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1 Proofs of results in the main
document

1.1 Convention

Equations in the main document are cited as (1), (20
etc., retaining their numbers, while new equations de-
fined in this document are numbered (S1), (S2) etc.

1.2 Proof of Theorem 3.1

As in the proof sketch in the main document, our first
step is to show that under the testing assumption T,∫

Θ

ξ(θ, θ∗) pθ(dθ) ≤ eCnε
κ
n , (1)

w.h.p. (w.r.t. P(n)
θ∗ ), where recall log ξ(θ, θ∗) =

`n(θ, θ∗) + ndκ(θ, θ∗). We first establish (1). Define

T1 =

∫
d(θ,θ∗)≤εn

ξ(θ, θ∗) pθ(dθ),

T2 =

∫
d(θ,θ∗)>εn

ξ(θ, θ∗) pθ(dθ).

Let us first tackle T1. Since Eθ∗ [e`n(θ,θ∗ ] = 1, we have,

Eθ∗T1 =

∫
d(θ,θ∗)≤εn

end
κ(θ,θ∗) pθ(dθ) ≤ enε

κ
n .

Hence, by Markov’s inequality, T1 ≤ eCnε
κ
n with prob-

ability at least 1− e−Cnεκn .

Let us now focus on T2. Write T2 = T21 + T22, where

T21 =

∫
d(θ,θ∗)>εn

(1− φn) ξ(θ, θ∗) pθ(dθ),

T22 =

∫
d(θ,θ∗)>εn

φn ξ(θ, θ
∗) pθ(dθ),

where φn is the test function from Assumption T. Fo-
cus on T21 first. Observe

Eθ∗T21 =

∫
d(θ,θ∗)>εn

Eθ[1− φn] end
κ(θ,θ∗) pθ(dθ)

≤ e−Cnε
κ
n .

This implies, by Markov’s inequality, than T21 ≤
e−Cnε

κ
n with probability at least 1− e−Cnεκn .

Finally, focus on T22. Since Eθ∗ [φn] ≤ e−nεκn , it follows
from Markov’s inequality that φn ≤ e−Cnε

κ
n with prob-

ability at least 1 − e−Cnεκn . Hence, T22 ≤ e−Cnε
κ
nT2

w.h.p. Adding the w.h.p. bound for T21, we obtain,
w.h.p.,

T2 ≤ e−Cnε
κ
nT2 + e−Cnε

κ
n .

Rearranging, T2 ≤ e−Cnε
κ

with probability at least
1 − e−Cnεκn . Combining with the bound for T1, (1) is
established.

Once (1) is established, the next step is to link the
integrand in (1) with the latent variables. To that
end, observe that

ξ(θ, θ∗) =
∑
sn

exp{h(θ, sn)} q̂Sn(sn),

where

h(θ, sn) = log
p(Y n |µ, sn)πsn

p(Y n | θ∗) q̂Sn(sn)
+ ndκ(θ, θ∗).

Combining the above with (10), we have, w.h.p.,∫
Θ

∑
sn

exp
{
h(θ, sn)

}
q̂Sn(sn) pθ(dθ) ≤ eCnε

κ
n . (2)

Next, use a well-known variational/dual representa-
tion of the KL divergence (see, e.g., Corollary 4.15 of
[1]) which states that for any probability measure µ
and any measurable function h with eh ∈ L1(µ),

log

∫
eh(η) µ(dη) = sup

ρ

[ ∫
h(η) ρ(dη)−D(ρ

∣∣∣∣µ)], (3)

where the supremum is over all probability measures
ρ � µ. In the present context, setting η = (θ, sn),
µ : = q̂Sn ⊗ pθ, and ρ = q̂θ ⊗ q̂Sn , it follows from
the variational lemma (3) and some rearrangement of
terms that w.h.p.

n

∫
Θ

dκ(θ, θ∗) q̂θ(dθ) ≤ nεκn +D(q̂θ
∣∣∣∣ pθ)− ∫

Θ

∑
sn

h(θ, sn) q̂θ(dθ).

From (7)–(9) (in the main document), it follows
that the right hand side of the above display equals
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nεκn + Ω(q̂θ, q̂Sn). The proof of the theorem then fol-
lows, since by definition, Ω(q̂θ, q̂Sn) ≤ Ω(qθ, qSn) for
any (qθ, qSn) in the variational family Γ.

1.3 Proof of Lemma 4.3

Since W1(P ∗, P ) < ε, there exists a coupling q such
that

∑
k,k′ qkk′‖µ∗k−µk′‖ < ε. Then

∑
k π
∗
k infk′ ‖µ∗k−

µk′‖ < ε. Since π∗k ≥ δ, we have infk′ ‖µ∗k−µk′‖ ≤ ε/δ
for all k = 1, . . . ,K. This means for any k, there
exists a k′ such that ‖µ∗k − µk′‖ < ε/δ. Without loss
of generality, let k′ = k. This proves the first part of
the assertion. To prove the second part, observe that
for k 6= k′, ‖µ∗k − µk′‖ ≥ ζ − ‖µ∗k′ − µk′‖ ≥ κ − ε/δ.
Then

ε > W1(P ∗, P ) ≥ inf
q

∑
k 6=k′

qkk′‖µ∗k − µk′‖

≥ (ζ − ε/δ) inf
C∈CXY

P(X 6= Y )

= (ζ − ε/δ)
K∑
k=1

|π∗k − πk|,

implying
∑K
k=1 |π∗k − πk| ≤ ε/(ζ − ε/δ).

1.4 Proof of Theorem 4.2

We first ensure the existence of the test functions Φn,
and Ψn as described in (20)-(23). First, we find find
the covering numbers N(ε,P,W1) and N(ε,F , h) to
upper bound the Type I and II errors of the test func-
tions Φn and Ψn. Note that

h2[f(· |P1) || f(· |P2)] ≤
K∑
k=1

|π1,k − π2,k|+

k∑
k=1

π1,k ‖µ1,k − µ2,k‖ .

Hencd N(ε,F , h) ≤ N(ε2/2,SK−1, || · ||1) ×
{N(ε2/2, Cµ, || · ||)}K where || · ||1 denotes the L1

norm between two probability vectors and || · || de-
notes the Euclidean norm. From Lemma A.4 of [2],
we obtain N(ε2/2,SK−1, || · ||1) ≤ (10/ε2)K−1. Also,
{N(ε2/2, Cµ, || · ||)} ≤ (2CU/ε

2)d for a global constant
CU is the diameter of the set Cµ. Then N(ε,F , h) ≤
(C/ε2)dK for some constant C > 0. To obtain an up-
per bound for N(ε,P,W1), we note that

W1(P1, P2) ≤
K∑
k=1

max{π1,k, π2,k} ‖µ1,k − µ2,k‖

+CU

K∑
k=1

|π1,k − π2,k|.

Hence N(ε,P,W1) ≤ N(ε/(2CU ),SK−1, || · ||1) ×
{N(ε/(2K), Cµ, || · ||)}K ≤ (CK/ε)dK(10/ε)K−1.

Hence logN(ε,F , h) . dK log(1/ε) and
logN(ε,P,W1) . dK log(K/ε). Then, we have
from (20)-(21)

EP∗Φn ≤ e−C1nε
2+dK log(1/ε) (4)

EP [1− Φn] ≤ e−C2nh
2[f(· |P ) || f(· |P∗)], (5)

for any P with h[f(· |P ) || f(· |P ∗)] > ε. In this
case, we choose ε ≡ εn to be as constant multiple of
{(dK/n) log n}1/2. Also, we have from (22)–(23)

EP∗Ψn ≤ e−C1nε
2+dK log(K/ε) (6)

EP [1−Ψn] ≤ e−C2nW
2
1 (P,P∗), (7)

for any P with W1(P, P ∗) > ε. In this case,
we choose ε ≡ εn to be as constant multiple of
{(dK/n) log(Kn)}1/2.

Recall the two KL neighborhoods around (π∗, µ∗) with
radius (επ, εµ) as

Bn(π∗, επ) =
{
D(π∗ ||π) ≤ ε2

π, V (π∗ ||π) ≤ ε2
π

}
,

Bn(µ∗, εµ) =
{

sup
s
D
[
p(· |µ∗, s)

∣∣∣∣ p(· |µ, s)] ≤ ε2
µ,

sup
s
V
[
p(· |µ∗, s)

∣∣∣∣ p(· |µ, s)] ≤ ε2
µ

}
,

where we used the shorthand D(π∗ ||π) =∑
s π
∗
s log(π∗s/πs) to denote the KL divergence

between multinomial distributions with parameters
π∗, π ∈ SK . We choose qθ as the restriction of pθ into
Bn(π∗, επ)× Bn(µ∗, εµ).

It is easy to verify that under Assumption R, there
exists some constant C1 depending only on δ0 such
that Bn(π∗,

√
K ε) ⊃ {π : maxk |πk − π∗k| ≤ C1 ε}

(by using the inequality D(p || q) ≥ 2h2(p || q)). In
addition, for Gaussian mixture model, it is easy to
verify that the KL neighborhood Bn(µ∗, ε) contains
the set {µ : maxk ‖µk−µ∗k‖ ≤ 2 ε}. As a consequence,

with επ =
√
K ε and εµ = ε yields (using the prior

thickness assumption and the fact that the volumes
of {π : maxk |πk − π∗k| ≤ C1 ε} and {µ : max ‖µk −
µ∗k‖ ≤ C2 ε} are at least O(ε−K) and O

(
(
√
d/ε)dK

)
respectively). Then we have from Theorem 3.2,with
probability tending to one as n→∞,∫ {

h2
[
f(· | θ)

∣∣∣∣ f(· | θ∗)
]}
q̂θ(θ) dθ .

dK

n
log n+K ε2

+
dK

n
log

d

ε
.

Choosing ε =
√
d/n in the above display yields the

claimed bound.
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Also, we have with high probability∫ {
W 2

1

[
f(· | θ)

∣∣∣∣ f(· | θ∗)
]}
q̂θ(θ) dθ .

dK

n
log(Kn)

+K ε2 +
dK

n
log

d

ε
.

Choosing ε =
√
d/n in the above display yields the

claimed bound noting that the first term in the right
hand side of the preceding display is dominant.

1.5 Proof of Theorem 4.1

Under the notation in the paper, for each n = 1, . . . , N ,
the latent variable Sn = {zdn : d = 1, . . . , D}. We use
Theorem 3.2 with d = h (Hellinger metric) and view
each latent variable Sn per observation in the theo-
rem as a block of D independent latent variable per
observation. The existence of the test is automatic
[3] with the Hellinger metric (parameter space is com-
pact). This leads to that with probability tending to
one as N →∞,∫ D∑

d=1

h2
[
pd(· | θ)

∣∣∣∣ pd(· | θ∗)] dθ ≤ ( D∑
d=1

ε2
γd

+

K∑
k=1

ε2
βk

)

+
{
− 1

N

D∑
d=1

logPγd
[
BN (γ∗d , εγd)

]}
+
{
− 1

N

K∑
k=1

logPβk
[
BN (β∗k , εβk)

]}
,

where KL neighborhoods BN (γ∗d ; εγd) : =
{
D(γ∗d || γd)

≤ ε2
γd
, V (γ∗d || γd) ≤ ε2

γd

}
, for d = 1, . . . , D, and

BN (β∗k , εβk) =
{

maxkD
[
p(· |βk, k) || p(· |βk, k)

]
≤

ε2
βk
, maxSn V

[
p(· |βk, k) || p(· |βk, k)

]
≤ ε2

βk

}
.

Let Sβk denote the index set corresponding to the non-
zero components of βk for k = 1, . . . ,K, and Sγd
the index set corresponding to the non-zero compo-
nents of γd for d = 1, . . . , D. Under Assumption S,
it is easy to verify that for some sufficiently small
constants c1, c2 > 0, it holds for all d = 1, . . . , D
that BN (γ∗d , εγd) ⊃

{
‖(γd)(Sγd )c‖1 ≤ c1 εγd , ‖(γd)Sγd −

(γ∗d)Sγd ‖∞ ≤ c1 εγd
}

, and for all k = 1, . . . ,K that

BN (β∗k , εβk) ⊃
{
‖(βk)(Sβk )c‖1 ≤ c2 εβk , ‖(βk)Sβk

−
(β∗k)Sβd

‖∞ ≤ c2 εβd
}

. Applying Theorem 2.1 in [4],

we obtain the following prior concentration bounds for
high-dimensional Dirichlet priors

Pγd
{
‖(γd)(Sγd )c‖1 ≤ c1 εγd , ‖(γd)Sγd − (γ∗d)Sγd ‖∞ ≤ c1 εγd

}
& exp

{
− C ed log

K

εγd

}
, d = 1, . . . , D;

Pβk
{
‖(βk)(Sβk )c‖1 ≤ c2 εβk , ‖(βk)Sβk

− (β∗k)Sβk
‖∞ ≤ c2 εβd

}
& exp

{
− C dk log

V

εβk

}
, k = 1, . . . ,K,

for some constant C > 0.

Putting pieces together, we obtain∫ D∑
d=1

h2
[
pd(· | θ)

∣∣∣∣ pd(· | θ∗)] dθ . ( D∑
d=1

ε2
γd

+

K∑
k=1

ε2
βk

)

+
1

N

D∑
d=1

ed log
K

εγd
+

1

N

K∑
k=1

dk log
V

εβk
,

which leads to the desired bound by optimally choos-
ing εγd ’s and εβk ’s.
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