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Abstract

We propose a new technique that boosts the
convergence of training generative adversar-
ial networks. Generally, the rate of training
deep models reduces severely after multiple
iterations. A key reason for this phenomenon
is that a deep network is expressed using a
highly non-convex finite-dimensional model,
and thus the parameter gets stuck in a lo-
cal optimum. Because of this, methods of-
ten suffer not only from degeneration of the
convergence speed but also from limitations
in the representational power of the trained
network. To overcome this issue, we pro-
pose an additional layer called the gradient
layerto seek a descent direction in an infinite-
dimensional space. Because the layer is con-
structed in the infinite-dimensional space, we
are not restricted by the specific model struc-
ture of finite-dimensional models. As a re-
sult, we can get out of the local optima in
finite-dimensional models and move towards
the global optimal function more directly.
In this paper, this phenomenon is explained
from the functional gradient method perspec-
tive of the gradient layer. Interestingly, the
optimization procedure using the gradient
layer naturally constructs the deep structure
of the network. Moreover, we demonstrate
that this procedure can be regarded as a dis-
cretization method of the gradient flow that
naturally reduces the objective function. Fi-
nally, the method is tested using several nu-
merical experiments, which show its fast con-
vergence.
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1 Introduction

Generative adversarial networks (GANs) [B] are a
promising scheme for learning generative models.
GANs are trained by a discriminator and a genera-
tor in an adversarial way. Discriminators are trained
to classify between real samples and fake samples
drawn from generators, whereas generators are trained
to mimic real samples. Although training GANs is
quite difficult, adversarial learning succeeded in gen-
erating very impressive samples [16], and there are
many subsequent studies [I1), 17, 14, 4 23]. Wasser-
stein GANs (WGANS) [3] are a variant to remedy the
mode collapse that appears in the standard GANs by
using the Wasserstein distance [21], although they also
sometimes generate low-quality samples or fail to con-
verge. Moreover, an improved variant of WGANs was
also proposed [0] and it succeeded in generating high-
quality samples and stabilizing WGANs. Although
these attempts have provided better results, there is
still scope to improve the performance of GANs fur-
ther.

One reason for this difficulty stems from the limitation
of the representational power of the generator. If the
discriminator is optimized for the generator, the be-
havior is solely determined by the samples produced
from that generator. In other words, for a generator
with a poor representational power, the discrimina-
tor terminates its learning in the early stage and con-
sequently results in having low discriminative power.
However, for a finite-dimensional parameterized gen-
erator, the ability to generate novel samples to cheat
the discriminators is limited. In addition, the highly
non-convex structure of the deep neural network for
the generator prevents us from finding a direction for
improvement. As a result, the trained parameter gets
stuck in a local optimum and the training procedure
does not proceed any more.

In this study, we propose a new learning procedure to
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overcome the issues of limited representational power
and local optimum by introducing a new type of layer
called a gradient layer. The gradient layer finds a
direction for improvement in an infinite-dimensional
space by computing the functional gradient [12] in-
stead of the ordinary gradient induced by a finite-
dimensional model. Because the functional gradient
used for the gradient layer is not limited in the tan-
gent space of a finite-dimensional model, it has much
more freedom than the ordinary finite-dimensional
one. Thanks to this property, our method can break
the limit of the local optimum induced by the strong
non-convexity of a finite-dimensional model, which
gives much more representational power to the genera-
tor. We theoretically justify this phenomenon from the
functional gradient method perspective and rigorously
present a convergence analysis. Interestingly, one it-
eration of the method can be recognized as inserting
one layer into the generator and the total number of
iterations is the number of inserted layers. Therefore,
our learning procedure naturally constructs the deep
neural network architecture by inserting gradient lay-
ers. Although, gradient layers can be inserted into an
arbitrary layer, they are typically stacked on top of
the generator in the final training phase to improve
the generated sample quality.

Moreover, we provide another interesting perspective
of the gradient layer, i.e., discretization of the gradient
flow in the space of probability measures. In Euclidean
space, the steepest descent which is the typical opti-
mization method, can be derived by discretizing the
gradient flow that naturally produces a curve to reduce
the objective function. Because the goal of GANs is
to generate a sequence of probability measures mov-
ing to the empirical distribution by training samples,
it is natural to consider a gradient flow in the space
of probability measures defined by a distance between
generated distribution and the empirical distribution
and to discretize it in order to construct practical algo-
rithms. We show that the functional gradient method
for optimizing the generator in the function space is
such a discretization method; in other words, the gra-
dient flow can be tracked by stacking gradient layers
successively.

The recently proposed SteinGAN [22] is closely related
to our work and has a similar flavor, but it is based
on another strategy to track gradient flow. That is,
since that discretization is mimicked by a fixed-size
deep neural network in SteinGAN, it may have the
same limitation as typical GANs. By contrast, our
method directly tracks the gradient flow in the final
phase of training GANs to break the limit of the finite-
dimensional generator.

2 Brief Review of Wasserstein GANSs

In this section, we introduce WGANs and their vari-
ants. Although our proposed gradient layer is applica-
ble to various models, we demonstrate how it performs
well for the training of generative models; in particu-
lar, we treat Wasserstein GANs as a main applica-
tion in this paper. Let us start from briefly reviewing
WGANS.

WGAN is a powerful generative model based on the
1-Wasserstein distance, defined as the L' minimum
cost of transporting one probability distribution to the
other. Let X C R” and Z C R" be a compact con-
vex data space and a hidden space, respectively. A
typical example of X is the image space [0,1]Y. For
a noise distribution u, on Z, WGAN learns a data
generator g : Z — X to minimize an approximation
to the 1-Wasserstein distance between the data dis-
tribution pp and the push-forward distribution gy,
which is a distribution that the random variable g(2)
follows when z ~ p, (in other words, the distribu-
tion obtained by applying a coordinate transform g
to z ~ pun). That is, WGAN can be described as
the following min max problem by using a Kantrovich-
Rubinstein duality form of the 1-Wasserstein distance:

min max £(f, g) def Epmpp [f(2)] —E.np, [f 0 g(2)],

9€g feF
where G is the set of generators and F is an approx-
imate set to the set of 1-Lipschitz continuous func-
tions called critic. In WGANSs, G, F are parameterized
neural networks {gs}, {f-} and the problem is solved
by alternate optimization: maximizing and minimiz-
ing L(f-, ge) with respect to 7 and 6, alternately.

In practice, to impose the Lipschitz continuity on crit-
ics fr, penalization techniques were explored. For in-
stance, the original WGANs [3] use weight clipping
7]l < ¢, which implies the upper-bound on the
norm of V., f, and makes it Lipschitz continuous. How-
ever, it was pointed out in a subsequent study [6] that
such a restriction seems to be unnatural and some-
times leads to a low-quality generator or a failure to
converge. In the same study, an improved variant of
WGANSs called WGAN-GP was proposed, which suc-
ceeded in stabilizing the optimization process and gen-
erating high-quality samples. WGAN-GP [6] adds the
gradient penalty (||Vzf-(Z)|]2 — 1) to the objective
function in the training phase of critics, where Z is
a random interpolation between a training example
x ~ pp and a generated sample g(z) ~ goppin, ie.,
T + ex+(1—€)g(z) (e ~ UJ0, 1]: uniform distribution).
DRAGAN [10] is a similar method to WGAN-GP, al-
though it is based on a different motivation. DRAGAN
also uses the gradient penalty, but the penalty is im-
posed on a neighborhood of the data manifold by a
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Figure 1: Random samples drawn from the generator trained by Algorithm [If on the CIFAR-10 dataset.

random perturbation of a training example.

WGAN and its variants are learned by alternately
optimizing f; and gy, as stated above. We can re-

gard this learning procedure as a problem of minimiz-

ing L(go) def max,{L(fr,90) — AR;}, where R, is a

penalty term. Let L(fr,g9) — AR, attain its maximum
value at 7, for gg. Then, the gradient VyL(gp) is the
same as —E,, [V, f. Vogo(2)] by the envelope theorem
[13] when both terms are well-defined. The differen-
tiability of £(gg) with respect to 6 almost everywhere
is proved in [3] under a reasonable assumption. Hence,
we can apply the gradient method to this problem by
approximating this gradient with finite particles gener-
ated from p,,. However, because it is difficult to obtain
fr., we run the gradient method for several iterations
on training a critic instead of exactly computing f,,
at each gg. We can notice that this learning procedure
is quite similar to that of the standard GAN [5].

3 Gradient Layer

In the usual training procedure of WGANS, though
more general maps are admissible for the origi-
nal purpose, generators are parameterized by finite-
dimensional space as described in the previous section,
and the parameter may get stuck in a local optimum
induced by this restriction, or the speed of convergence
may reduce. In this work, we propose a gradient layer
that accelerates the convergence and breaks the limit
of finite-dimensional models. This layer is theoreti-
cally derived by the infinite-dimensional optimization
method. We first explain the high-level idea of the
gradient layer that strictly improves the ability of gen-
erator and why our method enhances the convergence
of training WGANS.

3.1 High-level idea of gradient layer

Here, we explain gradient layer with intuitive motiva-
tion. It is inserted into the generator g in WGANS.
We now focus on minimizing L£(f, g) with respect to g

under a fixed critic f, that is, we consider the prob-

lem ming £;(g) < E,,, [~ f(g())]. Let us split g into

two neural networks g = ¢ o ¢go at arbitrary layer
where a new layer is to be inserted. Our purpose is
to specify the form of layer ¢ that reduces the ob-
jective value by perturbations of inputs g¢o(2), i.e.,
Li(grogogs) < Lf(g). Since L(g10¢ogs) is regarded
as the integral E.ivg,, ., [—f(91(#(2")))] with respect
to the push-forward distribution gopu,, this purpose
is achieved by transporting the input distribution of
¢ along the gradient field V.. f(g1(2’)). Therefore, we
propose a gradient layer G, with one hyperparameter
1 > 0 as a map that transforms an input 2’ to

Gy(2') = 2"+ 0V fg1(2))). (1)

Because the gradient layer depends on the parameters
T, 6 of the upper layers f, g1, we specify the parameter
as G;’e if needed.

Applying the gradient layer recursively, it further pro-
gresses and achieves a better objective. The compu-
tation of the gradient layer is quite simple. Actually,
simply taking the derivative is sufficient, which can be
efficiently executed. Because too many gradient lay-
ers would lead to overfitting to the critic f, we stop
stacking the gradient layer after an appropriate num-
ber of steps. Indeed, if f o g1 is Lipschitz continuous,
id + nf o g1 for sufficiently small 5 is an injection be-
cause (id + nf o g1)(z) = (id + nf o g1)(z') implies
|z — 2 |l2 < nLyog, ||z — 2'||2 where Lyoq, is the Lip-
schitz constant. Thus, a topology of supp(gesftn) is
preserved and early stopping is justified. Then, this
layer efficiently generates high-quality samples for the
critic and the overall adversarial training procedure
can be also boosted.

3.2 Powerful optimization ability

Because the gradient layer directly transports inputs
as stated above, it strictly improves the objective
value if there is room for optimization, unlike finite-
dimensional models that may be trapped in local op-
tima induced by the restriction of generators. In-
deed, when the gradient layer cannot move inputs,
ie., Gy(2') = 2/, the gradient V. f(g1(2")) vanishes
on supp(gagtn) and there is no chance to improve the
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objective value by optimizing g, because of the chain
rule of derivatives. We now explain this phenomenon
more precisely. Let us first consider the training of go
in the usual way. We denote by ws the parameter of
g2. As stated in the previous section, wsy is updated
by using the gradient

Ep, [, 92(2) V2 £ (91(92(2)))]; (2)

where 2’ is the input to g1 and J,,g2(2) is the Jaco-
bian matrix of go with respect to wy. We immediately
notice that this gradient is the inner product of
J,92(+) and Vs f(g1(g2(+))) in L?(p,)-space, and the
latter term is the output of the gradient layer. There-
fore, when the gradient layer cannot move the inputs,
the gradient with respect to wsy also vanishes. How-
ever, even if the gradient vanishes, the gradient layer
G, can move the inputs in general. Thus, whereas the
optimization of go may get stuck in a local optimum or
be slowed down in this case, the gradient layer strictly
improves the quality of the generated samples for the
upper layers, because V. f(g1(g2(2))) does not van-
ish. This is the reason the gradient layer has a greater
optimization ability than finite-dimensional models.

3.3 Algorithm description

The overall algorithm is described in this subsection.
We adopt WGAN-GP as the base model to which gra-
dient layer is applied. Let us denote by Ry, _(Z) a gradi-
ent penalty term. In a paper on the improved WGANs
[6], the use of a two-sided penalty (||Vzf(Z)|2 — 1)?
is recommended. However, we also allow the use of
the one-sided variant (max(|Vzf-(Z)|l2 — 1,0))%. As
for the place in which the gradient layer is inserted,
we can propose several possibilities, e.g., inserting the
gradient layer into (i) the top and (ii) the bottom of the
layers of the generator. The latter usage is described
in the appendix.

The first usage is stacking gradient layers on the top of
the generator, except for normalization to fine-tune the
generator in the final phase. Although a normalization
term such as tanh is commonly stacked on generators
to bound the output range of the generators, gradient
layers are typically applied before the normalization
layer. Since tanh is a fixed function, it is no problem
to combine tanh with critics by reinterpreting F and
X. The gradient layer directly handles the generated
samples, so that it may significantly improve the sam-
ple quality. Because the gradient V. f;(z) of the critic
with respect to data variables provides the direction
to improve the quality of the current generated sam-
ples, it is expected that we can obtain better results
by tracking the gradient iteratively. To compute the
output from the gradient layer for a completely new
input, we need to reproduce the computation of the

gradient layers, which can be realized by saving the
history of the parameters of critics and stacking the
gradient layers using these parameters. The concrete
procedure is described in Algorithm [I When execut-
ing Algorithm [1| the parameter of gy is fixed, so that
the push-forward measure ggsuy is treated as a base
probability measure and we denote it by u,. Because
the gradient layers depend on the history of the param-
eters in this case, we specify the parameter to be used:
G, For the parameter 7 and the gradient v, we denote
by A(1,v) one step of a gradient-based method such
as SGD with momentum, Adam [9], and RMSPROP
[20). From the optimization perspective, we show that
Algorithm [I] can be regarded as an approximation to
the functional gradient method. From this perspec-
tive, we show fast convergence of the method under
appropriate assumptions where the objective function
is smooth and the critics are optimized in each loop.
This theoretical justification is described later. Al-
though Algorithm [I] has a great optimization ability,
applying the algorithm to large models is difficult be-
cause it requires the memory to register parameters;
thus, we propose its usage for fine-tuning in the final
phase of training a WGAN-GP. After the execution
of Algorithm [T} we can generate samples by using the
history of critics, the learning rate, and the base dis-
tribution as described in Algorithm

Algorithm 1 Finetuning WGAN-GP

Input: The base distribution g = g4y, the mini-
batch size b, the number of iterations 7', the initial
parameters 7y of the critic, the number of iterations
T}, for the critic, the regularization parameter A\, and
the learning rate n for gradient layers.

for k=0toT —1do

T < Tk
for kg =0to Ty — 1 do
{mi}?:l ~ MbD’ {zi i'):l ~ Mgv {ei i'):l ~ U0, 1]b
{2z}, « {Gf;k o---oG (2:) Yo,
{Z0y — {eami + (1 =€)z},
v Vb S (20) = Fr(@) + ARy, (&)

T+ A(T,v)
end for
Tk+1 < T
end for
Return (7y,...,77).

Algorithm 2 Data Generation for Algorithm

Input: the seed drawn from base measure z ~ g, =
Gifin, the history of parameters {7j}7_,, and the
learning rate n for gradient layers.

Return the sample GjT o --- 0 G}t (2).
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4 Functional Gradient Method

In this section, we provide mathematically rigorous
derivation from the functional gradient method [12]
perspective under the Fréchet differentiable (func-
tional differentiable) assumption on £. That is, we
consider an optimization problem with respect to a
generator in an infinite-dimensional space. For sim-
plicity, we focus on the case where the gradient layer
is stacked on top of a generator g and we treat gy, as
the base measure jiy. Thus, in the following we omit
the notation g in L(f, pog). Let L?(u,) be the space of
L?(p14)-integrable maps from R” to RV, equipped with
the (-, ) 12(,,,)-inner product: for Vo1, Voo € L*(py),

(D1, 02) L2 (ny) = Buy [01(2) T 2(2))-

To learn WGAN-GP, we consider the
dimensional problem:

infinite-

i L ) — AR ’
Son | max (frs @) fr

where Ry is a gradient penalty term. To achieve
this goal, we take a Gateaux derivative along a given
map v € L?(u,), i.e., a directional derivative along
v. Let us denote maxy cr{L(fr,¢) — AR;} by L(¢)
and argmaxy er{L(fr,¢) — ARy } by f; and the
corresponding parameter by 7%, ie., fi = f7 for
¢ € L*(pg). If every f € F is Lipschitz continuous and
differentiable, we can find that by the envelope theo-
rem and Lebesgue’s convergence theorem this deriva-
tive takes the form:

d
SLG+10)| = B [Va f @) gy0(2)

Therefore, —Vf;(2)lz=¢() can be regarded as a
Fréchet derivative (functional gradient) in L?(u,) and
we denote it by V,L(¢), which performs like the usual
gradient in Euclidean space. Using this notation, the
optimization of L£(¢) can be accomplished by Algo-
rithm [3] which is a gradient descent method in a func-
tion space. Because the functional gradient has the
form —V, f7 o ¢, each iteration of the functional gra-
dient method with respect to ¢ is ¢ <= ¢+nVy fiop =
(id+nVy f;) o ¢, where 1 is the learning rate. We no-
tice here that this iteration is the composition of a
perturbation map id + anf; and a current map ¢
and is nothing but stacking a gradient layer G on
¢(2). In other words, the functional gradient method
with respect to ¢, i.e., Algorithm [3] is the procedure
of building a deep neural network by inserting gradi-
ent layers, where the total number of iterations is the
number of layers. Moreover, we notice that if we view
Va f:; as a perturbation term, this layer resembles that
of residual networks [7] which is one of the state-of-the-
art architectures in supervised learning tasks.

However, executing Algorithm (3] is difficult in prac-
tice because the exact optimization with respect to a
critic f to compute L£(¢) is a hard problem. Thus,
we need an approximation and we argue that Algo-
rithm [I} is such a method. This point can be un-
derstood as follows. Roughly speaking, it maximizes
L(f,$) with respect to f in the inner loop under fixed
¢=Gjro Gy to--o G} to obtain an approximate
solution 7441 to 7, and minimizes that with respect
to ¢ in the outer loop by stacking G;"*", which is an
approximation to G7-. Thus, Algorithm (1] is an ap-
proximated method, but we expect it to achieve fast
convergence owing to the powerful optimization ability
of the functional gradient method, as shown later. In
particular, it is more effective to apply the algorithm in
the final phase of training WGAN-GP to fine-tune it,
because the optimization ability of parametric models
are limited.

Algorithm 3 Functional Gradient Descent

Input: the initial generator g and the learning rate
7.
$o < g
for k=0toT —1do
Grt1 < bk — NV L(dk)
end for
Return the function: ¢p.

5 Convergence Analysis

Let us provide convergence analysis of Algorithm [3]for
the problem of the general form: ming £(¢). The con-
vergence can be shown in an analogous way to that for
the finite-dimensional one. To prove this, we make a
smoothness assumption on the loss function. We now
describe a definition of the smoothness on a Hilbert
space whose counterpart in finite-dimensional space
is often assumed for smooth non-convex optimization
methods.

Definition 1. Let h be a function on a Hilbert space
(Z,(,)z). We call that h is L-smooth at z in U if h
is differentiable at z and it follows that Vz' € U.

[h(2") = h(z) = (Vzh(2), 2" = 2)2] < %HZ’ —2|%.

The following definition and proposition provide one
condition leading to Lipschitz smoothness of L. Let
us denote by || - ||po(y,) the sup-norm [|¢)||poc(y,) =
SUDgupp(sy) [1(2)]l2 and by Bp*(¢) a ball of center ¢
and radius 7. Let £(f,v) = L(f,¢) — AR;. In the
following we assume f; is uniquely defined for ¢ €
L*(pg) and L-smoothness with respect to the input z.
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Definition 2. For positive values r and L, we call that
L is (r, L)-regular at ¢ when the following condition is
satisfied; For Y € Bg°(¢), /.i(f{;,,w) is L-smooth at
¥ with respect to 1’ in B ().

Proposition 1. If £ is (r, L)-regular at ¢, then L is
2L-smooth at ¢ in B ().

We now show the convergence of Algorithm The
following theorem gives the rate to converge to the
stationary point.

Theorem 1. Let us assume the norm of the gradient
IV fi(@)ll2 is uniformly bounded by o and assume L
is L-smooth at ¢ in B2°(¢) for V¢ € L*(pg). Suppose
we run Algorithm [ with constant learning rate n <
min{1/L,r/a}. Then we have for T € Z

2
. 2 < _
v IVoL(@llia,) < 7 (£(d0) — L2),

where L, = infy L£().

Note that the convergence rate O(1/T) is the same
as the gradient descent method for smooth objective
in the finite-dimensional one. This means that even
though the optimization is executed in the infinite-
dimensional space, we do not suffer from the infinite
dimensionality in terms of the convergence.

The following rough argument indicates that Algo-
rithm [3] matches with learning WGANs. Let Wi de-
note the 1-Wasserstein distance with respect to the Eu-
clidean distance on a compact base space X C RY. The
following proposition is immediately shown by combin-
ing existing results [I} [18].

Proposition 2. Let uy be a Borel probability mea-
sure on X and assume pig 15 absolutely continuous
with respect to the Lebesgue measure. Then, there
exists an optimal transport v and it follows that
Wi(egttg, up) = (1 = t)Wi (g, up), where 1y = (1 —
t)id + t1.

The notion of the optimal transport is briefly in-
troduced in Appendix. By this proposition, there
exists a curve 1 strictly reducing distance, i.e.,
AW (Yegtig, wp)/dt < 0 if pg # pp. Because L ap-
proximates Wi, it is expected that dL(vy)/dt < 0
when g, differs from pup. Noting that dL(v)/dt =
(VoL(ht), — id)r2(u,), the functional gradient
VL) # 0 does not vanish and the objective £ may
be strictly reduced by Algorithm [3]

6 Gradient Flow Perspective

In Euclidean space, the step of the steepest descent
method for minimizing problems can be derived by
the discretization of the gradient flow dry(t)/dt =

—VF(vy(t)) where F is an objective function on Eu-
clidean space. Because our goal is to move p, closer
to up, we should consider a gradient flow in the space
of probability measures. To make this argument rigor-
ously, we need the continuity equation that character-
izes a curve of probability measures and the tangent
space where velocities of curves should be contained
(c.f., [2]). When these notions are provided, the gradi-
ent flow is defined immediately and it is quite natural
to discretize this flow to track it well. In this section,
we show that Algorithm [3|is such a natural discretiza-
tion; in other words, building a deep neural network
by stacking gradient layers is a discretization proce-
dure of the gradient flow. We refer to [2] for detailed
descriptions on this subject, and also refer to [15] for
an original method developed by Otto.

6.1 Continuity Equation and Discretization

We denote by P the set of probability measures on
RY. For p € P, let {¢¢}iej0,6) be a curve in L?(u) that
solves the following ordinary differential equation: for
an L?(¢uu)-integrable vector field vy on RY,

d
dt
Then, this equation derives the curve vy = ¢y in P,
which can be characterized by .

oo =id, —¢i(x) = vi(dt(x)) for Vo € RY.

d
%I/t—FV' (’Utl/t) =0. (3)

In other words, the following equation is satisfied

/ / (Ouf (2.1) + Vo f (2, 1) ) dvydt = 0,
I v

for Vf € C°(RY x I) where C°(RY x I) is the set of
C°-functions with compact support in RV x I. Con-
versely, a narrowly continuous family of probability
measures v; solving equation can be obtained by
transport map ¢; satisfying £¢:(x) = vi(o¢(x)) [2].
Thus, equation indicates that v drifts the proba-
bility measures ;. Indeed, v; can be recognized as the
tangent vector of the curve 1, as discussed below.

Here, we focus on curves in the subset P, C P com-
posed of probability measures with finite second mo-
ment. Noting that there is freedom in the choice of v,
modulo divergence-free vector fields w € L%(14) (i.e.,
V - (wry) = 0), it is natural to consider the equiva-
lence class of v € L?(v;) modulo divergence-free vector
fields. Moreover, there exists a unique II(v) that at-
tains the minimum L?(4)-norm in this class: II(v) =
axg mitte 20 {0l 200y | V+((0—w)r) = 0} Thus,
we here introduce the definitions of the tangent space
at pu € Ps as follows:

TP, & {II(v) | v € L*(n)}. (4)
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The following proposition shows that 7),P» has the
property of the tangent space on the space of probabil-
ity measures, that is, a perturbation using vy € 1,,P,
can discretize an absolutely continuous curve v; and
v; locally approximates optimal transport maps. We
denote the 2-Wasserstein distance by Ws.

Proposition 3 ([2]). Let vy : I — Pa be an abso-
lutely continuous curve satisfying the continuity equa-
tion with a Borel vector field vy that is contained in
T,, P2 almost everywhere t € 1. Then, for almost ev-
erywhere t € I the following property holds:

hm WQ (Vt+5, (Zd + §vt)ﬁut)

s 5] =0

In particular, for almost everywhere t € I such that vy
is absolutely continuous with respect to the Lebesgue
measure, we have

1 . .9
lim <(t}+ —id) = v in L*(ip),
where t,'™° is the unique optimal transport map be-

tween vy and viys.

This proposition suggests the update ut < (id +v)zp
for discretizing an absolutely continuous curve in Ps.
Note that when p = ¢y, (v € P2, ¢ € L%*(v)), the
corresponding map to u™ is obtained by (bg'z/ = ut
where ¢T is a composition as follows:

¢T — (id+v)op=¢+vodp. (5)

So far, we have introduced the property of continuous
curves in Py and a method of their discretization. We
notice that the above update resembles the update of
Algorithm 3] Indeed, we show that the functional gra-
dient method is nothing but a discretization method
of the gradient flow derived by the functional gradient

Vo L(9).
6.2 Discretization of Gradient Flow

We here introduce the gradient flow, which is one of the
most straightforward ways to understand Algorithm
We have explained that an absolutely continuous
curve {1 }ier in Po is well characterized by the conti-
nuity equation (3) and we have seen that {v; }+c; in
corresponds to the notion of the velocity field induced
by the curve. Such a velocity points in the direction
of the particle flow. Moreover, the functional gradient
V4L(¢)(-) points in an opposite direction to reduce
the objective L at each particle. Thus, these two vec-
tor fields exist in the same space and it is natural to
consider the following equation:

v = =V L(dy). (6)

This equation for an absolutely continuous curve is
called the gradient flow [2] and a curve satisfying this
will reduce the objective £. Indeed, we can find by
the chain rule such a curve {v; = @uptq}ier that also
satisfies the following;:

d
7 L(0) = ~IVo LG22 (0)-

Recalling that 1, can be discretized well by viys ~
(id — 6V 3 L(¢t))sve, we notice that Algorithm [3] is a
discretization method of the gradient flow @ In other
words, building deep neural networks by stacking gra-
dient layers is such a discretization procedure.

7 Experiments

In this section, we show the powerful optimization abil-
ity of the gradient layer method empirically on training
WGANSs. Our implementation is done using Theano
[19]. We first used three toy datasets: swiss roll, 8-
gaussian, and 25-gaussian datasets (see Figure to
confirm the convergence behavior of the gradient layer.
The sizes of toy datasets are 500, 500, and 1000, re-
spectively. We next used the CIFAR-10 containing
50,000 images of size 32x32, and STL-10 containing
100,000 images. For STL-10 dataset, we downsample
each dimension by 2, resulting image size is 48x48.
We reported inception scores [1I7] for image datasets,
which is one of the conventional scores commonly used
to measure the quality of generated samples.

Toy datasets We ran Algorithm [I] without pre-
training of generators (i.e., ¢ = id) on toy datasets
from Gaussian noise distributions with the standard
deviation 0.5. We used four-layer neural networks for
the critics where the dimension of hidden layers were
set to 128 for swiss roll and 8-gaussian datasets and 512
for 25-gaussian dataset. We adopted one-sided penalty
with regularization parameter A = 10. The output
of generator was activated by tanh. We used ADAM
for training critics with parameters o = 107%,8; =
0.5, 82 = 0.9, minibatch size b = 50. When we run
Algorithm [1] gradient layers are stacked below tanh.
The learning rates were set to n = 0.1. The number
of inner iterations Ty for training the critics was set
to 5 x datasize/b. Figure 2| shows the results for toy
datasets for running 7" = 100 iterations of generators.
Although we ran the algorithm without pre-training
the generators, we obtained better results only for a
few iterations. This is surprising, because these toy
datasets are difficult to learn and fail to converge in
the standard GANs and WGANSs. Whereas improved
variants of these models overcome this difficulty, they
usually require more than 1,000 iterations to converge.
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Figure 2: Generated samples by Algorithm [I] on 8-gaussian dataset for 0,25,50, and 100 generator iterations

(from left to right) and training data (rightmost).
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Figure 3: Left: Inception scores obtained by WGAN-
GP, Right: Inception scores obtain by Algorithm
starting from the result of WGAN-GP.

CIFAR-10 and STL-10 We first trained WGAN-
GP with a two-sided penalty (A = 10) on the CIFAR-
10 and STL-10 datasets. We used DCGAN for both
the critic and the generator. The batch normaliza-
tion [§] was used only for the generator. The critic
and the generator were trained by using ADAM with
a = 1074, 8, = 0.5,8, = 0.9, and minibatch size
b = 64. The number of inner iterations for training
the critics were 5 and we ran ADAM for 10°-iterations.
The left side of Figure [3| shows the inception scores
obtained by WGAN-GP. It seems that the learning
procedure is slowed down in a final training phase, es-
pecially for CIFAR-10. The final inception score on
CIFAR-10 and STL-10 are 6.32 and 7.40, respectively.
We next ran Algorithm [I] starting from the result of

WGAN-GP. The critics were trained by ADAM with
the same parameters, except for &« = 5 x 107° and
Ty = datasize/b. The learning rates were set to 0.5 for
CIFAR-10 and 0.3 for STL-10. The right side of Figure
[3]shows the inception scores obtained by Algorithm [T}
Note that, since we focus on the optimization ability
of generators, we plotted results with the horizontal
axis as the number of outer-iterations. We observed
a rapid increase in the inception scores, which were
improved to 6.80 and 7.71 on CIFAR-10 and STL-10,
respectively.

8 Conclusion

We have proposed a gradient layer that enhances
the convergence speed of adversarial training. Be-
cause this layer is based on the perspective of infinite-
dimensional optimization, it can avoid local optima
induced by non-convexity and parameterization. We
have also provided two perspectives of the gradient
layer: (i) the functional gradient method and (ii)
the discretization procedure of the gradient flow. We
have proven the fast convergence of the gradient layer
by utilizing this perspective, and experimental results
have empirically shown its reliable performance.
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