Probability—Revealing Samples

Krzysztof Onak
IBM Research

Abstract

In the most popular distribution testing and
parameter estimation model, one can obtain
information about an underlying distribution
D via independent samples from D. We in-
troduce a model in which every sample comes
with the information about the probability
of selecting it. In this setting, we give al-
gorithms for problems such as testing if two
distributions are (approximately) identical,
estimating the total variation distance be-
tween distributions, and estimating the sup-
port size. The sample complexity of all of our
algorithms is optimal up to a constant factor
for sufficiently large support size. The run-
ning times of our algorithms are near-linear
in the number of samples collected. Addi-
tionally, our algorithms are robust to small
multiplicative errors in probability estimates.

The complexity of our model lies strictly be-
tween the complexity of the model where only
independent samples are provided and the
complexity of the model where additionally
arbitrary probability queries are allowed.

Our model finds applications where once a
given element is sampled, it is easier to esti-
mate its probability. We describe two scenar-
ios in which all occurrences of each element
are easy to explore once at least one copy of
the element is detected.

1 INTRODUCTION

Testing properties and estimating parameters of prob-
ability distributions have been research directions in
statistics and probability theory. Two seminal papers
of Batu et. al [3, 2] instigated the modern research
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on these questions through the theoretical computer
science lens.

In the most popular setting, an algorithm has sample
access to one or more discrete distributions on [n]E]
For a given distribution D, it can obtain an arbitrarily
long sequence of independent samples from D. Over
the last two decades, a number of distribution testing
and parameter estimation problems have been consid-
ered in this model (e.g., [3, 2, 11 12, 13| 15, {]).

In the big data age, even the sample-efficient algo-
rithms in the model described above may become in-
efficient. It makes therefore sense to investigate the
question whether there exist more efficient algorithms,
provided some additional information about distribu-
tions is available. This kind of question has been in-
vestigated in a few papers [T} [7, Bl [6], which allowed
for various types of additional queries.

Probability—Revealing Samples. In this paper,
we propose a new sample model for property testing
and parameter estimation problems. In our model,
instead of simply receiving an independent sample x
from D, an algorithm receives a pair (z, p, ), where p,
is the probability of selecting = from D. We call such
a pair a probability—revealing sample (or a PR-sample
in short).

Additionally, we consider a more relaxed version of the
model, where the probability estimate may be off by a
small multiplicative factor. In this case, a pair (x,p’)
is an a-approzimate probability—revealing sample (or in
short, an a-PR-sample) from a distribution D if z is
selected from the distribution D and p, /a < pl, < apy,
where p, is the probability of z in D and a > 1.

We sometimes refer to PR-samples as ezract PR-
samples when we want to stress that no approxima-
tion of probabilities is allowed. Conversly, when « can
be larger than 1, but its exact value is either not im-
portant or is clear from the context, we may refer to
a-PR-samples as approximate PR-samples.

"We write [n] to denote {1,...,n}.
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Problems. In this paper, we assume that all distri-
butions are on [n], where n is a parameter known to the
algorithm. We consider the following problems, where
drv denotes the total variation distance between prob-
ability distributions.

e Identity Testing: Accept if an unknown dis-
tribution D equals a known distribution D, and
reject if dpy (D, D) > ¢ for € € (0,1).

e Distance to a Known Distribution: For an
unknown distribution D and a known distribution
D,., approximate dry (D, D,) up to an additive €
for e € (0,1).

e Equality Testing: Accept if two unknown dis-
tributions Dy and Dy are identical and reject if
dTv(Dl,DQ) > ¢ foree (07 ].)

e Distance between Unknown Distributions:
For two unknown distributions D; and Ds, ap-
proximate drv(D1,D2) up to an additive e for
e € (0,1).

e Distinct Elements: For a positive integer n > 0,
an unknown distribution D such that every ele-
ment with non-zero probability has probability at
least 1/n, and a parameter € € (0, 1), approximate
the number of elements with non-zero probability
in D up to an additive en.

In this work, we only require that for any input distri-
bution or pair of distributions, the algorithm output
a correct answer with probability 2/3. It follows di-
rectly from standard concentration bounds, such as
the Chernoff bound, that it suffices to run the algo-
rithm O(log(1/6)) times—and take the median or ma-
jority of computed solutions—to improve the success
probability to 1 — § for any ¢ € (0,1/3).

As our main technical results of this paper, we
present algorithms for the above five problems in the
probability—revealing sample model. The query com-
plexity of them is optimal up to constant factors. Ad-
ditionally, their input distributions can be on an arbi-
trary set of size at most n, not just [n].

Theorem 1.1 (Complexity of Identity Testing).
There is a polynomial time algorithm to solve the
Identity Testing problem using O(1/e) (1 + €¢/3)-PR-
samples from D. If n > 3, then any algorithm to solve
the Identity Testing problem requires at least 2(1/¢)
PR-samples.

Theorem 1.2 (Complexity of Distance to a Known
Distribution). There is a polynomial time algorithm
to solve the Distance to Known Distribution problem
using O(1/€?) (1 + €/3)-PR-samples from D. If € <
1/10000 and n = w(1/e*), then any algorithm to solve

the Distance to Known Distribution problem requires
at least Q(1/€%) PR-samples.

Theorem 1.3 (Complexity of Equality Testing
and Distance between Unknown Distributions). For
e € (0,1), there is a polynomial time algo-
rithm to solve Equality Testing problem and Dis-
tance between Unknown Distributions problem using
O(max{y/n/e,1/€?}) (1 + €/3)-PR-samples. For ¢ <
1/100 and n = w(1/€!%), any algorithm to solve the
two problems requires at least Q(y/n/€) PR-samples.

Theorem 1.4 (Complexity of Distinct Elements). For
e € (0,1), there is a polynomial time algorithm to solve
the Distinct Elements problem using O(1/€?) (1+¢/3)-
PR-samples. If ¢ < 1/10000 and n = w(1/€*), then
any algorithm to solve the Distinct Elements problems
requires at least Q(1/€*) PR-samples.

Comparison to other models and related works.
In the standard distribution testing model, algorithms
are given access to independent samples from the un-
known distributions. The five problems considered in
this paper have been studied extensively in this model.
See the column “Samples” of Table [1| for a summary
of known results.

At least two papers [I1,[6] consider a dual model, which
is stronger than ours. In their model, for each dis-
tribution, apart from drawing independent samples,
one can also query the probability of each element.
Clearly, one can simulate PR-sampling in their model
by first drawing a sample and then querying its prob-
ability. The complexity of problems in their model is
presented in the column “Dual.” Contrary to their pa-
per, the algorithms we present here are robust to small
multiplicative errors in probability estimates.

One can observe that the complexity of our model falls
in between these two models. In particular, we avoid
the lower bounds of Valiant [I5], by being able to easily
distinguish heavy elements from light elements. This
difficulty in the standard model was at heart of his
lower bound constructions.

Techniques. Our algorithm are very simple and are
based on evaluating very simple estimators. We ap-
ply Hoeffding’s inequality or Chebyshev’s inequality to
show the proper concentration of the estimate output
by each algorithm.

For lower bounds we construct two distributions with
different desired behavior of the algorithm and show
that a large number of samples is required to distin-
guish them. Some of our techniques are similar to
those of Canetti, Even, and Goldreich [4].

Due to the space constraints, we omit some of our
proofs and make the full paper available on arXiv.
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Table 1: Comparison Between Different Models

I Samples | PR-Samples [here] | Dual [6]
ni/2
Identity Testing © ( e ) O1/e) forn >3 O/
[2, 111 [14] 1forn=2
Distance Q (n;/ ) 0(1/e?) 0(1/e?)
to Known [11] Q(%) for n =w(e™?)
n?? \/n n'/? 1
Equality Testing O(max{ s, "} Ol/(zmax{ —=)) ©(1/e)
13, 8] Q=) for n = w(e'Y)
Distance O(1;) for € = O(1) O(max{2=, 1}) 0(1/€%)
between Unknown [13] Q(”1/2) for n = w(e™1Y)
n — 2 2
Distinct Elements @(log”) for € = ©(1) 1 6(1/€) 4 O(1/€)
[12] [13] (=) for n = w(e™™)

2 APPLICATIONS

We now describe two applications of our model. In
both cases, we take advantage of the fact that once a
given element is detected by sampling, it is easier to
compute its probability.

2.1 Grouped Identical Labels

Consider a set of records stored in an array T'[1...n],
organized in such a way that records with the same
label appear in consecutive entries of the array (see
Figure . This could be a result of collecting the
records from a hash table with all elements in each
entry of the hash table sorted according to their label.

A PR-sample can be generated in two steps. First, we
select a random entry T'[i] in the array. Clearly, the
label of T[] is selected from the empirical distribution
of labels in the array. Second, in order to compute the
probability of selecting this label, we use binary search
to determine the first index jo < i and the last index
j1 > i such that all entries T'[¢'] for jo < ¢’ < j; have
the same label as T'[i]. The probability of selecting
this label is (j1 — jo + 1)/n. Therefore, generating a
PR-sample requires no more than O(logn) queries to
the array.

All algorithms that we design for PR-samples can
be applied to this setting. Their query complex-
ity becomes the sample complexity of the original
PR-sample algorithm times an additional factor of

O(logn).

2.2 Geographic Distributions

The setting we consider now models the following sit-
uation where the area on which a given element of

the distribution occurs induces a connected compo-
nent in an underlying graph. In the simplest version,
we have a y/n X y/n chessboard and each square of
the board is occupied by a single element in [n]. If two
squares (z,y) and (', y’) are occupied by the same ele-
ment, there is a sequence (xo,y0) = (x,y), (x1,91), - - -,
(zk,yx) = (2',y') of squares connecting them. More
precisely, any pair of consecutive squares (z;,y;) and
(Tit1,Yi+1) (where 0 <4 < k) in the sequence is adja-
cent (i.e., |z; — xit1]| + |yi — yit1]| = 1). See Figure
for an example.

In this case, the probability of an element occupy-
ing a given square can be computed exactly in time
proportional to the area occupied by the element. It
suffices to run BFS exploration that moves only be-
tween adjacent squares containing the same element.
We now sketch an algorithm for the Distance between
Unknown Distributions problem in this settingﬂ It
is based on our algorithm that uses approximate PR-
samples. The algorithm learns approximate probabil-
ities of heavy elements by sampling and employs BFS
exploration for light elements.

Distance between Unknown Distributions. We
first assume that n > 1/€2. Let

t =n*/e=Tlog(1 +n)

be a threshold value. We want to estimate the prob-
abilities of all elements that occupy approximately ¢
or more squares. To this end, the algorithm samples

2We note that for Distinct Elements, an algorithm due

to Chazelle, Rubinfeld, and Trevisan [9] solves the problem
with O((1/€)?) queries. For Equality Testing, the standard

O(n?/3 /e*)-sample algorithm is better than the bound for
Distance between Unknown Distributions that we provide
here.
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Figure 1: Sample Applications

O(%-e?-log(l+n)) = O (n3/4e’3/2\/log(1 + n))
squares. Let S; and S; be the sets of elements
that have probability at least ¢/n and ¢/(2n), respec-
tively. Routinely applying the Chernoff and union
bounds, with high probability, the sample suffices
to find a set S, such that S; C S, C Sy and
additionally, it provides a multiplicative (1 + €/3)-
approximation to the probability of elements in S,.
For each element not in Sy, its exact probability
can be computed using BFS exploration with at
most O(t) queries. We can therefore apply our Dis-
tance KEstimation algorithm that uses approximate
PR-samples. Since it uses O (max {\/n/e,1/e*}) (1+
€¢/3)-PR-samples, the query complexity of this step is
bounded by O (t - max {/n/e,1/e2}) = O(t-/n/e) =
@) (n3/4e’3/2 log(1 + n)), where the first transition

follows from the assumption that n > 1/€2. Hence,
the query complexity of both steps of the algorithm is

bounded by O (n3/4e’3/2\/log(1 + n))

Additionally, note that when the number of queries in
the procedure described above is (n) or when n <

1/€? (in this case n = O(n3/4e’3/2\/log(l+n)>),
one can simply query all squares and com-

pare distributions directly.  This way we obtain
an algorithm that works for any n and makes

O(min{n?/4e=3/2,/log(1 4+ n),n}) queries.

General Bounded-Degree Graphs. The /nx+/n
chessboard example above easily extends to the set-
ting where the elements occupy nodes of a graph with
maximum degree bounded by a constant. We say
that a distribution of elements is geographic if the
subgraph induced by each element is connected. As
before, once we detect a specific element, its proba-
bility can be computed in O(7 - d) time, using BFS,
where 7 is the number of nodes occupied by the ele-

ment and d > 0 is a bound on the maximum degree.
If d = O(1), our algorithm for the Distance between
Unknown Distributions problem still requires at most

O(min{n®/*e=3/2,/log(1 4+ n),n}) queries.

We leave it as an open question whether there is an
algorithm A and a constant 6 > 0 such that for any
fixed € > 0, A uses O(n*/*~%) queries.

3 PRELIMINARIES

For simplicity, we assume that all our distributions are
on a finite discrete domain [n] = {1,2,...,n}. Since
our algorithms make no use of labels other than com-
paring them, this does not limit their applicability to
a more general set of labels.

For a discrete distribution D on [n], we write D[z]| for
x € [n] to denote the probability of drawing z from
D. For a set S C [n], we write D[S] to denote the
probability of drawing an element of S from D.

Throughout this paper, we use the total variation dis-
tance to measure the distance between two distribu-
tions:

drv(Dy,Ds) = max (D1[S] — Dals])

-3 > (D1l = i)

=1— Z min{D [z], D2[x]},

z€[n]

where it is easy to verify that the three expres-
sions of it are equivalent. In particular, we refer to
> vepn min{Diz], Do[z]} as the common probability
mass of D1 and Do

We make use of both the Chernoff bound and Hoeffd-
ing’s inequality.
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Algorithm 1: Testing if an unknown distribution D
is a given distribution D, with parameter € € (0, 1)
Let k = [6/€].

Collect k independent (1 + €¢/3)-PR-samples (z1,p1),

(x2,p2), -+, (xk, pr) from D.
if D, [2;]- (1+€¢/3) < p; for some i € [k] then reject
accept

Theorem 3.1 (Chernoff bound [10]). Let X = X; +
-+ X, where X1,..., X, aren independent Bernoulli
random wvariables such that Pr[X;] = p;. Let p =
E[X]. Then, for any 0 < § <1, we have

Pr[X > (1+6)u] < e #/3

and ,
Pr[X < (1—68)u] <e 1/2,

Theorem 3.2  (Hoeffding’s inequality). Let
Xi1,..., X, are n independent random wvariables
such that Prla; < X; <b] =1 forl1 <i<mn. Let
X=L(X1+-+X,) and p = E[X]. Then,

2n2t?
Pr[|X — pu] > t] < 2exp (W) .
i=1\" g

4 IDENTITY TESTING

We now prove Theorem We prove the up-
per bound as Lemma and the lower bound as
Lemma [£.21

4.1 TUpper Bound

We now show that Algorithm [I| solves the Identity
Testing problem. The algorithm collects O(1/¢) PR~
samples, searching for an element on which the un-
known distribution has a significantly higher probabil-
ity than the known distribution.

Lemma 4.1. Let D, be a distribution with the prob-
ability of each element known and let D be a dis-
tribution from which approximate PR-samples can be
drawn. For any parameter € € (0,1), Algorithm 1| col-
lects O(1/€) independent (14¢/3)-PR-samples from D.
If D = Dy, the algorithm accepts with probability 1. If
drv(D, Dy) > €, the algorithm rejects with probability
2/3.

Proof. The sample complexity of the algorithm is
clearly O(1/e). It is also obvious that it never re-
jects in the case that D = D,, because in this case,
for any (1 + €¢/3)-approximate PR-sample (x,p) from
D, it holds

Dyi[z]/(1 +¢€/3) <p < Dyifz]- (1 +¢/3).

It remains to prove that if drv(D,D,) > €, the algo-
rithm rejects with probability at least 2/3. Let S =
{z €[n]: D,lx]- (1+¢€/3) < Dlz]/(1+¢€/3)}. Clearly,
if a PR-sample (z,p) such that « € S is drawn from D
by the algorithm, the algorithm rejects. We claim that
D[S] > €/3 if the distance between distributions is at
least €. Suppose for contradiction that D[S] < €/3.
Then the common probability mass of D and D; is

Z min{D[z], D,[z]} > Z min{D[z], Di[z]}

z€[n] z€[n]\S

> Y Dz]/(1+¢/3)

z€[n]\S
=D[n]\ §]/(1 +¢/3)
= (1-D[S])/(1 +¢/3)?
> (1—¢€/3)/(1+¢/3)?
>(1—¢/3)°>1—e

This implies that the distance between distributions is
less than e, which contradicts the assumption that the
distributions are at distance at least e. We therefore
have D[S] > €/3. The probability that the algorithm
selects no PR-sample (x,p) from D such that z € §
(in which case it rejects) is at most

(1—¢/3)[0/1 < (1 —¢/3)5/¢ <e™2 < 1/3,

which implies that the algorithm rejects with proba-
bility at least 2/3. O

4.2 Lower Bound

Intuitively, our lower bound is based on the observa-
tion that if two distributions differ on a single element
of probability e (in which case the algorithm is ex-
pected to reject), it takes 2(1/€) samples to detect
the element they differ at. Before that happens the al-
gorithm does not know whether the distributions are
identical or their total variation distance is e.

Lemma 4.2. Ifn > 3, then the Identity Testing prob-
lem requires Q(1/€) PR-samples if an algorithm has to
succeed with probability at least 2/3.

Proof. We define distributions Dy and D; on [n]. The
probability of drawing 1 in each of them is 1 — ¢. For
Dy, the probability of drawing 2 equals € and the prob-
ability of drawing any integer greater than 2 is 0. For
Ds, the probability of drawing 3 is € and the proba-
bility of drawing 2 or any integer greater than 3 is 0.
The total variation distance between the distributions
is exactly e.

Let D, = Dy be the known distribution. We select
the unknown distribution D uniformly at random from
{Dy,D;}. The algorithm’s goal is to accept if D = Dy
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Algorithm 2: Estimate Total Variation Distance to

a Known Distribution D, with parameter € € (0,1)

Let k = [4/€].

Collect k independent (1 + €¢/3)-PR-samples (z1,p1),
(z2,p2), ..., (xk, px) from D.

return 1 — 1 > ik min{1, Dy[zi] /pi}

and reject if D = D;. We claim that the algorithm can-
not succeed with probability at least 2/3 if the number
of samples is at most 1/(10¢).

We say that a PR-sample (x,p) is exposing if x # 1.
For each of Dy and Dy, a PR-sample is exposing with
probability exactly e. If at most 1/(10¢) independent
PR-samples are drawn, the expected number of expos-
ing samples is 1/10. By Markov’s inequality, the prob-
ability that at least one of these samples is exposing
is bounded by 1/10. Note that the probability that
no exposing sample was selected is the same for Dy
and D;. In this case, the sequence of PR-samples con-
sists of pairs (1,1 — €) and for a randomly chosen D €
{Dy, D1}, the algorithm cannot be correct with prob-
ability greater than 1/2. Therefore, the probability
of success of any algorithm that uses at most 1/(10¢)
PR-samples is bounded by 1/2 +1/10 < 2/3. O

5 DISTANCE TO A KNOWN
DISTRIBUTION

We prove Theorem in this section. We prove the
upper bound as Lemma [5.1] and the lower bound as
Lemma

5.1 Upper Bound

We show that Algorithm [2] solves the Distance to
a Known Distribution problem using O(1/€%) PR-
samples.

Lemma 5.1. For any distribution D, with the proba-
bility of each element known and for any distribution
D, Algorithm collects O(1/€?) independent (1+¢/3)-
PR-samples from D and outputs an estimate E such
that with probability 2/3, |E — drv (D, Dy)| < €.

Proof. Let S = {z € [n] : D[z] > 0} be the set
of elements with non-zero probability in D. Let
Y = ) .cgmin{D,[z],D[z]}, which can be seen
as the probability mass shared by the distribu-
tions. We have dpv(Ds,D) = 1 — 9. Let T =
>iepg min{1, Dyfz;]/p;i}. We prove that with prob-
ability 2/3, |T — k¢| < €k, in which case we obtain
the desired bound |(1 — T/k) — drv(D1,D2)| < e. We
rewrite the definition of T as T' = >, -, Ti, where

T; = min{p;, Dy [z:]}/ps.-

We start by assuming that the samples obtained by
the algorithm are exact PR-samples, i.e., for all i € [k],
p; = D[z;]. For a single term T;, we have

E[T)] =) Dl Dl
z€S
= Zmin{D*[ZLD[Z}} =1
z€S

By the linearity of expectation, E[T] = ki. Since T;’s
are independent and each T; € [0, 1], we can apply
Hoeffding’s inequality:

Pr[|T — k| > ek/2] < 2exp (_Q(Ekk/W’)

2
= 2exp (—62> <272 < 1/3.

We now bound the impact that approximate PR-
samples can have on the output of the algorithm. In
this case, T; = min{D,[xz;],p;}/pi, and therefore, if
(1+ ¢/3)-PR~samples are used,

1 min{D,[z;], Dlz;]} ,
1+¢/3 Dlx;] -
min{D,[z;], D[z;]}

D[IZ] ’

<(1+¢/3)-

as opposed to T; = min{D,[x;], D[z;]}/D[x;]. Let T"
denote the estimate obtained using exact PR-samples
(with the same sequence of z;’s) as opposed to approx-
imate PR-samples. We have

Therefore, |77 — T| < €I"/3. With probability 2/3,
|T" — k| < ek/2, and hence,

T — k| <|T —T'|+|T' — kp| < eT'/3 + €k /2
<(1+4¢€/3)k-€/3+€k/2 < ek. O

5.2 Lower Bound

To prove the lower bound, we let the known distri-
bution D, be a uniform distributions over half of the
domain. We define two families of distributions: The
first family contains all the uniform distributions over
half of the domain with total variation distance 1/2 to
the known distribution. The second family contains
all the uniform distributions over half of the domain
with total variation distance 1/2 — 3¢ to the known
distribution.

We prove the lower bound by showing that it is impos-
sible to distinguish whether the unknown distribution
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Algorithm 3: Estimate Total Variation Distance of

Two Distributions on [n] with parameter € € (0,1)

Let k = [max{5y/n/e,48/€*}].

Collect k independent (1 + €¢/3)-PR-samples (z1,p1),
(z2,p2), ..., (T, px) from Dy.

Collect k independent (1 + €¢/3)-PR-samples (y1, ¢1),
(y2,92)s - - (Yk, qx) from Da.

Let T = Zi,je[k] s.b. zi=y; min{p;, ¢;}/(pigj)-

return 1 — T'/k?

is from the first family or from the second family with
probability at least 2/3 using c¢/e? samples for a small
constant c.

Lemma 5.2. If ¢ < 1/10000 and n = w(1/€*), then
the Distance to a Known Distribution problem requires
Q(1/€?) PR-samples if an algorithm has to succeed
with probability at least 2/3.

6 EQUALITY TESTING AND
DISTANCE BETWEEN
UNKNOWN DISTRIBUTIONS

We prove Theorem in this section. We prove the
upper bound as Lemma and the lower bound as
Lemma

6.1 Upper Bound

We show that Algorithm [3] estimates the total varia-
tion distance between two unknown distributions using
O(max{y/n/e,1/e*}) PR-samples.

Lemma 6.1. For two distributions D1 and Dy on
[n] and a parameter € € (0,1), Algorithm [§ collects
O(max{y/n/e,1/e*}) (1 + €/3)-PR-samples from the
distributions and outputs an estimate E such that with
probability 2/3, |E — drv(D1,D2)| < €.

Proof. Let S = {x € [n] : D1[z] > 0 A Dy[z] > 0} be
the set of elements with non-zero probability in both
distributions. Let ¢ = 3 _ ¢ min{D1[z], D3[2]} be the
overlap of the distributions. We have drv (D1, Ds) =
1—1). We prove that with probability 2/3, |T — k%] <
ek?, in which case we obtain the desired bound |(1 —
T/]CZ) — dTv(Dl,D2)| S €.

We rewrite the definition of T as T'= 7, _, .. T} j,
where -

if €T; = yj,

T, — {min{?u 4}/ (pig;)

0 otherwise.

We start by assuming that the samples obtained by
the algorithm are exact PR-samples, i.e., for all i € [k],

pi = Dlz;] and ¢; = D[y;]. For a single term T ;, we
have

B . . min{D; [z], Da[2]}
Tl = 2 DBl P
= 3" min{Dy[2], Do [2]} = o
z€S

By the linearity of expectation, E[T] = k?i. This im-
plies that the expected value returned by the algorithm
is E[1-T/k?] = 1—1 = dpv(D1,D2). We now bound
the variance of T: Var(T') = E[T?] — (E[T])?. We have

E[T? = Y E[T%]+ Y E[T,T;]
i,5€[k] i,5,5" €[K]
i#5’
+ Y E[T,Tv 1+ > E[TTw )
i’ jE[k] i,i’ 5,5 €[k
i#d’ i#d’
J#5’

We now bound each of the terms in the above equation.
First,

21 = k2 z| D2z min{Da[z]. Dafe]} 2
ST ORI =KD D ]DQ[]< D1 [2| D[] >

i,j€lk] zeS

2 Z min{D; [z Dz (2]} < K2n.

maX{D1 Dilz]} —
Second,
> E[T,Ti ]
i,5,5" €[K]
i3’
T Doy (mindDi[, Daf]} )
=¥ T pueai) (P )
<K (k—1)>_ min{Di[z], Da[2]} = k*(k — 1)¢.
z€S

By symmetry, >, v icp E[Ti;Tw ;] is also at most
i’

k2?(k — 1)9. Finally,
Z E[T:,;Ty 5]
i,i’,5,5" €[k]
i#i’
i3’
=k (k—1)* Y Di[2]Da[2] D1 [w]Ds[w]
z,weS
~( min{D[z], D2 2]} min{ D1 [w], D2[w]}
( D [2] D2 2] > ( D [w]D2[w] >
—1)? (Z min{D; [z],m[z}})
z€S
: (Z min{D; [w], D> [w]})
weS
=k (k —1)%%



Probability—Revealing Samples

“ Thus, E[T?] < k?n + 2k3y + k%%, and Var(T) <
k2n+2k3¢ + k4% — (k29)? = k?n+2k3¢ < k?n+2k3.
Since k > max{5y/n/e, 48/}, n < €2k?/25 and 6 <
€2k /8. We apply these inequalities:

3Var(T) < v/3k?n + 6k3

< /3K - (€2k2/25) + (€2k/8) - k3
< ek?/2.

By Chebyshev’s inequality,
Pr (IT - E[T]| > ek?/2)
< Pr <|T —E[T]| > 3Var(T)) <1/3.

Therefore, for exact PR-samples, the algorithm out-
puts an estimate at distance at most €/2 from
dtv (D1, Ds) with probability at least 2/3.

We now bound the impact that approximate PR-
samples can have on the output of the algorithm. A
term T; ; can be non-zero only if z; = y; (which can
happen only if both D, [x;] and D[y, ] are non-zero). In
this case, T; ; = min{p;, q;}/(pig;) = 1/ max{p;,q;},
and therefore, if (1 4 €/3)-PR-samples are used,

I min{D; [z;], Daly,]}

1+¢/3 D [xi]Daly;] =T

< (1+¢/3)- mmi{)?[;[igﬁ[]yﬂ}
as opposed to T; ; =
min{D:[z;], Do[y;]}/ (D1[x:]Dofy;]).  Let T, de-

note the estimate obtained using exact PR-samples
(with the same sequence of z;’s and y;’s) as opposed
to approximate PR-samples. We have

T,
<T < (1+¢/3)T,.

(1—¢/3)T, < 1+¢/3°

Therefore, [Ty, — T| < €T,/3. With probability 2/3,
T, — k2| < €k?/2, and hence,
T — k% < |T — To| + |Th — k*| < €Ty /3 + ek?/2
< (1+€/2)k? - €/3 + ek?/2
< (1/3+¢/6+1/2) - ek? < ek?,

which finishes the proof. O

6.2 Lower Bound

To prove the lower bound, we construct two families
of distribution pairs, in which all the distributions are
uniform over half of the domain. The first family con-
tains all the pairs of identical distributions. The sec-
ond family contains all the pairs of distributions with
total variation distance e.

We show that it is impossible to distinguish whether
the two unknown distributions are from the first family
or from the second family with probability at least 2/3
using cy/n/€? samples for a small constant c.
Lemma 6.2. If ¢ < 1/100 and n = w((1/€)'?), then
the FEquality Testing problem requires Q(y/n/e) PR-
samples if an algorithm has to succeed with probability
at least 2/3.

7 DISTINCT ELEMENTS

We prove Theorem in this section. We prove the
upper bound as Lemma and the lower bound as
Lemma

7.1 TUpper Bound

Algorithm 4: Estimating the Number of Distinct El-

ements up to an Additive en

Let k = [27/€%].

Collect k independent (1 + €¢/3)-PR-samples (z1,p1),
(z2,p2), ..., (xk, p) from D.

return %Zie[k] 1/p;

Lemma 7.1. Lete € (0,1) and let D be a discrete dis-
tribution where each element that can be drawn from D
has probability at least 1/n. Algorithm uses O(1/€?)
(1 + €/3)-PR-samples to compute an estimate to the
number of distinct elements in D. With probability
2/3, the difference between the estimate and the num-
ber of distinct elements is bounded by en.

7.2 Lower Bound

We show the lower bound by constructing two families
of distributions. The support size of every distribution
in the first family is 3n/4, and the support size of
every distribution in the second family n(3/4—3¢). We
prove the lower bound of Distinct Elements problem
by showing that it is impossible to distinguish whether
the unknown distribution is from the first family or
from the second family with probability at least 2/3
using ¢/e? samples for a small constant c.

Theorem 7.2. If e < 1/10000 and n = w(1/€*), then
the Distinct Elements problem requires Q(1/e?) PR-
samples if an algorithm has to succeed with probability
at least 2/3.
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