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Abstract

We propose a scalable divergence estimation
method based on hashing. Consider two con-
tinuous random variables X and Y whose
densities have bounded support. We con-
sider a particular locality sensitive random
hashing, and consider the ratio of samples in
each hash bin having non-zero numbers of Y
samples. We prove that the weighted aver-
age of these ratios over all of the hash bins
converges to f-divergences between the two
samples sets. We derive the MSE rates for
two families of smooth functions; the Holder
smoothness class and differentiable functions.
In particular, it is proved that if the density
functions have bounded derivatives up to the
order d, where d is the dimension of samples,
the optimal parametric MSE rate of O(1/N)
can be achieved. The computational complex-
ity is shown to be O(NN), which is optimal. To
the best of our knowledge, this is the first em-
pirical divergence estimator that has optimal
computational complexity and can achieve
the optimal parametric MSE estimation rate
of O(1/N).

1 Introduction

Information theoretic measures such as Shannon en-
tropy, mutual information, and the Kullback-Leibler
(KL) divergence have a broad range of applications
in information theory, statistics and machine learn-
ing [1-3]. When we have two or more data sets and
we are interested in finding the dependence or dissimi-
larity between them, Shannon mutual information or
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KL-divergence is often used. Rényi and f-divergence
measures are two well studied generalizations of KL-
divergence which comprise many important divergence
measures such as KL-divergence, total variation dis-
tance, and a-divergence [4, 5].

Non-parametric estimators are a major class of diver-
gence estimators, for which minimal assumptions on
the density functions are considered. Some of the non-
parametric divergence estimators are based on density
plug-in estimators such as k-NN [6], KDE [7], and
histogram [8]. A few researchers, on the other hand,
have proposed direct estimation methods such as graph
theoretic nearest neighbor ratio (NNR) [9]. In general,
plug-in estimation methods suffer from high compu-
tational complexity, which make them unsuitable for
large scale applications.

Recent advances on non-parametric divergence estima-
tion have been focused on the MSE convergence rates
of the estimator. Singh et al in [7] proposed a plug-in
KDE estimator for Rényi divergence that achieves the
MSE rate of O(1/N) when the densities are at least
d times differentiable, and the support boundaries are
sufficiently smooth. Similar plug-in KDE based estima-
tors were proposed in [10] and [11] that can achieve the
optimal MSE rate respectively for the densities that
are at least d/2 and d/4 times differentiable. Moon et
al proposed a weighted ensemble method to improve
the MSE rate of plug-in KDE estimators [12]. The pro-
posed estimator for f-divergence achieves the optimal
MSE rate when the densities are at least (d+1)/2 times
differentiable. They also assume stringent smoothness
conditions at the support set boundary.

Noshad et al proposed a graph theoretic direct estima-
tion method based on nearest neighbor ratios (NNR) [9].
Their estimator is simple and computationally more
tractable than other competing estimators, and can
achieve the optimal MSE rate of O(1/N) for densities
that are at least d times differentiable. Although their
basic estimator does not require any smoothness as-
sumptions on the support set boundary, the ensemble



Scalable Hash-Based Estimation of Divergence Measures

estimator variant of their estimator does.

In spite of achieving the optimal theoretical MSE rate
by aforementioned estimators, there remain serious.
The first challenge is the high computational complexity
of the estimator. Most KDE based estimators require
runtime complexity of O(N?), which is not suitable
for large scale applications. The NNR estimator pro-
posed in [9] has the runtime complexity of O(kN log N),
which is faster than the previous estimators. However,
in [9] they require k to grow sub-linearly with N, which
results in much higher complexity than linear runtime
complexity. The other issue is the smoothness assump-
tions made on the support set boundary. Almost all
previously proposed estimators assume extra smooth-
ness conditions on the boundaries, which may not hold
practical applications. For example, the method pro-
posed in [7] assumes that the density derivatives up to
order d vanish at the boundary. Also it requires nu-
merous computations at the support boundary, which
become complicated when the dimension increases. The
Ensemble NNR estimator in [9] assumes that the den-
sity derivatives vanish at the boundary. To circumvent
this issue, Moon et al [12] assumed smoothness con-
ditions at the support set boundary. However, these
conditions may not hold in practice.

In this paper we propose a low complexity divergence
estimator that can achieve the optimal MSE rate of
O(1/N) for the densities with bounded derivatives of
up to d. Our estimator has optimal runtime complexity
of O(N), which makes it an appropriate tool for large
scale applications. Also in contrast to other competing
estimators, our estimator does not require stringent
smoothness assumptions on the support set boundary.

The structure of the proposed estimator borrows ideas
from hash based methods for KNN search and graph
constructions problems [13,14], as well as from the
NNR estimator proposed in [9]. The advantage of hash
based methods is that they can be used to find the
approximate nearest neighbor points with lower com-
plexity as compared to the exact k-NN search methods.
This suggests that fast and accurate algorithms for
divergence estimation may be derived from hashing
approximations of k-NN search. Noshad et al [9] con-
sider the k-NN graph of Y in the joint data set (X,Y),
and show that the average exponentiated ratio of the
number of X points to the number of Y points among
all k-NN points is proportional to the Rényi divergence
between the X and Y densities. It turns out that for
estimation of the density ratio around each point we re-
ally do not need to find the exact k-NN points, but only
need sufficient local samples from X and Y around each
point. By using a randomized locality sensitive hashing
(LSH), we find the closest points in Euclidean space. In
this manner, applying ideas from the NNR estimation

and hashing techniques to KNN search problem, we
obtain a more efficient divergence estimator. Consider
two sample sets X and Y with a bounded density sup-
port. We use a particular two-level locality sensitive
random hashing, and consider the ratio of samples in
each bin with a number of Y samples. We prove that
the weighted average of these ratios over all of the bins
can be made to converge almost surely to f-divergences
between the two samples populations. We also argue
that using the ensemble estimation technique provided
in [2], we can achieve the optimal parametric rate of
O(1/N). Furthermore, using a simple algorithm for
online estimation method has O(N) complexity and
O(1/N) convergence rate, which is the first optimal
online estimator of its type.

The rest of the paper is organized as follows. In Section
2, we recall the definition of f-divergence and introduce
the Hash-Based (HB) estimator. In Section 3, we
provide the convergence theorems and propose the
Ensemble Hash-Based (EHB) estimator. In Section 4,
we propose the online version of the proposed HB and
EHB estimator. In Section 5 we give proofs for the
convergence results. Finally, in Section 6 we validate
our theoretical results using numerical and real data
experiments.

2 Hash-Based Estimation

In this section, we first introduce the f-divergence mea-
sure and propose a hash-based estimator.

Consider two density functions f; and fs with common
bounded support set X C R,

The f-divergence is defined as follows [5].

D, (llfae)) = [ o( 2 oy

=pGo) o

where ¢ is a smooth and convex function such that
g(1) = 0. KL-divergence, Hellinger distance and total
variation distance are particular cases of this family.
Note that for estimation, we don’t need convexity of
g and g(1) = 0. Assume that the densities are lower
bounded by C > 0 and upper bounded by Cy. As-
sume f; and fy belong to the Holder smoothness class
with parameter ~:

Definition Given a support X C R?, a function f :
X — R is called Hélder continuous with parameter
0 < v < 1, if there exists a positive constant Gy,
possibly depending on f, such that

[f(y) = fo)] < Gylly — ||, (2)
for every z #£ y € X.
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The function g in (1) is also assumed to be Lipschitz
continuous; i.e. g is Holder continuous with v = 1.

Remark 1 They-Hélder smoothness family comprises
a large class of continuous functions including continu-
ously differentiable functions and Lipschitz continuous
functions. Also note that for v > 1, any y—Hdlder
continuous function on any bounded and continuous
support is constant.

Hash-Based Divergence Estimator: Consider
the i.i.d samples X = {X7, ..., Xy} drawn from f; and
Y ={Y1,...,Yy} drawn from f;. Define the fraction
n:= M/N. We define the set Z := X UY. We define
a positive real valued constant € as a user-selectable
parameter of the estimator to be defined in 5. We
define the hash function H; : R — Z¢ as

Hi(2) =[hi(21), ba(22), - ha ()], 3)

where x; is the projection of x on the ith coordinate,
and hi(x) : R — Z is defined as

x+bJ

(4)

€

ha(z) = {

for fixed b. Let F :={1,2,.., F'}, where F' := cy N and
cy is a fixed real number. We define a random hash
function Hs : Z¢ — F with a uniform density on the
output and consider the combined hashing H(z) :=
Hy(Hy(z)), which maps the points in R? to F.

Consider the mappings of the sets X and Y using the
hash function H(z), and define the vectors A" and M
to respectively contain the number of collisions for each
output bucket from the set F. We represent the bins
of the vectors AV and M respectively by N; and M;,
1<i<F.

The hash based f-divergence estimator is defined as

).ot.

=~ 1 ~ ’I’]Ni
DQ(X,Y) = Imax M KZF MzQ( MZ

M;>0
where g(x) := max {g(z), g(Cr/Cuv)}.

Note that if the densities fi and f; are almost equal,
then for each point Y;, N; = M;, and thus Dy(X,Y)
tends to zero, as required. Algorithm 1 shows the
HB estimation procedure. We first find the sets of
all hashed points in X and Y (lines 1 and 2). Then
the number of collisions is counted (lines 3-5), and the
divergence estimate is computed (line 6).

Similar to most of LSH structures, computing the hash-
ing output in our estimator is of O(1) complexity, and
does not depend on €. Thus, the computational com-
plexity of Algorithm 1 is O(M).

Algorithm 1: HB Estimator of f-Divergence

: Data sets X = {X3,..., Xy},
Y ={Y1,...Yu}

/* Find the sets of all hashed points in X
and Y */
X' + H(X).
Y+ H(Y).
for each i € F do
/* Find the number of collisions at bin i

Input

*/
Ni — ‘X’ = Z|
M; + |Y' =]
D « max {37 > >0 Mig(nNi /M) 0},
Output: D

3 Convergence Results

In the following theorems we state upper bounds on
the bias and variance rates. Let B[] = E[T] — T
and V[T] = E[1?] — JE[T]Q, respectively represent the
bias and variance of T', which is an estimator of the
parameter 7. Then, the following provides a bound on

the bias of the proposed estimator.

Theorem 3.1 Assume that f1 and fo are density func-
tions with bounded common support set X € R% and
satisfying ~y-Holder smoothness. The bias of the pro-
posed estimator for f-divergence with function g can be
bounded as

B [f)g(x, Y)] = 0(") + O<Nl€d> .

Remark 2 In order for the estimator to be asymptot-
ically unbiased, € needs to be a function of N. The

optimum bias rate ofO((%)W(W_d)) can be achieved
for e = O((L)’Y/('H'd))
& .

In the following we propose an upper bound on the
variance that is independent of e.

Theorem 3.2 Let n = M/N be fized. The variance
of the estimator (5) can be bounded as

V{f)g(XJ/)} < 0@7) . (6)

Remark 3 The same variance bound holds for the
random variable p; = A]\; The bias and variance

results easily extend to Réﬁyi divergence estimation.

We next show that, when f; and f5 belong to the family
of differentiable densities, we can improve the bias rate
by applying the ensemble estimation approach in [3,12].
The EHB estimator is defined as follows.
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Ensemble Hash-Based Estimator: Assume that
the density functions have continuous derivatives up
to order ¢ > d. Let T := {t1,...,tr} be a set of index
values with t; < ¢, where ¢ > 0 is a constant. Let
e(t) := tN~1/2?, The weighted ensemble estimator is
defined as

ﬁw = Z w(t)ﬁe(t)v
teT

(7)

where Be(t) is the hash based estimator of f-divergence,
with the hashing parameter of €(t). The following
theorem states a sufficient condition for the weight
vector w that ensures that the ensemble estimator (7)
achieves an MSE rate of O(1/N).

Theorem 3.3 Let T > d and wq be the solution to:

min  [lus
subject to wa(t) =1,
teT
S wtit =0,ieNi<d (8
teT

Then the MSE rate of the ensemble estimator ﬁwo is
O(1/N).

4 Online Divergence Estimation

In this section we study the problem of online diver-
gence estimation. In this setting we consider two data
steams X = {X1, Xo, ..., Xy} and Y = {V1,Ys, ..., Yn}
with i.i.d samples, and we are interested in estimating
the divergence between two data sets. The number of
samples increase over time and an efficient update of
the divergence estimate is desired. The time complex-
ity of a batch update, which uses the entire update
batch to compute the estimate at each time point, is
O(N), and it may not be so effective in cases which we
need quick detection of any change in the divergence
function.

Algorithm 2 updates the divergence with amortized
runtime complexity of order O(1). Define the sets
XN = {Xi}ﬁvzl, YN = {Yi}ij\;l, the number of X
and Y samples in each partition, and the divergence
estimate between XV and Y~. Consider updating the
estimator with new samples X1 and Yy 41. In the
first and second lines of algorithm 2, the new samples
are added to the datasets and the values of N; and M;
of the bins in which the new samples fall. We can find
these bins in O(1) using a simple hashing. Note that
once N; and M; are updated, the divergence measure
can be updated, but the number of bins is not increased,
by Theorem 3.1, it is clear that the bias will not be
reduced. Since increasing the number of bins requires

o A W N

recomputing the bin partitions, a brute force rebinning
approach would have order O(N) complexity, and it
were updated N times, the total complexity would be
O(N?). Here we use a trick and update the hash func-
tion only when N + 1 is a power of 2. In the following
theorem, which is proved in appendix, we show that
the MSE rate of this algorithm is order O(1/N) and
the total rebinngn computational complexity is order
O(N).

Theorem 4.1 MSE rate of the online divergence esti-
mator shown in Algorithm 2 is order O(1/N) and the
total computational complezity is order O(N).

Algorithm 2: Online Divergence Estimation
XN = (X YN = (VY
D= D(XN, YN)
(Ni, M;)
(Xn41, YNg1)

Input

Add X1 and Update Ny, s.t H(Xn41) = k.
Add Yy41 and Update M; s.t H(Yy41) = 1.
If N+ 1 = 2? for some 4, Then

Update € to the optimum value

Re-hash X and Y

Recompute N; and M; for 0 <i < F
Update D
Output : D
5 Proofs

In this section we derive the bias bound for the den-
sities in Holder smoothness class, stated in Theorem
3.1. For the proofs of variance bound in Theorem 3.2,
convergence rate of EHB estimator in Theorem 3.3, and
online divergence estimator in Theorem 4.1, we refer
the reader to the Appendix of the extended paper [15].

Counsider the mapping of the X and Y points by the
hash function H;, and let the vectors {VZ-}iL:1 represent
the distinct mappings of X and Y points under H;.
Here L is the number of distinct outputs of Hy. In the
following lemma we prove an upper bound on L.

Lemma 5.1 Let f(z) be a density function with
bounded support X C R, Then if L denotes the number
of distinct outputs of the hash function Hy (defined in
(3)) of i.i.d points with density f(x), we have

1
Leo(2).

., xq] and define X7 as the

(9)
Proof Let x = [z1, o, ..

region defined as

Xri={z] —ex <z; <cx,1 <i<d}, (10)
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where cx is a constant such that X C Xj.

L is clearly not greater than the total number of bins
created by splitting the region X into partitions of
volume €?. So we have

(2C€)d()d. (11)

L<
Proof of Theorem 3.1 Let {Ni’}iL:1 and {Mj’}jL:1
respectively denote the number of collisions of X and
Y points in the bins ¢ and j, using the hash function
H;. E; stands for the event that there is no collision
in bin ¢ for the hash function H with inputs {Vi}iL:l.
We have

= (3) )57
:1_O<§>' (12)
By definition,

=~ 1 ~ 77Nz
Dy(X,Y) = 57 > Mig<M' ) :

i<F
M;>0

Therefore,

(13)

We represent the second term in (13) by By. By has
the interpretation as the bias error due to collisions
in hashing. Remember that E; is defined as the event
that there is a collision at bin ¢ for the hash function
H, with inputs {V}}iL:l. For proving as upper bound
on By, we first need to compute an upper bound on
ZZ.LZI E [MJE] This is stated in the following lemma.

Lemma 5.2 We have

> E[M;|E;] <O(L) (14)
M0

Proof Define A; := {j : Ho(V;) =1i}. For each i we
can rewrite M; as

L
M; = Z L, (5)M;. (15)

Thus,

> E[ME =

i<F i<F j=1
M;>0 M;>0

where P( jE Ai,E) and P(E;) can be derived as

P(j € Ai,E;) = % <1 - (FF_1>L1> = 0(52) ;

(17)
and
— L
P(E;)=1-P(E;) = O<F> . (18)
Plugging in (17) and (18) in (16) results in
< 1
> m[um = 3 > ao(5)
i<F i<F j=1
M;>0 M;>0
M
::§:o<F)=0@% (19)
i<F
M;>0

where in the third line we use n = M/N and F = cyN.
In addition, the number of the terms in the sum is
upper bounded by L since L is defined as the number
of distinct outputs of hashing the X and Y points. Now
in the following lemma we prove a bound on By.

Lemma 5.3 Let L denote the number of distinct out-
puts of the hash function Hy of the X and Y sample
points. The bias of estimator (5) due to hashing colli-
ston can be upper bounded by

s <0( ) )
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Proof From the definition of By we can write

. LAY
B = MZP [ <M>‘E]
i<F
M>0

o % e

i<F
Mi>0

_ P(B)§(Ras)
M

~o(Z), o

where in the second line we used the fact that P(E;) =
P(E). In the third line we used the upper bound for
g, and in the fourth line we used the result in equation

(19).

Now we are ready to continue the proof of the bias
bound in (13). Let E be defined as the event that there
is no collision for the hash function Hs, and all of its
outputs are distinct, that is, £ = ﬁf’;lEi

(13) can be written as

E [Bg (X, Y)]

-1 3 Fee a5

M; >0
E1 ;E[ ( EZ}+O<Z€;>
M;>0
:P(El [ ( E +O<J€;)
M _ (22)
:Pg\il)]E ;M ( )E +O<]€;>
M>0 .
200 [ s ()] o 2)
:#E 29(]{4” +0< 2) (24)

_( Ny L?

where in (22) we have used the fact that conditioned
on E;, N; and M; are independent of E; for ¢ # j. In

(23) since there is no collision in Hy, M/ and N] are
equal to M; and N; for some i and j. Equation (24)
is because the values M/ and N/ are independent of
the hash function Hy and its outputs, and finally in
equation (25), we used the fact that each set N/ and
M/ are i.i.d random variables.

At this point, assuming that the variance of I\A}, is upper
1

bounded by O(1/N) and using (Lemma 3.2 in [9]), w

only need to derive E M, , and then we can simply find

the RHS in (25). Note that N; and M are independent
and have binomial distributions with the respective
means of NPX and MPY, where PX and P} are

the probabilities of mapping X and Y points with the
respective densities fy and f; into bin 7. Hence,

N
E[Ml,

Y} —E[N||Vi]E [M{*‘Yl} . (26)

Let B; denote the area for which all the points map to
the same vector V;. E[N/] can be written as:

N Z

—N/ Y:) + Oz — Yi||)de
= Nelfy (Y, +N/ O(la - Yi|[")dz
— Nelf(¥;) + N O(z|)dz, (27)

z€EB;+Y;

where in the second equality we have used the definition
n (2). Let define B, := 1B, + 1Y; and

)= [ el (28)
x'€B]

Note that C,(Y;) is a constant independent of e, since
the volume of B! is independent of e. By defining
x’ = x/e we can write

[ elrde= [l = e e
z€B;+Y; z'€B]
2

Also note that since the number of X and Y points in
each bin are independent we have E [N/|Y;] = E[N/],
and therefore

E[N]|Y;] = Ne? f1(Y;) + O(N™HC, (V) . (30)
Next, note that E [M]]Y;] has a non-zero binomial dis-

tribution, for which the first order inverse moment can
be written as [16]:
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B [0y ] = (et () + ot B

(r+0(srarm)

=(Mclf2(Y7)) {1 +O(7) + O(Mlﬂ
Thus, (26) can be simplified as "

+ O + 0<Ml€d> C(32)

We use (Lemma 3.2 in [9]) and Remark 3, and obtain

<)) -o(45) o

f2(Y1)
Finally from (25) we get

+0(M1 d) O} (33)

B[D,(X,V)]
—O(e”)+0( >+O( )+O(L2>

= 0(€") +O<N1d>

where in the third line we have used the upper bound
on L in Lemma 5.1 and the fact that M/N = 7. Finally
note that we can use a similar method with the same
steps to prove the convergence of an estimator for Rényi
divergence.

(34)

6 Discussion and Experiments

In this section we compare and contrast the advantages
of the proposed estimator with competing estimators,
and provide numerical results. These show the effi-
ciency of our estimator in terms of MSE rate and com-
putational complexity. Complementary simulated and
real-data experiments are provided in the Appendix of
the extended paper [15].

Table 1 summarizes the differences between the pro-
posed optimum estimator (EHB) with other competing
estimators: Ensemble NNR [9], Ensemble KDE [12]
and Mirror KDE [17]. In terms of MSE rate, all of
these estimators can achieve the optimal parametric
MSE rate of O(1/N). In terms of computational com-
plexity, our estimator has the best runtime compared
to others. The smoothness parameter required for the
optimum MSE rate is stated in terms of number of
required derivatives of the density functions. The pro-
posed estimator is the first divergence estimator that

requires no extra smoothness at the boundaries. It
is also the first divergence estimator that is directly
applicable to online settings, retaining both the accu-
racy and linear total runtime. Finally, similar to NNR
and Ensemble KDE estimators, the proposed estimator
does not require any prior knowledge of the support of
the densities.

It is also worthwhile to compare the proposed hash-
based estimators (HB and EHB) to the histogram plug-
in estimator. While the histogram estimator performs
poorly when the support set is unknown, the hash based
estimator does not rely on the knowledge about the
support set. There is a trade-off between bias and vari-
ance depending on the bin size parameter in histogram
estimators that affects convergence rate. In hash-based
estimators the variance is independent of the param-
eter €., which results in a better performance. In the
hash-based estimator, only bins for which M; > 0 are
used resulting in reduced memory requirements. Fi-
nally, as discussed before, the computational and space
complexity of the hash-based estimator respectively
grows linearly with the size of dimension. On the other
hand, the histogram estimator suffers from exponential
time and space complexity with respect to dimension.

Finally, handling the binning in histogram estimators
for the support sets with complex contours makes his-
togram estimators difficult to implement, especially
in high dimension. Implementation of our proposed
hash-based estimator does not have this complexity
since it does not depend on knowledge of the contours.

We compare the empirical performance of EHB to NNR,
and the Ensemble KDE estimators. The experiments
are done for two different types of f-divergence; KL-
divergence and a-divergence defined in [18]. Assume
that X and Y are i.i.d. samples from independent trun-
cated Gaussian densities. Figure 1, shows the MSE
estimation rate of a-divergence with a = 0.5 of two
Gaussian densities with the respective expectations
of [0,0] and [0,1], and equal variances of 0 = I for
different numbers of samples. For each sample size we
repeat the experiment 50 times, and compute the MSE
of each estimator. While all of the estimators have the
same asymptotic MSE rate, in practice the proposed
estimator performs better. The runtime of this exper-
iment is shown in Figure 2. The runtime experiment
confirms the advantage of the EHB estimator compared
to the previous estimators, in terms of computational
complexity. Figure 3, shows the comparison of the
estimators of KL-divergence between two truncated
Gaussian densities with the respective expectations
of [0,0] and [0,1], and equal covariance matrices of
0? = 03 = I, in terms of their mean value and %95
confidence band. The confidence band gets narrower
for greater values of N, and EHB estimator has the
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Table 1: Comparison of proposed estimator to Ensemble NNR [9], Ensemble KDE [12] and Mirror KDE [17]

Estimator HB NNR Ensemble KDE Mirror KDE
MSE Rate O(1/N) O(1/N) O(1/N) O(1/N)
Computational Complexity ~ O(N)  O(kNlogN) O(N?) O(N?)
Required Smoothness (7) d d (d+1)/2 d/2
Extra Smooth Boundaries No Yes Yes Yes
Online Estimation Yes No No No
Knowledge about Boundary No No No Yes
0.7,
0.6
o 05
2
0 : : : : : : ‘ S04
100 200 300 400 500 600 700 800 5 L
N 203 *
§ —TF= NNR
Figure 1: MSE comparison of a-divergence estimators 0.2 1 ~F--KDE
with o = 0.5 between two independent, mean-shifted o1k 3 'f,:*ll'z
truncated 2D Gaussian densities, versus different num-
ber of samples. 0 ‘ ‘ ‘
500 1000 1500 2000 2500 3000
3r N
=—f=—= NNR
250 | —s—kpE Figure 3: Comparison of the estimators of KL-
2 2 EHB divergence between two mean-shifted truncated 2D
- Gaussian densities, in terms of their mean value and
g %95 confidence band.
& 1+
05|
% 1000 2000 3000 4000 5000 6000 7000

N

Figure 2: Runtime comparison of a-divergence with
a = 0.5 between two independent, mean-shifted trun-
cated 2D Gaussian densities, versus different number
of samples.

narrowest confidence band. In Figure 4 the MSE rates
of the three a-divergence estimators are compared in
dimension d = 4, a = 2, for two independent truncated
Gaussian densities with the expectations 1 = pe and
covariances o3 = o5 = I, versus different number of

samples.

7 Conclusion

In this paper we proposed a fast hash based estimation
method for f-divergence. We obtained bias and vari-
ance convergence rates, and validated our results by
numerical experiments. Extending the method to hash-
based mutual information estimation is a worthwhile
topic for future work.

—+— NNR

—t— KDE
10!t ——— EHB
2ozl

1200 1400 1600

0 200 400 600 800 1000
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Figure 4: MSE estimation rate of a-divergence with
« = 2 between two identical truncated Gaussian densi-
ties with dimension d = 4, versus different number of
samples.
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