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1 Review of free probability

For what follows, we define the key objects of free probability. Given a random matrix X, its limiting spectral
density is defined as

⇢X(�) ⌘

*
1

N

NX

i=1

�(� � �i)

+

X

, (S1)

where h·iX denotes an average w.r.t to the distribution over the random matrix X. For large N , the empirical
histogram of eigenvalues of a single realization of X converges to ⇢X . In turn, the Stieltjes transform of ⇢X is
defined as,

GX(z) ⌘

Z

R

⇢X(t)

z � t
dt , z 2 C \ R , (S2)

which can be inverted using,

⇢X(�) = �
1

⇡
lim

✏!0+
Im GX(� + i✏) . (S3)

GX is related to the moment generating function MX ,

MX(z) ⌘ zGX(z) � 1 =
1X

k=1

mk

zk
, (S4)

where the mk is the k’th moment of the distribution ⇢X ,

mk =

Z
d� ⇢X(�)�k =

1

N
htrXk

iX . (S5)

In turn, we denote the functional inverse of MX by M�1
X , which by definition satisfies MX(M�1

X (z)) =
M�1

X (MX(z)) = z. Finally, the S-transform [9, 10] is defined in terms of the functional inverse M�1
X as,

SX(z) =
1 + z

zM�1
X (z)

. (S6)

The utility of the S-transform arises from its behavior under multiplication. Specifically, if A and B are two
freely independent random matrices, then the S-transform of the product random matrix ensemble AB is simply
the product of their S-transforms,

SAB(z) = SA(z)SB(z) . (S7)

2 Free probability and deep networks

We will now use eqn. (S7) to write down an implicit definition of the spectral density of JJT , which is also the
distribution of the square of the singular values of J. Here J is the input-output Jacobian of a deep network
defined in the main paper. First notice that, by eqn. (9), M(z) and thus S(z) depend only on the moments
of the spectral density. The moments, in turn, can be defined in terms of traces (as in eqn. (S5)), which are
invariant to cyclic permutations, i.e.,
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A

2
· · ·A

m)k = tr(A2
· · ·A

m
A

1)k . (S8)

Therefore the S-transform is invariant to cyclic permutations. Now define matrices Q
l and Q̃

l as,
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Now Q
L and Q̃

L are related by a cyclic permutation. Therefore the above argument shows that their S-
transforms are equal, i.e. SQL = SQ̃L

. Furthermore (DL
W

L)T
D

L
W

L and (DL)2(WL)T
W

L are related by a
cyclic permutation, implying their S-transforms are also equal. Then a recursive application of eqn. (S7) and
cyclic invariance of S-transforms implies that,

SJJT = SQL = S(DL)2S(WL)T WLSQL�1 =
LY

l=1

S(Dl)2S(W l)T W l = SL
D2SL

WT W (S10)

where the last equality follows if each term in the Jacobian product identically distributed.

Given the expression for SJJT , a simple procedure recovers the density of singular values of J:

1. Use eqn. (S6) to obtain the moment generating function MJJT (z)

2. Use eqn. (9) to obtain the Stieltjes transform GJJT (z)

3. Use eqn. (S3) to obtain the spectral density ⇢JJT (�)

4. Use the relation � = �2 to obtain the density of singular values of J .

So in order to compute the distribution of singular values of of J , all that remains is to compute the S-transforms
of WT W and of D2. We will attack this problem for specific activation functions and matrix ensembles in the
following sections.

3 Derivation of master equations for the spectrum of the Jacobian

To derive the master equation, we first insert (S6), for X = D
2, into (S10) to obtain

SJJT = SL
WT W

✓
1 + z

z

◆L �
M�1

D2

��L
.

Then we find M�1
JJT = (1 + z)(zSJT J)�1 by inverting (S6), which combined with the above equation yields

M�1
JJT = S�L

WT W
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.

Then solving for M�1
D2 yields

M�1
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JJT SL
WT W

✓
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! 1

L

.

Applying MD2 to both sides gives,

z = MD2

 ⇣
M�1

JJT SL
WT W (z)
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◆L�1 ⌘ 1
L

!
.

Finally, evaluating this equation at z = MJJT gives our sought after master equation:

MJJT (z) = MD2
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1
L SWT W
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MJJT (z)
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. (S11)

This is an implicit functional equation for MJJT (z), an unknown quantity, in terms of the known functions
MD2(z) and SWT W (z). Furthermore, by substituting (S4), MJJT = zGJJT � 1, into (S11), we also obtain an
implicit functional equation for the Stieltjes transform G of ⇢JJT (�),

zG � 1 = MD2

 
z

1
L SWT W (zG � 1)
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!
. (S12)
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4 Derivation of Moments of deep spectra

The moments mk of the spectrum of JJT are encoded in the moment generating function

MJJT (z) ⌘
1X

k=1

mk

zk
. (S13)

These moments in turn can be computed in terms of the series expansions of SWT W and MD2 , which we define
as

SWT W (z) ⌘ ��2
w

�
1 +

P1
k=1 skzk

�
(S14)

MD2(z) ⌘
P1

k=1
µk

zk , (S15)

where the moments µk of D2 are given by,

µk =

Z
Dh �0(

p
q⇤h)2k . (S16)

We can substitute these moment expansions into (S11) to obtain equations for the unknown moments mk of
the spectrum of JJT , in terms of the known moments µk and sk. We can solve for the low order moments by
expanding (S11) in powers of z�1. By equating the coe�cients of z�1 and z�2, we obtain the following equations
for m1 and m2,
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wµ1m

1� 1
L

1

m2 = �4
wµ2m

2� 2
L

1

+ �2
wµ1m

2� 1
L

1

✓⇣m2

m2
1

� 1
⌘⇣

1 �
1

L

⌘
� s1

◆
.

(S17)

Solving for m1 and m2 yields,

m1 = (�2
wµ1)

L

m2 = (�2
wµ1)
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◆
.

(S18)

5 Transforms of Nonlinearities

Here we compute the moment generating functions MD2(z) for various choices of the nonlinearity �, some of
which are displayed in Table 1 of the main paper.

5.1 �(x) = x

MD2(z) =

Z
Dx

1
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(S19)

5.2 �(x) = [x]+
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5.3 �(x) = htanh(x)

MD2(z) =

Z
Dx

✓(1 � q⇤x)2

z � ✓(1 + q⇤x)2

= erf(
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(S21)

5.4 �(x) = [x]+ + ↵[�x]+
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5.5 �(x) = erf(
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⇡
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(S23)

where � is the special function known as the Lerch transcendent.

5.6 �(x) = 2
⇡ arctan(⇡

2x)
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where,

z± =
4(
p

z ± 1)

⇡2q2⇤
p

z
. (S25)

6 Transforms of Weights

First consider the case of an orthogonal random matrix satisfying W
T
W = I. Then

⇢WT W (�) = �(� � 1)

GWT W (z) = (z � 1)�1

MWT W (z) = (z � 1)�1

M�1
WT W (z) = (1 + z)/z

SWT W (z) = 1.

(S26)
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The case of a random Gaussian random matrix W with zero mean, variance 1
N entries is more complex, but well

known:

⇢WT W (�) = (2⇡)�1
p

4 � � for � 2 [0, 4]

GWT W (z) =
1

2

 
1 �

r
z � 4

2

!

MWT W (z) =
1

2
(z �

p
z(z � 4) � 2)

M�1
WT W (z) = (1 + z)2/z

SWT W (z) = (1 + z)�1.

(S27)

Furthermore, by scaling W ! �wW, the S-transform scales as SWT W ! ��2
w SWT W , yielding the S-transforms

in Table 1.

Table 1: Transforms of weights

Random Matrix W SWT W (z) s1

Scaled Orthogonal ��2
w 0

Scaled Gaussian ��2
w (1 + z)�1

�1

7 Universality class of orthogonal Hard Tanh networks

We consider hard tanh with orthogonal weights. The moment generating function is,

MD2 = erf(
1

p
2q⇤ )

1

z � 1
, (S28)

so that
µ2

µ2
1

=
1

erf( 1p
2q⇤ )

and g =
1

p
µ1

=
1

erf( 1p
2q⇤ )

. (S29)

Also we have,

�2
JJT = L

� 1

erf( 1p
2q⇤ )

� 1
�

) q⇤(L) =
1q

2 erf�1( L
L+�2

0
)

. (S30)

if we wish to scale q⇤ with depth L so as to achieve a depth independent constant variance �2
JJT = �2

0 as L ! 1.
This expression for q⇤ gives,

MD2 =
L

L + �2
0

1

z � 1
and µ1 =

L

L + �2
0

, (S31)

so that,

SJJT = SD2 = (µ1
1 + z

zM�1
D2

)L =

✓
L(1 + z)

L(1 + z) + z�2
0

◆L

=

✓
1 +

z�2
0

L(1 + z)

◆�L

. (S32)

The large depth limit gives,

SJJT = e� z�2
0

(1+z) . (S33)

Solving for G(z) gives,

G(z) =
1

z

1

1 + W (��0
z )/�2

0

, (S34)

where W is the standard Lambert-W function, or product log. The derivative of this function has double poles
at,

�0 = 0, �2 = e�2
0 , (S35)
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which are locations where the spectral density diverges. There is also a single pole at,

�1 = �2
0e , (S36)

which is the maximum value of the bulk of the density.

8 Universality class of orthogonal erf networks

Consider �(x) =
p

⇡
2 erf( xp

2
), which has been scaled so that �0(0) = 1 and �000(0) = �1. The µk are given by,

µk =
1

p
1 + 2kq⇤ (S37)

so that

�2
JJT = L

⇣ 1 + 2q⇤
p

1 + 4q⇤ � 1
⌘

. (S38)

If we wish to scale q⇤ with depth L so as to achieve a depth independent constant variance �2
JJT = �2

0 as L ! 1,
then we can choose

q⇤(L) =

✓
�2
0

L
+

�4
0

2L2
+

✓
�0

2L
+

�3
0

2L2

◆q
2L + �2

0

◆1/4

. (S39)

Since we also assume the network is critical, we also have that,

�2
w = (1 + 2q⇤)

1
4 . (S40)

To illustrate universality, we next consider an arbitrary activation function, and assume that it has a Taylor
expansion around 0. This allows us to expand the µk. First we write,

�(x) =
1X

k=0

�kxk , (S41)

We will need �1 6= 0. First we will assume that �2 6= 0. Using this expansion we can write,

µk = �2k
1

✓
1 + k

⇣
(2k � 1)

�2
2

�2
1

+
�3

�1

⌘
q2⇤ + O(q4⇤)

◆
. (S42)

We also have

SJJT =

 
µ1

1 + z

zM�1
D2

!L

, (S43)

where we have used the fact that the network is critical so that we have µ1 = g�2. Using the Lagrange inversion
theorem to expand M�1

D2 , we find that

µ1
1 + z

zM�1
D2

= 1 � 4
�2
2

�2
1

zq2⇤ + O(q4⇤) . (S44)

Meanwhile,

L = �2
0

⇣µ2

µ2
1

� 1
⌘�1
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0
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1

4�2
2q

2
⇤

,

(S45)
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so that,

SJJT =

 
µ1

1 + z

zM�1
D2

!L

=
⇣
1 �

�2
0

L
z
⌘L

= e��2
0z + O(L�1) ,

(S46)

Next we will assume that �2 = 0 and �3 6= 01. Using the above expansion we can write,

µk = �2k
1

✓
1 + k

�3

�1
q2⇤ + O(q4⇤)

◆
. (S47)

Also we have,

SJJT =

 
µ1

1 + z

zM�1
D2

!L

, (S48)

where we have used the fact that the network is critical so that we have µ1 = ��2
w . Using the Lagrange inversion

theorem to expand M�1
D2 , we find that

µ1
1 + z

zM�1
D2

= 1 � 2
�2
3

�2
1

zq4⇤ + O(q6⇤) . (S49)

Meanwhile,

L = �2
⇣µ2

µ2
1

� 1
⌘�1

,

= �2 �2
1

2�2
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4
⇤

,

(S50)

so that,

SJJT =

 
µ1

1 + z

zM�1
D2

!L

=
⇣
1 �

�2
0

L
z
⌘L

= e��2
0z + O(L�1) ,

(S51)

establishing a universal limiting S-transform (subject to our assumptions). From this result we can extract
the Stieltjes transform and thus the spectral density. The result establishes a universal double scaling limiting
spectral distribution.

Next we observe that the Stieltjes transform can be expressed in terms of a generalization of the Lam-
bert -W function called the r-Lambert function, Wr(z), which is defined by

Wre
Wr + rWr = z . (S52)

In terms of this function, the Stieltjes transform is,

G(z) =
W�e�2

0 z
(��2

0ze�2
0 )

z�2
0

. (S53)

1
We suspect these additional assumptions are unnecessary and that the results which follow are valid so long as there

exists a k for which �k 6= 0. It would be interesting to prove this.
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We can extract the maximum and minumum eigenvalue by finding the branch points of this function. It su�ces
to look for poles in the derivative of the numerator of G(z). Using r = ��2

0ze�2
0 , eqn. (S52) and its total

derivative with respect to z yields the following equation defining the locations of these poles,

eWr
�
1 + Wr

�
= zez2

, (S54)

which is solved by

Wr = W (e1+�2
0z) � 1 , (S55)

where W is the standard Lambert W function. Next we substite this relation into eqn. (S52); zeros in z then
define the location of the branch points. Some straightforward algebra yields the maximum and minimum
eigenvalue,

�± =
1

2
e� 1

2�2
±
�
2 + �2

⌥
�

, where �2
± = �0

✓
�0 ±

q
�2
0 + 4

◆
(S56)

9 Orthogonal weights are required for stable, universal limiting distributions

We work at criticality so � = �2
wµ1 = 1. This implies that

µJJT = m1 = 1

�2
JJT = m2 � m2

1 = L

✓
µ2

µ2
1

� 1 � s1

◆
.

(S57)

Observe that Jensen’s inequality requires that µ2 � µ2
1. If we require that �2

JJT approach a constant as L ! 1,
we must have that,

s1 � 0 . (S58)

Similarly, writing

MWT W (z) =
1X

k=1

mk

zk
, (S59)

we can relate �w and s1 to m1 and m2. Specifically, evaluating the relation,

M�1
WT W (z) =

1 + z

zSWT W (z)
, (S60)

at z = MWT W (x), gives,

x =
1 + MWT W (x)

MWT W (x)SWT W (MWT W (x))
. (S61)

Expanding this equation to second order gives,

m1 = g2

m2 = g2m1(1 � s1) .
(S62)

Finally we see that,
�2

WWT = m2 �m2
1 = �g4s1 . (S63)

Positivity of variance gives s1  0, which, together with eqn. (S58) implies,

s1 = 0 . (S64)

Altogether we see that the variance of the distribution of eigenvalues of WWT must be zero. Since its mean is
equal to �2

w, we see that the only valid distribution for the eigenvalues of WWT is a delta function peaked at
�2

w, i.e. the distribution corresponding to the singular values of an orthogonal matrix scaled by �w.


