Appendix: Worst-case Optimal Submodular Extensions for
Marginal Estimation

1 Proofs for Potts Model Extension

Remark 1 We show using induction over the number of variables that with 1-of-L encoding
for Potts,
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Proof. Let t be the number of variables, V¢ be the corresponding ground set and M? be the sets
corresponding to valid labelings. Equation (1) clearly holds for ¢t = 1.
Let us assume that the relation holds for ¢ = N, that is,
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Remark 2 Given any submodular extension F'(.) of a Potts energy function E(.), its Lovasz
extension f(.) defines an LP relaxation of the MAP problem for E(.) as

min f(y). (4)
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Proof. By definition of a submodular extension and the Lovasz extension, F(x) = F(Ax) =
f(14,) for all valid labelings x. Also, from property 1, f(y) is maximum of linear functions.
Hence, f(y) is a piecewise linear relaxation of F(x).

The domain A is a polytope formed by union of N probability simplices

A= {ya € RLb’a = 0 and <17Ya> = 1} (5)

With objective as maximum of linear functions and domain as a polytope, we have an LP
relaxation of the corresponding MAP problem. O

Proposition 1. In the limit T — 0, the following problem for Potts energies
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Proof. In the limit of T — 0, we can rewrite the above problem as

N

min Zmlax(fsa,;). (8)
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In vector form, the problem becomes
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A is the union of N probability simplices:
A ={y, € RFly, = 0and (1,y,) = 1} (11)

where y, is the component of y corresponding to the a-th variable. By the minimax theorem
for LP, we can reorder the terms:
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Recall that maxse pp(r) (¥, s) is the value of the Lovasz extension of F at y, that is, f(y). Hence,
as T' — 0, the marginal inference problem converts to minimising the Lovasz extension under
the simplices constraint:
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Proposition 2. The objective function E(y) of the LP relaxation (P-LP) is the Lovasz extension
of Fpots(A) = X1 | Fi(A), where
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Proof. Since Fpyts is sum of Ising models F;, we first focus on a particular label ¢ and then
generalize. Consider a graph with only two variables X, and X}, with an edge between them.
The ground set in this case is {vg;, vp; . Let the corresponding relaxed indicator variables be
Y = {Yaj, Ynj }, such that ya, ys: € [0,1] and assume y,; > yp;- The Lovasz extension is:

F¥) = Yai - [Fi({vai}) — Fi{})] + vbi - [Fi({Vai, voi}) — Fi({vai})]

= yai - [(@a () + 52 ) = 01+ w01 [(6a () + 65 (7)) = (60 () + 2 )]
= 60 () Yas + 01 (1) - i+ 5 (i — 1) (15)
In general for both orderings of y,, and yp;, we can write
F) = 0a) s + 003) - Ui + 2+ s — (16)

Extending Lovasz extension (equation (16)) to all variables and labels gives E(y) in (P-LP). O

2 Proofs for Hierarchical Potts Model Extension

Transformed Tightest LP Relaxation We take (T-LP) and rewrite it using indicator vari-
ables for all labels and meta-labels. Let R denote the set of all labels and meta-labels, that is, all
nodes in the tree apart from the root. Also, let £ denote the set of labels, that is, the leaves of
the tree. Let T; denote the subtree which is rooted at the i-th node. We introduce an indicator
variable z,; € {0,1}, where

Zai =4 i 'e £ (17)
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We need to extend the definition of unary potentials to the expanded label space as follows:
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We can now rewrite problem (T-LP) in terms of new indicator variables z4;:
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where A’ is the convex hull of the vectors satisfying

Y zai=1, 2z €{0,1} Vac X,ie L (20)
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Constraint (21) ensures consistency among labels and meta-labels, that is, if a label is assigned
then all the meta-labels which lie on the path from the root to the label should be assigned as
well. We are now going to identify a suitable set encoding and the worst-case optimal submodular
extension using (T-LP-FULL).

Remark 3 Given any submodular extension F(.) of a hierachical Potts energy function E(.),
its Lovasz extension defines an LP relaxation of the corresponding MAP estimation problem as

min f(z). (22)
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Proof. By definition of a submodular extension and the Lovasz extension, F(x) = F(Ax) =
f(14,) for all valid labelings x. Also, from property 1, f(y) is maximum of linear functions.
Hence, f(y) is a piecewise linear relaxation of E(x).

We can write the domain A’ as

A ={y, e RM|y, =0, (1,yl) =1, ya(pai) =1 0or ya(pai) = 0Vi € [1,L]}  (23)

where y, is the component of y corresponding to the a-th variable, y'®**! is the component of y,

corresponding to the L labels, and y,(pa;) is the component of y, corresponding to the elements
of Pai-

Since A’ is defined by linear equalities and inequalities, it is a polytope. With objective
as maximum of linear functions and domain as a polytope, we have an LP relaxation of the
corresponding MAP problem. O

Proposition 3. In the limit T — 0, the following problem for hierarchical Potts energies
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Proof. In the limit of T'— 0, we can rewrite the above problem as
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In vector form, the problem becomes
min max —(z,s’) (27)
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where A = {z, € RY|z, = 0 and (1,2,) = 1} (29)

where z, is the component of z corresponding to the a-th variable. We can unpack s’ using

shi = Z St. (30)
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and rewrite problem (28) as
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The new constraint set A’ ensures that the binary entries of labels and meta-labels is consistent:

where A’ = {y, € RM|y, =0, (1,yl2) =1,

a

Ya(Pai) =1 or yo(pai) = OVi € [1, L]} (32)

where y, is the component of y corresponding to the a-th variable, y!a*¢! is the component of y,

corresponding to the L labels, and y,(pq;) is the component of y, corresponding to the elements

of Pai-
By the minimax theorem for LP, we can reorder the terms:
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Recall that maxge pp(r) (¥, s) is the value of the Lovasz extension of F at y, that is, f(y). Hence,
as T — 0, the marginal inference problem converts to minimising the Lovasz extension under
the constraints A’:

— min f(y). (34)
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Proposition 4. The objective function E(z) of (T-LP-FULL) is the Lovasz extension of Fy_ ggr(A) =
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Proof. We observe that F,._psr is of exactly the same form as Fp,its, except that the Ising
models F; are defined over not just labels, but meta-labels as well. Using the same logic as in
the proof of proposition 2, each F; is the Lovasz extension of

Ei(z) = Z (1) « Zai + Z Wab - 1, * |Zai — Zbi (36)
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and the results follows. O

Proposition 5. Computing the subgradient of E(y) in (P-LP) is equivalent to computing the
conditional gradient for the submodular function Fpogts.



Proof. Due to Edmond’s greedy algorithm, the Lovasz extension f of a given submodular function

can be written as

T
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Hence, f(y) is the pointwise maximum of linear functions. The subdifferential of f(y) at yo is
the differential of the ‘active’ linear function at yg. Hence,

df(y) = argmax y’ -s (38)
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This is exactly the computation of conditional gradient, and hence we have proved the equiva-
lence. [



