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Abstract

Classifiers and rating scores are prone to
implicitly codifying biases, which may be
present in the training data, against pro-
tected classes (i.e., age, gender, or race). So
it is important to understand how to design
classifiers and scores that prevent discrimi-
nation in predictions. This paper develops
computationally tractable algorithms for de-
signing accurate but fair support vector ma-
chines (SVM’s). Our approach imposes a
constraint on the covariance matrices condi-
tioned on each protected class, which leads
to a nonconvex quadratic constraint in the
SVM formulation. We develop iterative al-
gorithms to compute fair linear and kernel
SVM’s, which solve a sequence of relaxations
constructed using a spectral decomposition
of the nonconvex constraint. Its effectiveness
in achieving high prediction accuracy while
ensuring fairness is shown through numerical
experiments on several data sets.

1 INTRODUCTION

The increasing prevalence of machine learning to au-
tomate decision-making systems has drawn societal
scrutiny on the approaches used for verification and
validation of these systems. In particular, two main
concerns have been voiced with regards to the correct-
ness and accuracy of decisions provided. The first is
a general lack of interpretability for how predictions
are produced by many learning techniques [Ridgeway
et al., 1998, Lou et al., 2012, Caruana et al., 2015], and
the second is the possibility of perpetuating inequities
that may be present in the training data [Podesta
et al., 2014, Barocas and Selbst, 2016, Bhandari, 2016].
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This paper focuses on the latter: we study how to de-
sign fair support vector machines (SVM’s), and our
goal is to construct a classifier h(x, t) : Rp × R →
{−1,+1} that inputs predictors x ∈ Rp and a thresh-
old t, and predicts a label y ∈ {−1,+1}, while ensuring
fairness with respect to a protected class z ∈ {−1,+1}
(e.g., age, gender, or race). We assume there are only
two protected classes; however, our formulations gen-
eralize to the setting with multiple protected classes.

We make four main contributions. First, we reinter-
pret two fairness notions using receiver operating char-
acteristic (ROC) curves, which leads to a new visual-
ization for classifier fairness. Second, we capture fair-
ness by defining a constraint on covariance matrices
conditioned on protected classes, which leads to a non-
convex quadratic constraint in the SVM formulation.
Third, we construct an iterative algorithm that uses a
spectral decomposition of the nonconvex constraint to
compute fair linear and kernel SVM’s; we prove iter-
ates converge to a local minimum. Fourth, we conduct
numerical experiments to evaluate our algorithms.

1.1 Fairness Notions for Classifiers

Ensuring classifiers are fair requires quantifying their
fairness. However, Friedler et al. [2016] and Kleinberg
et al. [2016] showed that no single metric can cap-
ture all intuitive aspects of fairness, and so any metric
must choose a specific aspect of fairness to quantify.
In this paper, we consider arguably the two most pop-
ular notions: demographic parity [Calders et al., 2009,
Zliobaite, 2015, Zafar et al., 2017] and equal oppor-
tunity [Dwork et al., 2012, Hardt et al., 2016]. Pre-
cise definitions of these are given in Section 3. These
notions are typically considered for a single threshold
of the classifier, but here we will consider all possible
thresholds. We believe this is more in-line with ma-
licious usage of classifiers in which strategic choice of
thresholds can be used to practice discrimination.

1.2 Algorithms to Compute Fair Classifiers

Several approaches have been developed to construct
fair classifiers. Some [Zemel et al., 2013, Louizos et al.,
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2015] compute transformations of the data to make it
independent of the protected class, though this can be
too conservative and reduce predictive accuracy more
than desired. Another method [Hardt et al., 2016]
modifies any classifier to reduce its accuracy with re-
spect to protected classes until fairness is achieved.
Several techniques compute a fair classifier at a sin-
gle threshold [Calders et al., 2009, Cotter et al., 2016];
however, our interest is in classifiers that are fair at all
thresholds. The only method we are aware of that tries
to compute a fair classifier for all thresholds is that of
Zafar et al. [2017], which will be our main comparison.

1.3 Outline

After describing the data and our notation in Section
2, we next define two fairness notions and provide a
new ROC visualization of fairness in Section 3. Sec-
tion 4 derives constraints to improve the fairness of lin-
ear and kernel SVM’s at all thresholds. This involves
nonconvex constraints, and in Section 5 we present
iterative algorithms that compute fair linear and ker-
nel SVM’s by solving a sequence of convex problems
defined using a spectral decomposition. Section 6 con-
ducts numerical experiments using both synthetic and
real datasets to demonstrate the efficacy of our ap-
proach in computing accurate but fair SVM’s.

2 DATA AND NOTATION

Our data consists of 3-tuples (xi, yi, zi) for i = 1, . . . , n
points, where xi ∈ Rp are predictors, yi ∈ {−1,+1}
are labels, and zi ∈ {−1,+1} label a protected class.
For a matrix W , the i-th row of W is denoted Wi.
Define X ∈ Rn×p, Y ∈ Rn, and Z ∈ Rn to be matrices
and vectors such that Xi = xTi , Yi = yi, and Zi = zi,
respectively.

Let N = {i : zi = −1} be the set of indices for
which the protected class is negative, and similarly let
P = {i : zi = +1} be the set of indices for which the
protected class is positive. We use #N and #P for
the cardinality of the sets N and P , respectively. Now
define X+ to be a matrix whose rows are xTi for i ∈ P ,
and similarly define X− to be a matrix whose rows
are xTi for i ∈ N . Let Σ+ and Σ− be the covariance
matrices of [xi|zi = +1] and [xi|zi = −1], respectively.

Next let K(x, x′) : Rp × Rp → R be a kernel function,
and consider the notation

K(X,X ′) =

K(X1, X
′
1) K(X1, X

′
2) · · ·

K(X2, X
′
1) K(X2, X

′
2) · · ·

...
...

. . .

 (1)

Recall that the essence of the kernel trick is to replace
xTi xj with K(xi, xj), and so the benefit of the matrix

notation given in (1) is that it allows us to replace
X(X ′)T with K(X,X ′) as part of the kernel trick.

Last, we define some additional notation. Let [n] =
{1, . . . , n}, and note 1(u) is the indicator function. A
positive semidefinite matrix U is denoted U � 0. If
U, V are vectors of equal dimension, then the notation
U ◦V refers to their element-wise product: (U ◦V )i =
Ui · Vi. Also, e is the vector whose entries are all 1.

3 ROC Visualization of Fairness

3.1 Demographic Parity

One popular notion of fairness is that predictions of
the label y are independent of the protected class z.
This definition is typically stated [Calders et al., 2009,
Zliobaite, 2015, Zafar et al., 2017] in terms of a sin-
gle threshold, though it can be generalized to multiple
thresholds. We say that a classifier h(x, t) has demo-
graphic parity at level ∆ (abbreviated as DP-∆) if∣∣∣P[h(x, t) = +1

∣∣z = +1
]
−

P
[
h(x, t) = +1

∣∣z = −1
]∣∣∣ ≤ ∆, ∀t ∈ R. (2)

To understand this, note P
[
h(x, t) = +1

∣∣z = +1
]

is
the true positive rate when predicting the protected
class at threshold t, while P

[
h(x, t) = +1

∣∣z = −1
]

is
the false positive rate when predicting the protected
class at threshold t. So the intuition is that a classifier
is DP-∆ if its true positive and false positive rates with
respect to its ability to predict the protected class are
approximately (up to ∆ deviation) equal at all thresh-
old levels.

Reinterpreted, demographic parity requires that pre-
dictions of the classifier cannot reveal information
about the protected class any better (up to ∆ devi-
ation) than random guessing. DP-∆ is in fact equiva-
lent to requiring that the ROC curve for the classifier
h(x, t) in predicting z is within ∆ of the line of no-
discrimination, which is the line that is achievable by
biased random guessing. More visually, Figure 1 shows
how DP-∆ can be seen using an ROC curve.

3.2 Equal Opportunity

Demographic parity has been criticized as too strict
[Dwork et al., 2012, Hardt et al., 2016], and so an-
other notion of fairness has been proposed in which
predictions of the label y are independent of the pro-
tected class z, when the true label is positive (i.e.,
y = +1). In this definition, we must interpret y = +1
as a better label than y = −1; for instance, y = −1
may be a loan default, while y = +1 is full repayment
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Figure 1: A visual representation of our notion of
fairness. Here, the solid blue line is the ROC curve for
the y label and the dotted red line the ROC curve for
the protected z label. ∆ refers to the maximum dis-
tance of the latter from the diagonal, which represents
a perfect lack of predictability.

of a loan. This definition is typically stated [Hardt
et al., 2016] in terms of a single threshold, though it
can be generalized to multiple thresholds. We say that
a classifier h(x, t) has equal opportunity with level ∆
(abbreviated as EO-∆) if

∣∣∣P[h(x, t) = +1
∣∣z = +1, y = +1

]
−

P
[
h(x, t) = +1

∣∣z = −1, y = +1
]∣∣∣ ≤ ∆, ∀t ∈ R. (3)

To understand this, note P
[
h(x, t) = +1

∣∣z = +1, y =

+1
]

is the true positive rate conditioned on y = +1
when predicting the protected class at threshold t,
while P

[
h(x, t) = +1

∣∣z = −1, y = +1
]

is the false
positive rate conditioned on y = +1 when predicting
the protected class at threshold t. So the intuition is
that a classifier is EO-∆ if its false positive rates and
true positive rates are approximately (up to ∆ devi-
ation) equal at all threshold levels for the protected
class, when conditioned on y = +1.

Reinterpreted, equal opportunity requires that predic-
tions of the classifier cannot reveal information about
the protected class any better (up to ∆ deviation) than
random guessing, when the true label is positive. EO-
∆ is equivalent to requiring that the ROC curve for the
classifier h(x, t) in predicting z conditioned on y = +1
is within ∆ of the line of no-discrimination. Figure 1
shows how DP-∆ can be seen using an ROC curve.

4 FAIRNESS CONSTRAINTS

In this section, we derive several fairness constraints
for linear SVM. The kernel trick is used to convert
these constraints for use in kernel SVM. We will fo-
cus on presenting formulations for demographic par-
ity, though all of our formulations easily generalize to
equal opportunity by simply conditioning on y = +1.

4.1 Constraints for Linear SVM

We first study constraints that can be used to ensure
fairness with respect to z for a linear SVM

h(x, b) = sign(xTw + b), (4)

where w ∈ Rp, b ∈ R are coefficients to predict the
label y. Consider the following generic linear SVM
formulation

min
∑n
i=1 ui + λ‖w‖22

s.t. yi(x
T
i w + b) ≥ 1− ui, for i ∈ [n]

ui ≥ 0, for i ∈ [n]

G(w, θ) ≤ 0.

(5)

where λ ∈ R is a tuning parameter that can be cho-
sen using cross-validation, and G(w, θ) ≤ 0 is a fair-
ness constraint with the fairness level controlled by the
(possibly vector-valued) parameter θ. We will next
consider several possibilities for G(w, θ) ≤ 0.

4.1.1 Indicator Constraints

The definition of DP-∆ in (2) uses probabilities, which
are are not available as data. Fortunately, we can use
empirical fractions of events as an approximation:∣∣∣ 1

#P

∑
i∈P 1(sign(xTi w + t) = +1)−

1
#N

∑
i∈N 1(sign(xTi w + t) = +1)

∣∣∣ ≤ ∆, ∀t ∈ R. (6)

Standard arguments using VC dimension [Wainwright,
2017] can be used to show that (6) bounds (3) with
high probability. However, (6) is also difficult to in-
clude in the linear SVM as the fairness constraint
G(w, θ) ≤ 0 since it involves the discontinuous and
nonconvex sign(·) function, and is infinite-dimensional
since it must hold for all t ∈ R.

4.1.2 Integer Constraints

An initial idea to incorporate (6) in the linear SVM
is based on recent empirical results [Miyashiro and
Takano, 2015, Bertsimas et al., 2016] where mixed in-
teger programming (MIP) was used to exactly solve
cardinality constrained linear regression. Specifically,
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we can approximate the indicator constraints (6) as
the following mixed-integer linear inequalities

−∆ ≤ 1
#P

∑
i∈P vi(t)−

1
#N

∑
i∈N vi(t) ≤ ∆

−M · (1− vi(t)) ≤ xTi w + t ≤M · vi(t)
vi(t) ∈ {0, 1}

(7)

for t ∈ {t1, . . . , tk}; where M > 0 is a large constant,
and {t1, . . . , tk} is a fixed set of values. This removes
the sign(·) function, and it ensures a finite number of
constraints. However, we found in numerical experi-
ments using Gurobi [2016] and Mosek [2017] that com-
puting a fair linear SVM with the above constraints
was prohibitively slow except for very small data sets.

4.1.3 Convex Relaxation

We next derive a convex relaxation of the indicator
constraints (6). Let M > 0 be a constant, and consider
−M ≤ u ≤ M . Then convex upper bounds for the
indicators functions are 1(sign(u) = +1) ≤ 1 + u/M
and −1(sign(u) = +1) ≤ −u/M . Using these upper
bounds on (6) leads to the following convex relaxation:

− d ≤
(

1
#P

∑
i∈P xi −

1
#N

∑
i∈N xi

)T
w ≤ d, (8)

where d = M · (∆ − 1). There are three important
remarks about this convex relaxation. The first is
that the threshold t does not appear, which means
this is simply a linear constraint. The second is that
the bound M can be subsumed into the parameter d
used to control the fairness level, meaning that this
relaxation is practically independent of the bound M .
The third is that this convex relaxation is equivalent to
the fairness constraint proposed by Zafar et al. [2017],
though they derive this using a correlation argument.

4.1.4 Covariance Constraints

The convex relaxation (8) is fairly weak, and so it is
relevant to ask whether constraints can be added to
(8) to improve the fairness level ∆ of the resulting
linear SVM. Instead of using convex lifts [Lasserre,
2001, Gouveia et al., 2013, Chandrasekaran and Jor-
dan, 2013] to tighten the above constraint, our ap-
proach is inspired by an information-theoretic bound
and has an intuitive geometric interpretation.

Specifically, consider the two conditional distribu-
tions D+ = [x|z = +1] and D− = [x|z = −1].
Equation (2) can be interpreted as the Kolmogorov-
Smirnov (KS) distance between the distributions of
the “score” functions wTD+ and wTD−. Since KS
distance is upper-bounded by the total variation dis-
tance, Pinsker’s inequality [Massart, 2007] implies

∆ ≤
√

1
2KL(wTD+‖wTD−), where KL(·‖·) is the

Kullback-Leibler divergence. In the sepcial case where
D+ ∼ N (µ+,Σ+) and D− ∼ N (µ−,Σ−), we have

∆ ≤

√
1

4

(
σ−
σ+

+
1

σ+
(m+ −m−)2 + ln

σ+
σ−
− 1

)
, (9)

where m+ = wTµ+,m− = wTµ−, σ+ = wTΣ+w and
σ− = wTΣ−w [Kullback, 1997].

Note the above bound is minimized if m+ = m− and
σ+ = σ−. In fact, (8) can be interpreted as requiring

− d ≤ E(D+)Tw − E(D−)Tw ≤ d, (10)

or that −d ≤ m+ −m− ≤ d in the special case above.
Subsequently, we propose constraints to control the
difference between conditional variances of xTw + t,
which would make σ+ close to σ− in the above spe-
cial case. Let Σ+ and Σ− be the sample covariance
matrices for D+ and D−, respectively. Then the sam-
ple variances of wTD+ and wTD− are wTΣ+w and
wTΣ−w, respectively. So we specify our covariance
constraint as

− s ≤ wT(Σ+ − Σ−)w ≤ s. (11)

To our knowledge, this constraint has not been previ-
ously used to improve the fairness of classifiers. Un-
fortunately, it is nonconvex because (Σ+−Σ−) is sym-
metric but typically indefinite (i.e., not positive or neg-
ative semidefinite). Hence, computing a linear SVM
with this constraint requires further development.

One obvious approach is to lift the constraint (11) and
then construct a semidefinite programming (SDP) re-
laxation [Goemans and Williamson, 1995, Luo et al.,
2010]. Specifically, note that (11) is equivalent to

−s ≤ trace(W (Σ+ − Σ−)) ≤ s

U =

[
W w
wT 1

]
� 0

rank(U) = 1

(12)

The above is nonconvex, but it can be convexified by
dropping the rank(U) = 1 constraint. However, we
found in numerical experiments using the Mosek [2017]
solver that the SDP relaxation was weak and did not
consistently affect the fairness or accuracy of the SVM.
Despite this result, we believe that additional convex-
ification techniques [Kocuk et al., 2016, Madani et al.,
2017] can be used to strengthen the quality of the SDP
relaxation; we leave the problem of how to design a
strengthened SDP relaxation for future work.

4.2 Constraints for Kernel SVM

We next briefly present constraints analogous to (8)
and (11) that can be used to ensure fairness with re-
spect to z for a kernel SVM

h(x, b) = sign(K(X,x)T(Y ◦ α) + b), (13)
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where α ∈ Rn are coefficients to predict the label y,
and b = 1

#I

∑
i∈I(yi −K(X,xi)

T(Y ◦ α)) with the set

of indices I = {i : 0 < αi < λ}. Consider the following
generic kernel SVM formulation

min (Y ◦ α)TK(X,X)(Y ◦ α)−
∑n
i=1 αi

s.t. Y Tα = 0

0 ≤ αi ≤ λ, for i ∈ [n]

H(w, θ) ≤ 0.

(14)

where λ ∈ R is a tuning parameter that can be cho-
sen using cross-validation, and H(w, θ) ≤ 0 is a fair-
ness constraint with the fairness level controlled by the
(possibly vector-valued) parameter θ. We will next
consider several possibilities for H(w, θ) ≤ 0.

First, we note that we may use a convex relaxation
on indicator functions akin to that presented in Sec-
tions 4.1.2 and 4.1.3 to obtain the linear constraint

− d ≤ 1
#P

∑
i∈P K(X,xi)

T(Y ◦ α)+

− 1
#N

∑
i∈N K(X,xi)

T(Y ◦ α) ≤ d. (15)

Note again that threshold t does not appear.

Next, our covariance constraint can be rewritten for
the kernel SVM by first recalling that the kernel SVM
with K(x, x′) = xTx′ generates the same classifier as
directly solving a linear SVM. Thus, we have the re-
lationship w = XT(Y ◦ α) in this special case. Next,
observe that

Σ+ = 1
#PX

T
+

(
I− 1

#P eeT
)
X+

Σ− = 1
#NX

T
−
(
I− 1

#N eeT
)
X−

(16)

So if apply the kernel trick to our covariance constraint
(11) with the above relationships, then the resulting
covariance constraint for kernel SVM becomes

− s ≤ (Y ◦ α)T(S+ − S−)(Y ◦ α) ≤ s, (17)

where we have

S+ = 1
#PK(X,X+)

(
I− 1

#P eeT
)
K(X,X+)T

S− = 1
#NK(X,X−)

(
I− 1

#N eeT
)
K(X,X−)T.

(18)

Similar to (11), the constraint (17) is a nonconvex
quadratic constraint because (S+ − S−) is symmetric
but typically indefinite.

5 SPECTRAL ALGORITHM

The covariance constraints are conceptually promising,
but they result in nonconvex optimization problems.
Here, we describe an iterative algorithm to effectively
solve the SVM with our covariance constraints.

5.1 Linear SVM

Though we could compute the linear SVM with the co-
variance constraint (11) using successive linearization,
a better approach is possible through careful design of
the algorithm: Our key observation regarding (11) is
that (Σ+ − Σ−) is symmetric, which means it can be
diagonalized by an orthogonal matrix:

Σ+ − Σ− =
∑p
i=1 ζiviv

T
i , (19)

where ζi ∈ R and the vi form an orthonormal basis.
Now let Iζ+ = {i : ζi > 0} and Iζ− = {i : ζi < 0}, and
define the positive semidefinite matrices

Uζ+ =
∑
i∈Iζ+ ζiviv

T
i

Uζ− = −
∑
i∈Iζ− ζiviv

T
i

(20)

This means that the function

wT(Σ+ − Σ−)w = wTUζ+w − wTUζ−w (21)

in the covariance constraint (11) is the difference of
the two convex functions wTUζ+w and wTUζ−w.

There is an important point to note regarding the
practical importance of the spectral decomposition we
performed above. The function in the covariance con-
straint (11) can alternatively be written as the differ-
ence of the two convex functions wTΣ+w and wTΣ−w.
However, using this alternative decomposition yields
an algorithm where the convexified subproblems are
weaker relaxations than the convex subproblems gen-
erated using the spectral decomposition. As a result,
our algorithm given below is ultimately more effective
because it employs the spectral decomposition.

Consequently, the constrained convex-concave proce-
dure [Tuy, 1995, Yuille and Rangarajan, 2002, Smola
et al., 2005] can be used to design an algorithm for
our setting. We opt to use a penalized form of the
quadratic constraint in our spectral algorithm to en-
sure feasibility always holds. Let wk ∈ Rp be a fixed
point, and consider the optimization problem where
the concave terms are linearized:

min
∑n
i=1 ui + λ‖w‖22 + µ · t

s.t. yi(x
T
i w + b) ≥ 1− ui, for i ∈ [n]

ui ≥ 0, for i ∈ [n]

− d ≤
(

1
#P

∑
i∈P xi −

1
#N

∑
i∈N xi

)T
w ≤ d

wTUζ+w − wT
kUζ−wk − 2wT

kU
T
ζ−(w − wk) ≤ t

wTUζ−w − wT
kUζ+wk − 2wT

kU
T
ζ+(w − wk) ≤ t

(22)
Our spectral algorithm for computing a fair linear
SVM consists of the constrained CCP adapted to the
problem of computing a linear SVM with the linear
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Figure 2: A comparison of the unconstrained, linear and spectral SVM methodologies on two-dimensional data.
The first row visualizes the data, as well as the optimal support vectors from each of the methodologies. The
second and third rows show the density of xTi w conditioned on the z and y variables, respectively. In each case,
the blue curve represents the density for zi = 1 (yi = 1) and the red curve the density for zi = −1 (yi = −1).

constraint (8) and covariance constraint (11): We ini-
tialize w0 by solving a linear SVM with only the lin-
ear constraint (8), and then compute successive wk by
solving (22). This produces a local minimum.

Theorem 1 (Smola et al. [2005]). The spectral algo-
rithm defined above for computing a fair linear SVM
gives iterates wk that converge to a local minimum.

This theorem is simply an application of a theorem
by Smola et al. [2005], and the constraint qualification
required by this theorem trivially holds in our case
because all of our convex constraints are linear.

5.2 Kernel SVM

We can apply a similar argument to the kernel SVM
formulation by instead defining the decomposition
S+ − S− =

∑p
i=1 ξiνiν

T
i , where ξi ∈ R and the νi

form an orthonormal basis. Letting Iξ+ = {i : ξi > 0}
and Iξ− = {i : ξi < 0}, we may define the positive
semidefinite matrices

Uξ+ =
∑
i∈Iξ+ ξiνiν

T
i

Uξ− = −
∑
i∈Iξ− ξiνiν

T
i .

(23)

Finally, we may implement the constrained CCP [Tuy,
1995, Yuille and Rangarajan, 2002, Smola et al., 2005]
with penalized quadratic term in the same manner as
above. We use a penalized form of the quadratic con-
straint in our spectral algorithm to ensure that feasi-
bility always holds.

Letting αk ∈ Rn be a fixed point, we obtain the anal-
ogous kernel formulation

min (Y ◦ α)TK(X,X)(Y ◦ α)−
∑n
i=1 αi + µ · t

s.t. Y Tα = 0

0 ≤ αi ≤ λ, for i ∈ [n]

− d ≤ 1
#P

∑
i∈P K(X,xi)

T(Y ◦ α)+

− 1
#N

∑
i∈N K(X,xi)

T(Y ◦ α) ≤ d

(Y ◦ α)TUξ+(Y ◦ α)− (Y ◦ αk)TUξ−(Y ◦ αk)+

− 2(Y ◦ αk)TUT
ζ−(Y ◦ (α− αk)) ≤ t

(Y ◦ α)TUξ−(Y ◦ α)− (Y ◦ αk)TUξ+(Y ◦ αk)+

− 2(Y ◦ αk)TUT
ζ+(Y ◦ (α− αk)) ≤ t

(24)
We initialize w0 by solving a kernel SVM with only the
linear constraint (15), and then computing successive
wk by solving (24). This produces a local minimum.

Theorem 2 (Smola et al. [2005]). The spectral algo-
rithm defined above for computing a fair kernel SVM
gives iterates wk that converge to a local minimum.

5.3 Generalization to Linear Learners

Our spectral algorithm can be applied to any linear
classifier or linear regression model. For instance, in
logistic regression we model the conditional probability
of yi given xi, as P[yi|xi] = (1+exp(−yi(wTxi+b)))

−1.
The maximum likelihood estimate (MLE) is computed
by solving min

∑n
i=1 exp(−yi(wTxi + b)), and we can

improve the fairness of the MLE by adding our con-
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straints (8) and (11). This leads to the following for-
mulation for fair logistic regression:

min
∑n
i=1 exp(−yi(wTxi + b))

s.t. − d ≤
(

1
#P

∑
i∈P xi −

1
#N

∑
i∈N xi

)T
w ≤ d

− s ≤ wT(Σ+ − Σ−)w ≤ s
(25)

Since (11) is nonconvex, we use our spectral algorithm
to find a local minimum of the above problem. Let
wk ∈ Rp be a fixed point, and consider the optimiza-
tion problem where the concave terms are linearized:

min
∑n
i=1 exp(−yi(wTxi + b)) + µ · t

s.t. − d ≤
(

1
#P

∑
i∈P xi −

1
#N

∑
i∈N xi

)T
w ≤ d

wTUζ+w − wT
kUζ−wk − 2wT

kU
T
ζ−(w − wk) ≤ t

wTUζ−w − wT
kUζ+wk − 2wT

kU
T
ζ+(w − wk) ≤ t

(26)
where U+, U− are as defined in Section 5.1. Our spec-
tral algorithm is: We initialize w0 by solving the MLE
for logistic regression with only the linear constraint
(8), and then computing successive wk by solving (26).
This produces a local minimum as discussed above.

6 NUMERICAL EXPERIMENTS

We use synthetic and real datasets to evaluate the
efficacy of our approach. We compare linear SVM’s
computed using our spectral algorithm (SSVM) to
a standard linear SVM (LSVM) and a linear SVM
computed using the approach of Zafar et al. [2017]
(ZSVM), since this is the only existing approach that
to our knowledge is designed to ensure fairness at all
thresholds. Numerical implementations are available
at http://github.com/molfat66/FairML.

6.1 Synthetic Data

Experimental Design We seek to examine the case
in which our y and z labels are correlated, and XN and
XP have differing covariances. Thus, we generate 200
data points where the y and z labels are generated
through logit models using two separate sets of ran-
domly generated “true” parameters, with dot product
between the logit parameters of y and z of 0.85. The
singular values of the covariance matrix of [Xi|zi = 1]
were then skewed to generate the data seen in Figure 2.
The empirical correlation of yi and zi is 0.45.

Results The results of the three methods using d =
0.075 and µ = 10 are shown in the three columns of
Figure 2. Here, points in N and P are differentiated by
marker shape (“x” and “o”, respectively), and points
with label yi = −1 and yi = 1 are differentiated by
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Figure 3: ROC plots for the three SVM algorithms on
both datasets. In each case, the solid blue line is the
ROC curve for the y label and the dotted red line the
ROC curve for the protected z label. Figures 3a to 3c
show the ROC plots for LSVM, ZSVM, and SSVM on
the wine quality data, and Figures 3d to 3f show the
same for the German credit data.

color (red and green, respectively). If w denotes the
coefficients computed by each method, then the second
row shows the empirical densities of xTi w conditioned
on the protected class zi, and the third row shows the
empirical densities of xTi w conditioned on the label
yi. Fairness occurs if the conditional densities in the
second row are similar, and prediction accuracy oc-
curs if the densities in the third row are disparate.
These results show that the densities of [xTi w|zi = +1]
and [xTi w|zi = −1] are distinguishable for LSVM and
ZSVM, while they are almost identical for SSVM. On
the other hand, the densities of [xTi w|yi = +1] and
[xTi w|yi = −1] are distinct for all three methods.

6.2 Real World Datasets

Data overview We next use a wine quality dataset
[Cortez et al., 2009] and a dataset of German credit
card customers [Lichman, 2013]. The first dataset is a
compilation of 12 attributes of 6,497 wines (e.g., acid-
ity, residual sugar, alcohol content, and color), as well
as a ranking out of 10 that is provided by professional
taste-testers. Here, we label yi = 1 when a wine is
rated as a 6 or above and yi = −1 otherwise, and
we define zi = 1 for white wines and zi = −1 for reds.
Notably, all explanatory variables are continuous. The
second dataset is a compilation of 20 attributes (e.g.,
marriage, employment and housing status, number of
existing credit lines, and age) of 1000 German appli-
cants for loans. We label yi = 1 for applicants that

http://github.com/molfat66/FairML
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(b) German credit data.

Figure 4: Comparing the accuracy and fairness of the ZSVM and SSM methods for various d and µ. The solid
red line represents results for the ZSVM, and the dotted blue lines denote results for the SSVM for some µ.

defaulted and yi = −1 for applicants that did not de-
fault, and let zi = 1 for applicants that are renting
a home and zi = −1 for applicants that own their
home. Note that a large number of variables are dis-
crete. There is no missing data in either dataset.

Metrics of comparison We compare SSVM and
ZSVM based on the tradeoffs that they make between
predictive accuracy for y, measured using the area un-
der the ROC curve (AUC), and their fairness with re-
spect z, measured by DP-∆ with respect to z.

Experimental Design We conducted five rounds
of cross-validation on each dataset and computed the
average AUC and average ∆, using a 70-30 training-
testing split. Within each round, we first apply 5-fold
cross-validation on LSVM to choose the λ that max-
imizes AUC, and this value of λ was used with both
SSVM and ZSVM to minimize the impact of cross-
validation on the comparison between methods. We
varied d over the values 0, 0.001, 0.002, 0.005, 0.01,
0.025, 0.05 and 0.1. And for SSVM we tried several
values of µ, which are shown in our plots.

Results Figure 3 shows representative examples of
ROC curves for both datasets from one instance of
cross-validation. Both ZSVM and SSVM improve fair-
ness with respect to LSVM while maintaining high ac-
curacy, and SSVM ensures an even stricter level of
fairness than LSVM while keeping high accuracy. The
tradeoff curves between prediction accuracy and fair-
ness are shown in Figure 4. Increasing d generally
jointly decreases fairness and increases accuracy, while
small increases in µ for our SSVM can often improve

both fairness and accuracy. Large increases in µ gen-
erally increase fairness but decrease accuracy. Note
that setting µ = 0 leads to the curve for SSVM to
align with the curve of ZSVM, since they are equiva-
lent when µ = 0. Also note ∆ is more sensitive than
AUC to changes in d, µ, which implies we are able con-
trol fairness without losing much predictive accuracy.

7 Conclusion

We considered multi-threshold notions of fairness for
classifiers, and designed a nonconvex constraint to im-
prove the fairness of linear and kernel SVM’s under
all thresholds. We developed an iterative optimiza-
tion algorithm (that uses a spectral decomposition)
to handle our nonconvex constraint in the resulting
problem to compute the SVM, and empirically com-
pared our approach to standard linear SVM and an
SVM with a linear fairness constraint using both syn-
thetic and real data. We found that our method can
strictly improve the fairness of classifiers for all thresh-
olding values with little loss in accuracy; in fact, some
of our results even showed a slight increase in accuracy
with increasing fairness. Our work opens the door for
further research in a number of areas, including hier-
archies of fairness constraints considering subsequent
moments of the data, and theoretical guarantees on
the fairness of such classification methods.
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