
On Statistical Optimality of Variational Bayes

Debdeep Pati Anirban Bhattacharya Yun Yang
Texas A&M University Texas A&M University Florida State University

Abstract

The article addresses a long-standing open
problem on the justification of using varia-
tional Bayes methods for parameter estima-
tion. We provide general conditions for ob-
taining optimal risk bounds for point esti-
mates acquired from mean-field variational
Bayesian inference. The conditions pertain
to the existence of certain test functions for
the distance metric on the parameter space
and minimal assumptions on the prior. A
general recipe for verification of the condi-
tions is outlined which is broadly applicable
to existing Bayesian models with or without
latent variables. As illustrations, specific ap-
plications to Latent Dirichlet Allocation and
Gaussian mixture models are discussed.

1 Introduction

Variational inference [24, 7, 39] is now a well-
established tool to approximate intractable posterior
distributions in hierarchical multi-layered Bayesian
models. The traditional Markov chain Monte Carlo
(MCMC; [17]) approach of approximating distribu-
tions with intractable normalizing constants draws
(correlated) samples according to a discrete-time
Markov chain whose stationary distribution is the tar-
get distribution. Despite their success and popularity,
MCMC methods can be slow to converge and lack scal-
ability in big data problems and/or problems involving
very many latent variables, which has fueled search for
alternatives.

In contrast to the sampling approach of MCMC, vari-
ational inference approaches the problem from an op-
timization viewpoint. First, a class of analytically
tractable distributions, referred to as the variational
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family, is identified for the problem at hand. For ex-
ample, in mean-field approximation, the set of param-
eters and latent variables is divided into blocks and
the variational distribution is assumed to be indepen-
dent across blocks. The distribution in the variational
family closest to the target distribution relative to the
Kullback–Leibler (KL) divergence is then used as a
proxy to the target. Implementation-wise, the above
optimization is commonly solved using coordinate de-
scent or alternating minimization. A comprehensive
review of various aspects of variational inference can
be found in the recent article by [9].

Variational inference has arguably found its most
potent applications in latent variable models such
as mixture models, hidden Markov models, graphi-
cal models, topic models, and neural networks; see
[28, 5, 39, 23, 15, 37, 8, 10, 20] for a flavor of this
enormous literature. Due to the fast convergence prop-
erties of the variational objective, variational inference
algorithms are typically orders of magnitude faster in
big data problems compared to MCMC approaches
[26, 25, 1]. However, in spite of their tremendous
empirical success, a general statistical theory qualify-
ing the statistical properties of a variational solution
is lacking. Existing results operate in a case-by-case
manner, often directly analyzing the specific iterative
algorithm to characterize properties of its limit; see
Section 5.2 of [9] for a comprehensive review. These
analyses typically require sufficient tractability of the
successive steps of the iterative algorithm, and can be
difficult to adapt to minor changes in the prior. More
recently [3, 42, 2] modified the objective function to
introduce an inverse-temperature parameter, and ob-
tained general guarantees for the variational solution
under this modified objective function.

In this article, we aim to address the general ques-
tion as to whether point estimates obtained from usual
variational approximations share the same statistical
accuracy as those from the actual posterior. We clar-
ify at the onset that we operate in a frequentist setting
assuming the existence of a true data generating pa-
rameter. Our novel contribution is to relate the Bayes
risk relative to the variational solution for a general
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distance metric (defined on the parameter space) to
(i) the existence of certain test functions for testing
the true parameter against complements of its neigh-
borhood under the error metric, and (ii) the size of
the variational objective function. As an important
consequence of such Bayes risk bounds, risk bounds
for variational point estimates can be readily derived
when the distance metric is convex. If the risk of the
variational point estimate coincides with the contrac-
tion rate of the exact posterior at the true parameter,
it can be argued that there is no loss of statistical effi-
ciency, at least asymptotically, in using the variational
approximation.

We identify a number of popularly used models where
the conditions can be satisfied and the variational
point estimate attains the minimax rate. Since vari-
ational Bayes is primarily used for point estimation,
our theory suggests that variational Bayes successfully
achieves its desiderata. As vignettes, we present two
non-trivial examples in the form of density estimation
in Latent Dirichlet Allocation (LDA) for topic model-
ing, and estimating component specific parameters in
Gaussian mixture models.

2 Background

In this section, we introduce notations and of-
fer some background to set up our theoretical re-
sults. Let h(p || q) = [

∫
(
√
p − √q)2dµ]1/2 and

D(p || q) =
∫
p log(p/q)dµ denote the Hellinger dis-

tance and Kullback–Leibler divergence, respectively,
between two probability density functions p and q rel-
ative to a a common dominating measure µ. Also de-
note V (p || q) =

∫
p log2(p/q)dµ. For a set A, we use

IA to denote its indicator function. For any vector µ
and positive semidefinite matrix Σ, we use N (µ,Σ) to
denote the normal distribution with mean µ and co-
variance matrix Σ, and use N (θ; µ,Σ) to denote its
pdf at θ. We use w.h.p. to abbreviate “with high
probability”, when the probability is evident from the
context. Throughout, C denotes a constant indepen-
dent of everything else whose value may change from
one line to the other. We write a . b to denote a ≤ Cb
for some constant C > 0. Similarly, a & b.

Suppose we have n observations Y1, . . . , Yn and a prob-

abilistic model P(n)
θ for the joint distribution of the

data Y n = (Y1, . . . , Yn), with a density p
(n)
θ relative to

the Lebesgue measure. Here, θ is the unknown param-
eter to be estimated from the data which lives in some
parameter space Θ. Our formulation does not require
the Yis to be identically distributed or even indepen-
dent. In a Bayesian setup, uncertainty regarding the
parameter is quantified through a prior distribution pθ
on Θ, which upon observing the data is updated to the

posterior distribution using Bayes’ theorem:

p(θ ∈ B |Y n) =

∫
B

[
p(Y n | θ)

]
pθ(θ) dθ∫

Θ

[
p(Y n | θ)

]
pθ(θ) dθ

, (1)

for any measurable subset B ⊂ Θ and p(Y n | θ) :=
pθ(Y

n).

In a wide variety of practical problems, the likelihood
function p(Y n | θ) may be intractable or difficult to an-
alyze directly. For example, in a 2-component Gaus-
sian mixture model, p(Y n | θ) is a combinatorial sum
over 2n terms. A widely used trick in such situations is
to introduce latent variables to simplify the conditional
likelihood. Specifically, assume one can decompose

p(Y n | θ) =
∑
sn

p(Y n |Sn = sn, µ)πsn , (2)

where Sn = (S1, . . . , Sn) denotes a collection of dis-
crete latent variables, with Si ∈ {1, 2, . . . ,K} the la-
tent variable for the ith observation. We have assumed
the parameter θ can be decomposed as θ = (µ, π),
with p(Y n |Sn = sn, θ) = p(Y n |Sn = sn, µ) and and
πsn : = p(Sn = sn | θ) denotes the probability of the la-
tent vector taking on the value sn. In the 2-component
mixture model example, Si ∈ {1, 2} denotes the la-
tent membership indicator for the ith observation. We
assume discrete latent variables for notational conve-
nience and note that our results generalize to contin-
uous latent variables in a straightforward fashion.

Let Zn = (θ, Sn). The augmented posterior p(Zn |Y n)
assumes the form

p(θ, sn |Y n) ∝ p(Y n |µ, sn)πsn pθ(θ), (3)

whose constituent terms are typically more tractable.
Variational inference in this setup proceeds by first
identifying a variational family comprising of distribu-
tions Γ on Zn and finding the closest member in this
family to p(Zn |Y n) relative to the KL divergence

q̂Zn : = argmin
qZn∈Γ

D
[
qZn(·)

∣∣∣∣ p(· |Y n)
]

= argmax
qZn∈Γ

L(qZn),

(4)

where

L(qZn) =

∫
qZn(zn) log

p(Y n | zn) pZn(zn)

qZn(zn)
dzn (5)

is the evidence lower bound (ELBO) which gives a
lower bound to the log marginal likelihood log p(Y n).
If Γ is completely unrestricted, then q̂Zn coincides with
the posterior distribution p(Zn |Y n). In practice, the
choice of the variational family Γ is dictated by a trade-
off between flexibility and computational tractability.
For example, in mean-field variational approximation,
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it is common to assume independence among the pa-
rameters and the latent variables in the variational
family, whence qZn decomposes as

qZn(zn) = qθ(θ)⊗ qSn(sn). (6)

We shall assume the mean-field decomposition (6)
throughout, so that the minimizer q̂Zn in (4) necessar-
ily is of the form q̂Zn = q̂θ ⊗ q̂Sn . In many situations,
the constituent terms may be further decomposed as
qSn(sn) = ⊗ni=1qSi(si) and qθ(θ) = qµ(µ) ⊗ qπ(π).
Such a decomposition may be either due to compu-
tational reasons or implied by the conditional inde-
pendence structure of the model.

Under the mean-field decomposition (6) and using (3),
we have, after some simplification,

D
[
qZn(·)

∣∣∣∣ p(· |Y n)
]

= D(qθ
∣∣∣∣ pθ)

−
∫

Θ

[∑
sn

qSn(sn) log
p(Y n |µ, sn)πsn

qSn(sn)

]
︸ ︷︷ ︸˜̀

n(θ)

qθ(dθ). (7)

The quantity ˜̀n(θ) is an approximation to the log like-
lihood `n(θ) : = log p(Y n | θ) in terms of the latent
variables. To see this, multiply and divide the right
hand side of (2) by qSn(sn) and apply Jensen’s in-
equality to the concave function x 7→ log x to conclude
that `n(θ) ≥ ˜̀

n(θ). Replacing ˜̀n(θ) by `n(θ) in (8)
and adjusting the error term, we obtain

D
[
qZn(·)

∣∣∣∣ p(· |Y n)
]

= D(qθ
∣∣∣∣ pθ)− ∫

Θ

`n(θ)qθ(dθ)

+

∫
Θ

[
`n(θ)− ˜̀n(θ)

]
qθ(dθ)︸ ︷︷ ︸

∆(qθ,qSn )

. (8)

The quantity ∆ is an average error due to the likeli-
hood approximation and is clearly nonnegative. In the
specific situation where no latent variables are present
in the model, ∆ ≡ 0. However, in general, ∆ is a
strictly positive quantity.

3 Variational risk bounds

We are now prepared to state a general Bayes risk
bound for the variational distribution. We shall op-
erate in a frequentist framework and assume the exis-
tence of a true data generating parameter θ∗ ∈ Θ. In
other words, we assume that the data Y n is distributed

according to P(n)
θ∗ . Let d(·, ·) be a distance metric on

the parameter space Θ which quantifies distance be-
tween two putative parameter values. For example, if
Θ designates a space of densities so that each θ can
be identified with a density function, d can be chosen

as the Hellinger or total variation distance. We are
interested in obtaining bounds on∫

dκ(θ, θ∗) q̂θ(θ)

for some κ > 0, that hold with high probability with

respect to P(n)
θ∗ . In particular, if dκ is convex in its first

argument, then by Jensen’s inequality,

dκ(θ̂V B , θ
∗) ≤

∫
dκ(θ, θ∗) q̂θ(θ),

where θ̂V B =
∫
θ q̂θ(dθ) is the mean of the variational

distribution and a surrogate for the posterior mean.
We are specifically interested in obtaining sufficient
conditions for the variational point estimate θ̂V B to
contract at the same rate as posterior mean. Since
variational approaches are overwhelmingly used for
rapidly obtaining point estimates, such a result will
indicate that at least in terms of rates of convergence,
there is no loss of statistical accuracy in using a vari-
ational approximation. Moreover, the negative result
from [40] shows that the spread of the variational dis-
tribution q̂θ is typically “too small” compared with
that of the sampling distribution of the maximum like-
lihood estimator. This fact combined with the Bern-
stein von-Mises theorem (Chapter 10 of [38]) implies
the inadequacy of using q̂θ for approximating the true
posterior distribution, and a rate optimal variational
point estimator is the best one can hope for in general.

Define `n(θ, θ∗) : = `n(θ) − `n(θ∗) to be the log-
likelihood ratio between θ and θ∗. We can replace
`n(θ) with `n(θ, θ∗) inside the integrand in (8) with-
out affecting the minimization problem - this is done
for purely theoretical reasons to harness the structure
of the log-likelihood ratio. Let us call the equivalent
objective function Ω, so that

Ω(qθ, qSn) :=

−
∫

Θ

`n(θ, θ∗) qθ(dθ) + ∆(qθ, qSn) +D(qθ
∣∣∣∣ pθ). (9)

We are now ready to state the main assumption.
Assumption T: (existence of tests) Let εn be a
sequence satisfying εn → 0 and nεκn → ∞ for some
κ ≥ 2. Let φn ≡ φn(Y n) ∈ (0, 1) be a sequence of test
functions for testing

H0 : θ = θ∗ versus.H1 : d(θ, θ∗) > εn

with type-I and II error rates satisfying

Eθ∗ [φn] ≤ e−2nεκn , Eθ[1− φn] ≤ e−Cnd
κ(θ,θ∗),

for any θ ∈ Θ with d(θ, θ∗) > εn, where Eθ denotes an

expectation with respect to P(n)
θ . While κ = 2 appears
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naturally in most problems, we provide a non-standard
example (estimating component specific means in a
mixture model) in Section 4 with κ = 4.

In models satisfying the monotone likelihood ratio
property [12] such as exponential families, one can
construct such tests (with κ = 2) from the general-
ized likelihood ratio test (GLRT) statistic when d cor-
responds to the Euclidean metric on the natural pa-
rameter. A general recipe [19] to construct such tests
when Θ is compact relative to d is to (i) construct an
εn/2-net N = {θ1, . . . , θN} such that for any θ with
d(θ, θ∗) > εn, there exists θj ∈ N with d(θ, θj) < εn/2,
(ii) construct a test φn,j for H0 : θ = θ∗ versus
H1 : θ = θj with type-I and II error rates as in As-
sumption T, and (iii) set φn = max1≤j≤N φn,j . The
type-II error of φn retains the same upper bound,
while the type-I error can be bounded by N e−2nεκn .
Since N can be further bounded by N(Θ, εn/2, d),
the covering number of Θ by d-balls of radius εn/2,
it suffices to show that N(Θ, εn/2, d) . enε

κ
n . For

example, when Θ is a compact subset of Rd, then
N(Θ, εn/2, d) . ε−dn . enε

2
n as long as εn .

√
log n/n.

More generally, if Θ is a space of densities and d the
Hellinger/L1 metric, then construction of the point-
by-point tests in (i) (with κ = 2) from the LRT statis-
tics follows from the classical Birgé-Lecam testing the-
ory [6, 27]; see also [19].

We are now ready to state our first theorem on the
variational risk bound, which relates the Bayes risk
under the variational solution to the size of the objec-
tive function Ω.

Theorem 3.1 Suppose there exists a sequence of test
functions {φn} for the metric d satisfying Assumption

T. Then, it holds with P(n)
θ∗ probability at least (1 −

e−Cnε
κ
n) that∫

Θ

dκ(θ, θ∗) q̂θ(dθ) ≤
Ω(qθ, qSn)

n
+ εκn,

for any qθ � pθ and any probability distribution qSn

on Sn which is nowhere zero.

Theorem 3.1 implies that minimizing the Bayes risk
is equivalent to minimizing the objective function Ω
in (9). [42] obtained a similar result for a modified
variational objective function and d being limited to
Rényi divergence measures. Theorem 3.1 instead al-
lows any metric d as long as the testing condition in
Assumption T can be satisfied.

A detailed proof of Theorem 3.1 (as well as proofs of
other results) is provided in the Section 1 of the sup-
plemental document. We sketch some of the key steps
to highlight the main features of our argument. Our
first key step is to show using the testing assumption

T that w.h.p. (w.r.t. P(n)
θ∗ ),∫

Θ

[
exp

{
`n(θ, θ∗) + ndκ(θ, θ∗)

}︸ ︷︷ ︸
ξ(θ,θ∗)

]
pθ(dθ) ≤ eCnε

κ
n . (10)

To show this, write the integral in (10) as T1 + T2,
where T1 and T2 respectively split the integral over
{d(θ, θ∗) ≤ εn} and {d(θ, θ∗) > εn}. Using Markov’s
inequality along with the fact that Eθ∗ [e`n(θ,θ∗)] = 1,
it can be shown that T1 ≤ eCnε

κ
n w.h.p. To tackle

T2, write T2 = T21 + T22 by decomposing ξ(θ, θ∗) =
ξ(θ, θ∗)(1−φn) + ξ(θ, θ∗)φn, where φn is the test from
Assumption T. Using Markov’s inequality and the fact
that φn has small type-II error, it can be shown that
T21 ≤ e−Cnε

κ
n w.h.p. The bound on the type-I error of

φn along with Markov’s inequality yields φn ≤ e−2nεκn

w.h.p., which yields T22 ≤ e−2nεκnT2 w.h.p. Combin-
ing, one gets T2 ≤ e−Cnε

κ
n w.h.p.

Once (10) is established, the next step is to link the in-
tegrand in (10) with the latent variables. To that end,
observe that ξ(θ, θ∗) =

∑
sn exp{h(θ, sn)} q̂Sn(sn),

where

h(θ, sn) = log
p(Y n |µ, sn)πsn

p(Y n | θ∗) q̂Sn(sn)
+ ndκ(θ, θ∗).

Combining the above with (10), we have, w.h.p.,∫
Θ

∑
sn

exp
{
h(θ, sn)

}
q̂Sn(sn) pθ(dθ) ≤ eCnε

κ
n . (11)

Next, use a well-known variational/dual representa-
tion of the KL divergence (see, e.g., Corollary 4.15 of
[11]) which states that for any probability measure µ
and any measurable function h with eh ∈ L1(µ),

log

∫
eh(η) µ(dη) = sup

ρ

[ ∫
h(η) ρ(dη) −D(ρ

∣∣∣∣µ)

]
, (12)

where the supremum is over all probability measures
ρ � µ. In the present context, setting η = (θ, sn),
µ : = q̂Sn ⊗ pθ, and ρ = q̂θ ⊗ q̂Sn , it follows from
the variational lemma (12) and some rearrangement
of terms that w.h.p.

n

∫
Θ

dκ(θ, θ∗) q̂θ(dθ) ≤ nεκn +D(q̂θ
∣∣∣∣ pθ) − ∫

Θ

∑
sn

h(θ, sn) q̂θ(dθ).

It then follows from (7)–(9) that the right hand side
of the above display equals nεκn + Ω(q̂θ, q̂Sn). The
proof of the theorem then follows, since by definition,
Ω(q̂θ, q̂Sn) ≤ Ω(qθ, qSn) for any (qθ, qSn) in the varia-
tional family Γ.

Now we discuss choices of good variational distri-
butions qθ and qSn for minimizing Ω(qθ, qSn), the
stochastic component of the variational upper bound
in Theorem 3.1. We make some additional assump-
tions first on the augmented likelihood and prior in
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(3) for the subsequent development. First, assume
independent priors on µ and π so that pθ = pµ ⊗
pπ. Next, assume p(Y n |µ, sn) =

∏n
i=1 p(Yi |µ, si)

and πsn =
∏n
i=1 πsi splits into independent compo-

nents. This implies p(Y n | θ) =
∏n
i=1 p(Yi | θ), where

p(Yi | θ) =
∑
si
p(Yi |µ, si)πsi . For the variational dis-

tribution qSn , we additionally assume a mean-field de-
composition qSn(sn) =

∏n
i=1 qSi(Si).

Recall that the objective function decomposes as
Ω(qθ, qSn) = −

∫
Θ
`n(θ, θ∗) qθ(dθ) + ∆(qθ, qSn) +

D(qθ
∣∣∣∣ pθ). The first model-fit term is an aver-

aged (with respect to the variational distribution) log-
likelihood ratio which tends to get small as the varia-
tional distribution qθ places more mass near the true
parameter θ∗. The second term arising from the ap-
proximation of the likelihood function `n(θ) by ˜̀n(θ)
will become small under some proper choice of qSn , as
we will illustrate in the proof of Theorem 3.2 below.
The last regularization or penalty term prevents over-
fitting to the data by constricting the KL divergence
between the variational solution and the prior. Conse-
quently, a good variational distribution qθ should put
all its mass into an appropriately small neighborhood
around the truth θ∗ so that the first two terms in V
become small; on the other hand, the neighborhood
has to be large enough so that the last regularization
term is not too large.

Motivated by the above discussion, we follow the de-
velopment of [42] by defining two KL neighborhoods
around (π∗, µ∗) with radius (επ, εµ) as

Bn(π∗, επ) =
{
D(π∗ ||π) ≤ ε2

π, V (π∗ ||π) ≤ ε2
π

}
,

Bn(µ∗, εµ) =
{

sup
s
D
[
p(· |µ∗, s)

∣∣∣∣ p(· |µ, s)] ≤ ε2
µ,

sup
s
V
[
p(· |µ∗, s)

∣∣∣∣ p(· |µ, s)] ≤ ε2
µ

}
,

where we used the shorthand D(π∗ ||π) =∑
s π
∗
s log(π∗s/πs) to denote the KL divergence

between categorical distributions with parameters
π∗ ∈ SK and π ∈ SK in the K-dim simplex SK .
Consistent with notation introduced at the beginning
of Section 2, V (π∗ ||π) =

∑
s π
∗
s log2(π∗s/πs).

Theorem 3.2 For any fixed (επ, εµ) ∈ (0, 1)2, with
Pθ∗ probability at least 1− 5/{(D− 1)2 n (ε2

π + ε2
µ)}, it

holds that∫
dκ(θ, θ∗) q̂θ(θ) dθ ≤ εκn + (ε2

π + ε2
µ)+{

−
logPπ

[
Bn(π∗, επ)

]
n

}
+

{
−

logPµ
[
Bn(µ∗, εµ)

]
n

}
.

The proof follows Theorem 4.5 of [42], and is omitted;
we provide a sketch here. As discussed above, we first

make a good choice of qSn as follows. Let q̃Sn be a
probability distribution over Sn defined as

q̃Sn(sn) =

n∏
i=1

q̃Si(si) =

n∏
i=1

π∗si p(Yi |µ
∗, si)

p(Yi | θ∗)
. (13)

Intuitively, q̃ takes the full conditional distribution of
Sn | θ, Y n, and replaces θ by the true parameter θ∗.
With this choice, ∆(qθ, q̃Sn) simplifies to

−
∫

Θ

qθ(θ)

n∑
i=1

∑
si

q̃Si(si) log
p(Yi |µ, si)πsi
p(Yi |µ∗, si)π∗si

dθ

+

∫
Θ

qθ(θ) log
p(Y n | θ)
p(Y n | θ∗)

dθ.

It now remains to choose qθ. The first term in the
above display naturally suggests choosing qθ as the
restriction of pθ into Bn(π∗, επ)×Bn(µ∗, εµ). For this
choice, the second term can also be controlled w.h.p.,
leading to the conclusion in Theorem 3.2.

4 Applications

As described in Section 3, variational risk bounds
for the parameter of interest depend on the exis-
tence of appropriate test functions which character-
izes the ability of the likelihood to identify the pa-
rameter. Developing test functions for studying con-
vergence rates of estimators in classical and Bayesian
statistics dates back to [35, 27], with renewed attention
in the Bayesian context due to [19]. Specific tests have
been constructed for nonparametric density estima-
tion [19, 32], semi/non-parametric regression [4, 30],
convergence of latent mixing measures [29, 21], high-
dimensional problems [31, 16, 14], and empirical Bayes
methods [34], among others. As long as the prior dis-
tributions are supported on compact subsets of the
parameter space, these existing tests can be used to
prove minimax optimality of the variational estimate
θ̂V B in each of these problems. We skip the details for
space constraints.

In this section, we focus on two novel examples in-
volving latent variables where variational methods are
commonly used and no theoretical guarantee is avail-
able for the variational solutions. The first one is the
Latent Dirichlet Allocation (LDA; [10]), a generative
probabilistic model for topic modeling. The second
example is concerned with estimating the component
specific parameters in Gaussian mixture models.

4.1 Latent Dirichlet allocation

We first consider LDA [10], a conditionally conjugate
probabilistic topic model [8] for learning the latent
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“topics” contained in a collection of documents. Start-
ing from the original paper [10], the mean-field varia-
tional Bayes approximation has become a routine ap-
proach for implementing LDA. However, theoretical
guarantees for the variational solution is still an open
problem despite its empirical success. In this subsec-
tion, we show the rate optimality of the estimate from
the mean-field approximation to LDA.

In LDA, each document is assumed to contain mul-
tiple topics, where a topic is defined as a distribu-
tion over words in a vocabulary. Our presentation
of the model follows the notation of [22]. Let K be
the total number of topics, V the vocabulary size, D
the total number of documents, and N the number of
words in each document (for simplicity, we assume the
same number of words across documents). Recall that
we use the notation Sd to denote the d-dim simplex.
LDA contains two parameters: word distribution ma-
trix B = [β1, β2, . . . , βK ] ∈ RV×K and topic distri-
bution matrix Tγ = [γ1, γ2, . . . , γD] ∈ RK×D, where
βk ∈ SV is the word proportion vector of the kth topic,
k = 1, 2, . . . ,K, and γd ∈ SK is the topic proportion
vector of the dth document, d = 1, 2, . . . , D. Given
parameters B and Tγ , the data generative model of
LDA is:

1. for each document in d = 1, . . . , D, draw a topic
assignment zdn ∼ Cat(γd), then

2. for each word in n = 1, . . . , N , draw a word wdn ∼
Cat(βzdn).

where Cat(π) stands for categorical distribution with
probability π. Here, zdn ∈ {1, . . . ,K} is the latent
class variable over topics so that zdn = k indicates the
nth word in document d is assigned to the kth topic.
Similarly, wdn ∈ {1, . . . , V } is the latent class variable
over the words in the vocabulary so that wdn = v
indicates that the nth word in document d is the vth
word in the vocabulary. A common prior distribution
over the parameters B and Tγ is:

1. For each topic in k = 1, . . . ,K, word proportion
vector has prior βk ∼ DirV (ηβ),

2. For each document in d = 1, . . . , D, topic propor-
tion vector has prior γd ∼ DirK(ηγ).

Here, ηβ ∈ R+ is a hyper-parameter of the symmet-
ric Dirichlet prior on the topics β, and ηγ ∈ RK+ are
hyper-parameters of the Dirichlet prior on the topic
proportions for each document. To facilitate adap-
tation to sparsity using Dirichlet distributions when
V, K � 1, we choose ηβ = 1/V c and ηγ = 1/Kc for
some fixed number c > 1 [41].

To apply our theory, we view N as the sample size,
and D as the “dimension” of the parameters in the
model. Under our vanilla notation, we are interested
in learning parameters θ = (π, µ), with π = Γ and
µ = D, from the posterior distribution P (π, µ, z |Y n),
where SN = {Sn : n = 1, . . . , N} with Sn = {zdn :
d = 1, . . . , D} are latent variables, Y N = {Yn : n =
1, . . . , N} with Yn = {wdn : d = 1, . . . , D} are the
data, and the priors for (π, µ) are independent Dirich-
let distributions DirV (ηβ) and DirK(ηγ) whose densi-
ties are denoted by pπ and pµ. The conditional dis-
tribution p(Y N |µ, SN ) of the observation given the
latent variable is(

wdn |µ, zdn
)
∼ Cat(βzdn), d ∈ [D] and n ∈ [N ].

We consider the following mean-field approximation
[10] by decomposing the variational distribution into

q(µ, π, SN ) = qπ(π) qµ(µ)

N∏
n=1

qSn(Sn)

=

K∏
k=1

qβk(βk)

D∏
d=1

(
qθd(θd)

N∏
n=1

qzdn(zdn)

)

for approximating the joint posterior distribution of
(µ, π, SN ). Since for LDA, each observation Yn is
composed of D independent observations, it is nat-
ural to present the variational oracle inequality with
respect to the average squared Hellinger distance
D−1

∑D
d=1 h

2
[
pd(· | θ)

∣∣∣∣ pd(· | θ∗)], where pd(· | θ) de-
notes the likelihood function of the dth observation
wd· in Y·. We make the following assumption.

Assumption S: (sparsity and regularity condi-
tion) Suppose for each k, β∗k is dk � V sparse, and
for each d, γ∗d is ed � K sparse. Moreover, there
exists some constant δ0 > 0, such that each nonzero
component of β∗k or γ∗d is at least δ0.

Theorem 4.1 Suppose Assumption S holds. If(∑D
d=1 ed +

∑K
k=1 dk

)
/(DN)→ 0 as N →∞, then it

holds with probability tending to one that as N →∞∫
D−1

D∑
d=1

h2
[
pd(· | θ)

∣∣∣∣ pd(· | θ∗)] q̂θ(θ) dθ
.

∑D
d=1 ed
DN

log(DKN) +

∑K
k=1 dk
DN

log(KVN).

Theorem 4.1 implies the estimation consistency as long
as the “effective” dimensionality

∑D
d=1 ed +

∑K
k=1 dk

of the model is o(DN) as the “effective sample size”
DN → ∞. In addition, the upper bound depends
only logarithmically on the vocabulary size V due to
the sparsity assumption.
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4.2 Gaussian mixture models

Variational inference methods are routinely used in
conjugate exponential-family mixtures [18] to speed
up computation and perform inference on component-
specific parameters, with Gaussian mixtures constitut-
ing an important special case. Traditional MCMC
methods face difficulties in inferring component-
specific parameters due to label-switching [36]. It has
been empirically verified [7] that variational inference
for Gaussian mixtures provides accurate estimates of
the true density as well as the labels (up to permu-
tation of the indices). However, theoretical guaran-
tees of such a phenomenon is an open problem till
date. In this section, we close this gap and provide an
affirmative answer under reasonable assumptions on
the true mixture density. In particular, we show that
variational techniques using mean field approximation
provide optimal estimates for the component specific
parameters up to some permutation of the labels.

Suppose the true data generating model is the d-
dimensional Gaussian mixture model with K compo-
nents,

Yi | µ, π ∼
K∑
k=1

πkN (µk, Id), i = 1, . . . , n, (14)

where µk is the mean vector associated with the kth
component and π = (π1, . . . , πK) ∈ SK−1 is a vec-
tor of probabilities lying in the K-dimensional simplex
SK−1. Assume that µk ∈ Cµ where Cµ is a compact
subset of Rd. Set µ = (µ1, . . . , µK) and θ = (µ, π)
as before. Although we assume the covariance matrix
of each Gaussian component to be Id, it is straight-
forward to extend our results to diagonal covariance
matrices.

Introducing independent latent variables Si ∈
{1, . . . ,K} for i = 1, . . . , n such that πk = P (Si = k)
for k = 1, . . . ,K, (14) can be re-written as

Yi | µ, π, Sn ∼ N (µSi , Id), (15)

Si | θ ∼ Multinomial(1;π), i = 1, . . . , n, (16)

where Sn = (S1, . . . , Sn) and Multinomial(1;π) de-
notes a discrete distribution with support {1, . . . ,K}
and probabilities π1, . . . , πK . For simplicity, we as-
sume independent priors pµ ⊗ pπ for (µ, π).

We apply the mean field approximation by using the
family of density functions of the form

q(π, µ, Sn) = qπ(π) qµ(µ) qSn(sn) = qπ(π) qµ(µ)

n∏
i=1

qSi(si)

to approximate the joint posterior distribution of
(π, µ, Sn).

Since we are interested in studying accuracy in esti-
mating the component specific parameters (π, µ), we
turn our attention to relating the discrepancy in es-
timating f with that of (π, µ). We work with the
Wasserstein metric [29] between the mixing measures
associated with the density. Note that (15)-(16) can
also be written in terms of the mixing measure P =∑K
k=1 πkδµk as

Yi | P ∼ f(· | P ) =

∫
N (· ;µ, Id) dP (µ). (17)

Henceforth {µk : k = 1, . . . ,K} will be referred to as
the atoms of P . Let P denote the class of all such
mixing measures

P =

{
P =

K∑
k=1

πkδµk : π ∈ SK−1, µk ∈ Cµ ∀ k
}
,

such that the atoms lie in a compact subset Cµ of Rd.
Define the Lr-Wasserstein distance, denoted Wr, be-
tween two mixing measures P1 =

∑K
k=1 π1,kδµ1,k

and

P2 =
∑K
k=1 π2,kδµ2,k

in P as

W r
r (P1, P2) = inf

C∈CX1X2

E‖X1 −X2‖r, (18)

where Xi ∼ Pi for i = 1, 2, and CX1X2 is the set of all
possible couplings, i.e. joint distributions of X1 and
X2 with marginals P1 and P2 respectively. One can
write (18) in terms of (π, µ) as

W r
r (P1, P2) = inf

q∈CP1P2

∑
k,k′

qkk′‖µ1,k − µ2,k′‖r, (19)

where q varies over CP1P2
, the set of joint probability

mass functions over {1, . . . ,K}2 satisfying
∑
k qkk′ =

π2,k′ and
∑
k′ qkk′ = π1,k.

In the following, we will consider r = 1 to work with
the W1 metric. It is known [29] that P is compact
with respect to W1. Let h{f(· | P1)

∣∣∣∣ f(· | P2)} de-
note the Hellinger distance between the densities with
corresponding mixing measures P1 and P2. Denote
by N(ε,P,W1) and N(ε,F , h) the ε-covering numbers
of P and the corresponding space of densities F with
respect to W1 and h respectively.

Following [29], we investigate the minimum separa-
tion between the densities in (17) in Hellinger distance
when the corresponding mixing measures are sepa-
rated by at least ε in W1. Fix P ∗ =

∑K
k=1 π

∗
kδµ∗k ∈ P

and P ∈ P. From Birgé-Lecam theory [6, 27], there
exists a sequence test functions Φn based on observa-
tions Y1, . . . , Yn such that

EP∗Φn ≤ N(ε,F , h) e−C1nε
2

(20)

EP [1− Φn] ≤ e−C2nh
2[f(· |P ) || f(· |P∗)], (21)
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for any P with h[f(· |P ) || f(· |P ∗)] > ε. [21] discusses
construction of test functions in the W1 metric. Using
their Theorem 3.1 along with (20)-(21), one obtains a
test function Ψn such that

EP∗ [Ψn] ≤ N(ε,P,W1) e−C1nε
2

(22)

EP [1−Ψn] ≤ e−C2nW
2
1 (P,P∗), (23)

for any P ∈ P with W1(P, P ∗) > ε. We show in

the supplement that N(ε,P,W1) . eCnε
2

. Hence As-
sumption T is satisfied with κ = 2. We remark that
for the W2 metric, it is possible to construct a test
with κ = 4.

To state the risk bounds in the W1 metric, we require
the following assumptions on the component specific
weights associated with the true mixing measure P ∗

and the prior densities pµ and pπ respectively.

Assumption R: (lower bound on component
weights) There exists some constant δ ∈ (0, 1), such
that the true π∗k > δ for all k = 1, . . . ,K.

Assumption P: (Prior thickness) Assume that
the prior densities for µ and π satisfy pπ(π∗) > 0 and
pµ(µ∗) > 0. Additionally, assume that pµ is supported
on the compact set Cµ.

Theorem 4.2 Suppose Assumption R holds, and the
prior densities pµ and pπ satisfy Assumption P. Then
if dK/n → 0 as n → ∞, it holds with probability
tending to one as n→∞ that∫

h2
[
p(· | θ)

∣∣∣∣ p(· | θ∗)] q̂θ(θ) dθ . dK

n
log(dn), (24)∫

W 2
1 (P, P ∗) q̂θ(θ) dθ .

dK

n
log(K n). (25)

The convergence rates obtained in (24)-(25) are mini-
max upto logarithmic terms [21]. An important conse-
quence of Theorem 4.2 is that it allows us to study the
accuracy of the estimates of the component specific
parameters (πk, µk) for k = 1, . . . ,K. The following
lemma relates the accuracy in estimating the mixing
measures with respect to the W1 distance and that
for the component specific weights and atoms. The
convergence of the weights requires an additional as-
sumption in terms of separability of atoms in P ∗ which
prohibits two distinct atoms of the true mixing distri-
bution P∗ to be vanishingly close.

Assumption S: (separability of atoms) There
exists some ζ > 0, such that infk 6=k′ ‖µ∗k − µ∗k′‖ ≥ ζ.

Lemma 4.3 Fix P ∗ ∈ P such that P ∗ satisfies As-
sumption R. Given ε > 0, if P =

∑K
k=1 πkδµk satisfies

W1(P ∗, P ) < ε, then for ε < ζδ,

‖µk − µ∗k‖ < ε/δ, ∀ k = 1, . . . ,K,

upto a permutation of the indices. If in addition, P ∗

satisfies both Assumption R and S, then,

K∑
k=1

|πk − π∗k| <
ε

(ζ − ε/δ)
.

Theorem 4.2 together with Lemma 4.3 implies the fol-
lowing corollary about parameter convergence rates.

Corollary 4.4 Let Mn ↑ ∞ be any sequence of
positive numbers and εn =

√
(dK/n) log(K n). If

P ∗ satisfies Assumption R, then q̂θ
(
‖µ∗k − µk‖ <

Mnεn, ∀ k
)
→ 1 a.s. If P ∗ satisfies both assumptions

R and S, then q̂θ
(
‖µ∗k−µk‖ < Mnεn, ∀ k,

∑K
k=1 |π∗k−

πk| < Mnεn
)
→ 1 a.s.

According to [13], n−1/2 is the minimax rate of esti-
mating µk’s when the number of components are cor-
rectly specified to be K (πk’s are not estimable if some
µ∗k’s are the same). The second part of this corollary
implies n−1/2 convergence rates (up to log n factors)
for both µ and π under the strong identifiability as-
sumption S.

5 Conclusion

We have provided general purpose tools to verify the
statistical accuracy of point estimates obtained from
mean-field variational inference. Our analysis incorpo-
rates latent variables commonly augmented to simplify
variational inference, and hence our theory is appli-
cable to a broad range of existing algorithms in ex-
actly the way they are practically implemented. The
theory does not require prior conjugacy or analytical
tractability of the iterative algorithms. Future work
will involve relaxing the prior compactness assumption
and considering more general variational families.

6 Supplementary material

For detailed proofs of the main results, refer to sup-
plementary materials available online.
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[6] Lucien Birgé. Approximation dans les espaces
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