
Appendix: Worst-case Optimal Submodular Extensions for

Marginal Estimation

1 Proofs for Potts Model Extension

Remark 1 We show using induction over the number of variables that with 1-of-𝐿 encoding
for Potts,

∑︁
𝐴∈ℳ

exp(−𝑠(𝐴)) =

𝑁∏︁
𝑎=1

𝐿∑︁
𝑖=1

exp(−𝑠𝑎𝑖). (1)

Proof. Let 𝑡 be the number of variables, 𝑉 𝑡 be the corresponding ground set and ℳ𝑡 be the sets
corresponding to valid labelings. Equation (1) clearly holds for 𝑡 = 1.

Let us assume that the relation holds for 𝑡 = 𝑁 , that is,

∑︁
𝐴𝑁∈ℳ𝑁

exp(−𝑠(𝐴𝑁 )) =

𝑁∏︁
𝑎=1

𝐿∑︁
𝑖=1

exp(−𝑠𝑎𝑖) (2)

For 𝑡 = 𝑁 + 1,

∑︁
𝐴𝑁+1∈ℳ𝑁+1

exp(−𝑠(𝐴𝑁+1)) =

𝐿∑︁
𝑖=1

∑︁
𝐴𝑁∈ℳ𝑁

exp(−𝑠(𝐴𝑁 ) − 𝑠𝑁+1,𝑖)

=

𝐿∑︁
𝑖=1

exp(−𝑠𝑁+1,𝑖)
∑︁

𝐴𝑁∈ℳ𝑁

exp(−𝑠(𝐴𝑁 ))

=

𝐿∑︁
𝑖=1

exp(−𝑠𝑁+1,𝑖)

𝑁∏︁
𝑎=1

𝐿∑︁
𝑖=1

exp(−𝑠𝑎𝑖)

=
𝑁+1∏︁
𝑎=1

𝐿∑︁
𝑖=1

exp(−𝑠𝑎𝑖) (3)

Remark 2 Given any submodular extension 𝐹 (.) of a Potts energy function 𝐸(.), its Lovasz
extension 𝑓(.) defines an LP relaxation of the MAP problem for 𝐸(.) as

min
y∈Δ

𝑓(y). (4)
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Proof. By definition of a submodular extension and the Lovasz extension, 𝐸(x) = 𝐹 (𝐴x) =
𝑓(1𝐴x) for all valid labelings x. Also, from property 1, 𝑓(y) is maximum of linear functions.
Hence, 𝑓(y) is a piecewise linear relaxation of 𝐸(x).

The domain ∆ is a polytope formed by union of 𝑁 probability simplices

∆ = {y𝑎 ∈ R𝐿|y𝑎 ⪰ 0 and ⟨1,y𝑎⟩ = 1} (5)

With objective as maximum of linear functions and domain as a polytope, we have an LP
relaxation of the corresponding MAP problem.

Proposition 1. In the limit 𝑇 → 0, the following problem for Potts energies

min
s∈𝐸𝑃 (𝐹 )

𝑔𝑇 (s) =

𝑁∑︁
𝑎=1

𝑇 · log

𝐿∑︁
𝑖=1

exp(−𝑠𝑎𝑖
𝑇

). (6)

becomes

−min
y∈Δ

𝑓(y). (7)

Proof. In the limit of 𝑇 → 0, we can rewrite the above problem as

min
s∈𝐸𝑃 (𝐹 )

𝑁∑︁
𝑎=1

max
𝑖

(−𝑠𝑎𝑖). (8)

In vector form, the problem becomes

min
s∈𝐸𝑃 (𝐹 )

max
y∈Δ

−⟨y, s⟩ (9)

= − max
s∈𝐸𝑃 (𝐹 )

min
y∈Δ

⟨y, s⟩ (10)

∆ is the union of 𝑁 probability simplices:

∆ = {y𝑎 ∈ R𝐿|y𝑎 ⪰ 0 and ⟨1,y𝑎⟩ = 1} (11)

where y𝑎 is the component of y corresponding to the 𝑎-th variable. By the minimax theorem
for LP, we can reorder the terms:

− min
y∈Δ

max
s∈𝐸𝑃 (𝐹 )

⟨y, s⟩ (12)

Recall that maxs∈𝐸𝑃 (𝐹 )⟨y, s⟩ is the value of the Lovasz extension of 𝐹 at y, that is, 𝑓(y). Hence,
as 𝑇 → 0, the marginal inference problem converts to minimising the Lovasz extension under
the simplices constraint:

− min
y∈Δ

𝑓(y) (13)
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Proposition 2. The objective function 𝐸(y) of the LP relaxation (P-LP) is the Lovasz extension

of 𝐹𝑃𝑜𝑡𝑡𝑠(𝐴) =
∑︀𝐿

𝑖=1 𝐹𝑖(𝐴), where

𝐹𝑖(𝐴) =
∑︁
𝑎

𝜑𝑎(𝑖)[|𝐴 ∩ {𝑣𝑎𝑖}| = 1]+∑︁
(𝑎,𝑏)∈𝒩

𝑤𝑎𝑏

2
· [|𝐴 ∩ {𝑣𝑎𝑖, 𝑣𝑏𝑖}| = 1]. (14)

Proof. Since 𝐹𝑃𝑜𝑡𝑡𝑠 is sum of Ising models 𝐹𝑖, we first focus on a particular label 𝑖 and then
generalize. Consider a graph with only two variables 𝑋𝑎 and 𝑋𝑏 with an edge between them.
The ground set in this case is {𝑣𝑎𝑖, 𝑣𝑏𝑖}. Let the corresponding relaxed indicator variables be
y = {𝑦𝑎𝑗 , 𝑦𝑏𝑗}, such that 𝑦𝑎𝑖, 𝑦𝑏𝑖 ∈ [0, 1] and assume 𝑦𝑎𝑖 > 𝑦𝑏𝑖. The Lovasz extension is:

𝑓(y) = 𝑦𝑎𝑖 · [𝐹𝑖({𝑣𝑎𝑖}) − 𝐹𝑖({})] + 𝑦𝑏𝑖 · [𝐹𝑖({𝑣𝑎𝑖, 𝑣𝑏𝑖}) − 𝐹𝑖({𝑣𝑎𝑖})]

= 𝑦𝑎𝑖 · [
(︁
𝜑𝑎 (𝑗) +

𝑤𝑎𝑏

2

)︁
− 0] + 𝑦𝑏𝑖 · [(𝜑𝑎 (𝑗) + 𝜑𝑏 (𝑗)) −

(︁
𝜑𝑎 (𝑗) +

𝑤𝑎𝑏

2

)︁
]

= 𝜑𝑎 (𝑗) · 𝑦𝑎𝑖 + 𝜑𝑏 (𝑗) · 𝑦𝑏𝑖 +
𝑤𝑎𝑏

2
· (𝑦𝑎𝑖 − 𝑦𝑏𝑖) (15)

In general for both orderings of 𝑦𝑎𝑏 and 𝑦𝑏𝑖, we can write

𝑓(y) = 𝜑𝑎(𝑗) · 𝑦𝑎𝑖 + 𝜑𝑏(𝑗) · 𝑦𝑏𝑖 +
𝑤𝑎𝑏

2
· |𝑦𝑎𝑖 − 𝑦𝑏𝑖| (16)

Extending Lovasz extension (equation (16)) to all variables and labels gives 𝐸(y) in (P-LP).

2 Proofs for Hierarchical Potts Model Extension

Transformed Tightest LP Relaxation We take (T-LP) and rewrite it using indicator vari-
ables for all labels and meta-labels. Let ℛ denote the set of all labels and meta-labels, that is, all
nodes in the tree apart from the root. Also, let ℒ denote the set of labels, that is, the leaves of
the tree. Let 𝑇𝑖 denote the subtree which is rooted at the 𝑖-th node. We introduce an indicator
variable 𝑧𝑎𝑖 ∈ {0, 1}, where

𝑧𝑎𝑖 =

{︃
𝑦𝑎𝑖 if 𝑖 ∈ ℒ
𝑦𝑎(𝑇𝑖) if 𝑖 ∈ ℛ− ℒ

(17)

We need to extend the definition of unary potentials to the expanded label space as follows:

where 𝜑′
𝑎(𝑖) =

{︃
𝜑𝑎(𝑖) if 𝑖 ∈ ℒ
0 if 𝑖 ∈ ℛ− 𝐿

(18)

We can now rewrite problem (T-LP) in terms of new indicator variables 𝑧𝑎𝑖:

(T-LP-FULL) min ̃︀𝐸(z) =
∑︁
𝑖∈ℛ

∑︁
𝑎∈𝒳

𝜑′
𝑎(𝑖) · 𝑧𝑎𝑖+∑︁

𝑖∈ℛ

∑︁
(𝑎,𝑏)∈𝒩

𝑤𝑎𝑏 · 𝑙𝑇𝑖
· |𝑧𝑎𝑖 − 𝑧𝑏𝑖|

such that z ∈ ∆′ (19)
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where ∆′ is the convex hull of the vectors satisfying∑︁
𝑖∈ℒ

𝑧𝑎𝑖 = 1, 𝑧𝑎𝑖 ∈ {0, 1} ∀𝑎 ∈ 𝒳 , 𝑖 ∈ ℒ (20)

and 𝑧𝑎𝑖 =
∑︁

𝑗∈𝐿(𝑇𝑖)

𝑧𝑎𝑗 . ∀𝑎 ∈ 𝒳 , 𝑖 ∈ ℛ− ℒ (21)

Constraint (21) ensures consistency among labels and meta-labels, that is, if a label is assigned
then all the meta-labels which lie on the path from the root to the label should be assigned as
well. We are now going to identify a suitable set encoding and the worst-case optimal submodular
extension using (T-LP-FULL).

Remark 3 Given any submodular extension 𝐹 (.) of a hierachical Potts energy function 𝐸(.),
its Lovasz extension defines an LP relaxation of the corresponding MAP estimation problem as

min
z∈Δ′

𝑓(z). (22)

Proof. By definition of a submodular extension and the Lovasz extension, 𝐸(x) = 𝐹 (𝐴x) =
𝑓(1𝐴x) for all valid labelings x. Also, from property 1, 𝑓(y) is maximum of linear functions.
Hence, 𝑓(y) is a piecewise linear relaxation of 𝐸(x).

We can write the domain ∆′ as

∆′ = {y𝑎 ∈ R𝑀 |y𝑎 ⪰ 0, ⟨1,y𝑙𝑎𝑏𝑒𝑙
𝑎 ⟩ = 1, y𝑎(𝑝𝑎𝑖) = 1 or y𝑎(𝑝𝑎𝑖) = 0∀𝑖 ∈ [1, 𝐿]} (23)

where y𝑎 is the component of y corresponding to the 𝑎-th variable, y𝑙𝑎𝑏𝑒𝑙
𝑎 is the component of y𝑎

corresponding to the 𝐿 labels, and y𝑎(𝑝𝑎𝑖) is the component of y𝑎 corresponding to the elements
of 𝑝𝑎𝑖.

Since ∆′ is defined by linear equalities and inequalities, it is a polytope. With objective
as maximum of linear functions and domain as a polytope, we have an LP relaxation of the
corresponding MAP problem.

Proposition 3. In the limit 𝑇 → 0, the following problem for hierarchical Potts energies

min
s∈𝐸𝑃 (𝐹 )

𝑔𝑇 (s) =

𝑁∑︁
𝑎=1

𝑇 · log

𝐿∑︁
𝑖=1

exp(−𝑠′𝑎𝑖
𝑇

). (24)

becomes:

− min
z∈Δ′

𝑓(z). (25)

Proof. In the limit of 𝑇 → 0, we can rewrite the above problem as

min
s∈𝐸𝑃 (𝐹 )

𝑁∑︁
𝑎=1

max
𝑖

(−𝑠′𝑎𝑖). (26)

In vector form, the problem becomes

min
s∈𝐸𝑃 (𝐹 )

max
z∈Δ

−⟨z, s′⟩ (27)

= − max
s∈𝐸𝑃 (𝐹 )

min
z∈Δ

⟨z, s′⟩ (28)
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where ∆ = {z𝑎 ∈ R𝐿|z𝑎 ⪰ 0 and ⟨1, z𝑎⟩ = 1} (29)

where z𝑎 is the component of z corresponding to the 𝑎-th variable. We can unpack s′ using

𝑠′𝑎𝑖 =
∑︁
𝑡∈𝑝𝑎𝑖

𝑠𝑡. (30)

and rewrite problem (28) as

− max
s∈𝐸𝑃 (𝐹 )

min
y∈Δ′

⟨y, s⟩ (31)

The new constraint set ∆′ ensures that the binary entries of labels and meta-labels is consistent:

where ∆′ = {y𝑎 ∈ R𝑀 |y𝑎 ⪰ 0, ⟨1,y𝑙𝑎𝑏𝑒𝑙
𝑎 ⟩ = 1,

y𝑎(𝑝𝑎𝑖) = 1 or y𝑎(𝑝𝑎𝑖) = 0∀𝑖 ∈ [1, 𝐿]} (32)

where y𝑎 is the component of y corresponding to the 𝑎-th variable, y𝑙𝑎𝑏𝑒𝑙
𝑎 is the component of y𝑎

corresponding to the 𝐿 labels, and y𝑎(𝑝𝑎𝑖) is the component of y𝑎 corresponding to the elements
of 𝑝𝑎𝑖.

By the minimax theorem for LP, we can reorder the terms:

− min
y∈Δ′

max
s∈𝐸𝑃 (𝐹 )

⟨y, s⟩ (33)

Recall that maxs∈𝐸𝑃 (𝐹 )⟨y, s⟩ is the value of the Lovasz extension of 𝐹 at y, that is, 𝑓(y). Hence,
as 𝑇 → 0, the marginal inference problem converts to minimising the Lovasz extension under
the constraints ∆′:

− min
y∈Δ′

𝑓(y). (34)

Proposition 4. The objective function ̃︀𝐸(z) of (T-LP-FULL) is the Lovasz extension of 𝐹𝑟−HST(𝐴) =∑︀𝑀
𝑖=1 𝐹𝑖(𝐴), where

𝐹𝑖(𝐴) =
∑︁
𝑎

𝜑′
𝑎(𝑖)[|𝐴 ∩ {𝑣𝑎𝑖}| = 1]+∑︁

(𝑎,𝑏)∈𝒩

𝑤𝑎𝑏 · 𝑙𝑇𝑖
· [|𝐴 ∩ {𝑣𝑎𝑖, 𝑣𝑏𝑖}| = 1]. (35)

Proof. We observe that 𝐹𝑟−HST is of exactly the same form as 𝐹𝑃𝑜𝑡𝑡𝑠, except that the Ising
models 𝐹𝑖 are defined over not just labels, but meta-labels as well. Using the same logic as in
the proof of proposition 2, each 𝐹𝑖 is the Lovasz extension of

̃︀𝐸𝑖(z) =

⎛⎝∑︁
𝑎∈𝒳

𝜑′
𝑎(𝑖) · 𝑧𝑎𝑖 +

∑︁
(𝑎,𝑏)∈𝒩

𝑤𝑎𝑏 · 𝑙𝑇𝑖
· |𝑧𝑎𝑖 − 𝑧𝑏𝑖|

⎞⎠ (36)

and the results follows.

Proposition 5. Computing the subgradient of 𝐸(y) in (P-LP) is equivalent to computing the
conditional gradient for the submodular function 𝐹𝑃𝑜𝑡𝑡𝑠.
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Proof. Due to Edmond’s greedy algorithm, the Lovasz extension 𝑓 of a given submodular function
can be written as

𝑓(y) = max
s∈𝐸𝑃 (𝐹 )

y𝑇 · s (37)

Hence, 𝑓(y) is the pointwise maximum of linear functions. The subdifferential of 𝑓(y) at y0 is
the differential of the ‘active’ linear function at y0. Hence,

𝜕𝑓(y) = argmax
s∈𝐸𝑃 (𝐹 )

y𝑇 · s (38)

This is exactly the computation of conditional gradient, and hence we have proved the equiva-
lence.
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