption in Proposition A, it is known that two distances (2) and (1) coincide [1], that
is, the Kantrovich problem (1) is solved by an optimal transport map.

C Proofs

We here the give proof of Proposition 1.

Proof of Proposition 1. Note that L(ψ) = L̂(f∗ψ, ψ). For ψ ∈ B∞r (φ), we divide L(ψ) into two terms as
follows.

L(ψ) = (L̂(f∗ψ, ψ)− L̂(f∗φ , ψ)) + L̂(f∗φ , ψ). (3)

We first bound the first term in (3) by L-smoothness of L̂(f∗ψ′ , ψ) with respect to ψ′ at ψ in B∞r (ψ).∣∣∣L̂(f∗φ , ψ)− (L̂(f∗ψ, ψ) + 〈∇ψ′L̂(f∗ψ′ , ψ)
∣∣
ψ′=ψ

, φ− ψ〉L2(µg))
∣∣∣ ≤ L

2
‖φ− ψ‖2L2(µg).

Since L̂(f∗ψ′ , ψ) attains the maximum, we have ∇ψ′L̂(f∗ψ′ , ψ)
∣∣
ψ′=ψ

= 0 and have

∣∣∣L̂(f∗φ , ψ)− L̂(f∗ψ, ψ)
∣∣∣ ≤ L

2
‖φ− ψ‖2L2(µg). (4)

We next bound L̂(f∗φ , ψ) in (3). We remember that

L̂(f∗φ , ψ) = Ex∼µD [f∗φ(x)]− Ex∼µg [f∗φ ◦ ψ(x)]− λRf∗φ . (5)

By L-smoothness of f∗φ , it follows that∣∣∣f∗φ(ψ(x))− (f∗φ(φ(x)) + 〈∇zf∗φ(z)
∣∣
z=φ(x)

, ψ(x)− φ(x)〉2)
∣∣∣ ≤ L

2
‖ψ(x)− φ(x)‖22.
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By taking the expectation with respect to Eµg , we get

∣∣−Ex∼µg [f∗φ ◦ ψ(x)] + Eµg [f∗φ(φ(x))] + 〈∇zf∗φ ◦ φ, ψ − φ〉L2(µg)

∣∣ ≤ L

2
‖ψ − φ‖2L2(µg).

We substitute this inequality into (5), we have

L̂(f∗φ , ψ) ≤ Ex∼µD [f∗φ(x)] +
L

2
‖ψ − φ‖2L2(µg) − (Eµg [f∗φ(φ(x))] + 〈∇zf∗φ ◦ φ, ψ − φ〉L2(µg))− λRf∗φ

= L̂(f∗φ , φ)− 〈∇zf∗φ ◦ φ, ψ − φ〉L2(µg) +
L

2
‖ψ − φ‖2L2(µg)

= L(φ) + 〈∇φL(φ), ψ − φ〉L2(µg) +
L

2
‖ψ − φ‖2L2(µg), (6)

and the opposite inequality

L̂(f∗φ , ψ) ≥ L(φ) + 〈∇φL(φ), ψ − φ〉L2(µg) −
L

2
‖ψ − φ‖2L2(µg), (7)

where we used ∇φL(φ) = −∇zf∗φ(z)|z=φ(·). By combining (3),(4), and (6), we have

L(ψ) ≤ L(φ) + 〈∇φL(φ), ψ − φ〉L2(µg) + L‖φ− ψ‖2L2(µg).

Moreover, since L̂(f∗ψ, ψ)− L̂(f∗φ , ψ) ≥ 0 in (3), we have L(ψ) ≥ L̂(f∗φ , ψ). Therefore, we get the opposite
inequality by (7)

L(ψ) ≥ L(φ) + 〈∇φL(φ), ψ − φ〉L2(µg) −
L

2
‖φ− ψ‖2L2(µg).

This finishes the proof.

We next provide the proof of Theorem 1.

Proof of Theorem 1. Noting that ‖η∇φkL(φk)‖∞ ≤ r and Lipschitz smoothness of L, we have

L(φk+1) ≤ L(φk)− η‖∇φL(φk)‖2L2(µg) +
η2L

2
‖∇φL(φk)‖L2(µg)

= L(φk)− η(1− ηL/2)‖∇φL(φk)‖2L2(µg).

Since η ≤ 1/L, we have L(φk+1) ≤ L(φk)− η
2‖∇φL(φk)‖2L2(µg). Summing up over k ∈ {0, . . . , T − 1} and

dividing by T we obtain

1

T

T−1∑
k=0

‖∇φL(φk)‖2L2(µg) ≤
2

ηT
(L(φ0)− L(φT )).

This inequality finishes the proof of the theorem.

Proof of Proposition 2 . By Proposition A, there exists an optimal transport ψ from µg to µD and an
optimal plan is given by γ = (id× ψ)]µg. We set ψt = (1− t)id+ tψ and µt = ψt]µg. Because (ψs, ψt)]µg
(0 ≤ s < t ≤ 1) gives a plan between µg and µD, we have

W1(µs, µt) ≤
∫
X×X

‖x− y‖2d(ψs, ψt)]µg

=

∫
X
‖ψs(x)− ψt(x)‖2dµg

= (t− s)
∫
X
‖x− ψ(x)‖2dµg = (t− s)W1(µg, µD). (8)
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We next prove the opposite inequality. Noting that (id, ψs)]µg is a plan from µg to µs and (ψt, ψ)]µg is a
plan from µt to µD, we have the following two inequalities

W1(µg, µs) ≤
∫
X×X

‖x− y‖2d(id, ψs)]µg =

∫
X
‖x− ψs(x)‖2dµg = sW1(µg, µD),

W1(µt, µD) ≤
∫
X×X

‖x− y‖2d(ψt, ψ)]µg =

∫
X
‖ψt(x)− ψ(x)‖2dµg = (1− t)W1(µg, µD).

Using these two inequalities and the triangle inequality, we get

W1(µg, µD) ≤W1(µg, µs) +W1(µs, µt) +W1(µt, µD) ≤ (1 + s− t)W1(µg, µD) +W1(µs, µt).

That is (t− s)W1(µg, µD) ≤W1(µs, µt). By combining this inequality and (8), we have (t− s)W1(µg, µD) =
W1(µs, µt) and this finishes the proof.

D Labeled Faces in the Wild

In this section we provide the result on the Labeled Faces in the Wild dataset. The result is shown in Figure
1. After training WGAN-GP (left), we ran Algorithm 3 for a few iterations (right).

Figure 1: Random samples drawn from the generator trained by WGAN-GP (left) and the gradient layer
(right).

References

[1] Luigi Ambrosio. Lecture notes on optimal transport problems. In Mathematical aspects of evolving
interfaces, pages 1–52. Springer, 2003.
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