Structured Factored Inference for Probabilistic Programming
Supplementary Material

1 STRUCTURED FACTORED
INFERENCE

1.1 Model Decomposition

The following discussion of SFI is cast in the context
of a SImPPL program. However, the method is appli-
cable to graphical models in general.

The key operation of SFI is model decomposition. This
operation decomposes a model into semantically mean-
ingful sub-models (i.e., programs) that can be reduced
to a joint distribution over relevant variables. First, we
define two key concepts: uses and external. An RV r
uses an RV z if:

x € A. ANP(r|A,) # P(r| A, \ x)

We denote the set of variables U, for a variable r as the
set of all variables r uses, either directly or recursively,
plus r. This definition of uses can be difficult to ver-
ify in a program based on the semantics of SimPPL.
However, in our implementation of SimPPL, we have a
syntactic (but stronger) condition for r using x based
on x appearing in the expression for r, or in any ex-
pression for a variable used by r. Such a condition
is necessary for uses and thus still guarantees SFI's
soundness.

We denote that a variable x is external to r if:
€U NIy e RV \Ur |z €Uy

That is, an external variable to r is used in the gen-
erative process of a variable that r does not use. We
denote the set of variables external to r as £7.

A decomposition of the model with respect to an RV
d € RV is an operation that partitions RV into two
disjoint sets of variables, RV% and RV%. The RV d
is called a decomposition point. We define RV% and

RV% as:
RV = Uy — E° i
RVY = RVg — RVY

In other words, RVdQ is the set of variables exclusively
used in the generation of d (i.e., no external uses), and

RV% is all remaining variables in Q.

As an example, consider the program in Fig. 1la
from the paper. Since d can be any variable, let
us choose outcomebT as the decomposition point.
In this example, RV% is the set of variables
that outcomel. exclusively uses, so it would be
{outcomely., w15, y14., 215, 225, 425, 225} (all the vari-
ables in the left-most box of Fig. 1b from the paper).

RV% would include all other variables in the model.

1.1.1 Factored Representation

Once the variables in) have been split into two sets
via a decomposition point, we convert the decom-
position to a factored representation. Each variable
r € RV can be converted to a set of factors W, that
describe the generative semantics of the variable. For
brevity, we do not provide a detailed explanation of
factor creation for SimPPL, but provide a short sum-
mary in the supplement.

We denote the set of factors created from a program
Q@ as ¥, and each factor ¥ € W is defined over a set of
variables z,. Given W, the probability distribution of
an RV r in the program, P(r), is formulated as:

Pey=5 S T] v)

2ERVQ\r YeY

where 7 is the normalizing constant.

As d divides RV into two sets, it naturally divides
¥ into two sets, ¥4 and W5. As such, we can rewrite
Eqn. 2 as:

P == Y Y TI) T)

zeRVE\r YERVE\r VEYG Ppevy
(3)

Note that even though the variables in RV% and RV%
are disjoint, the variables used in the sets of factors ¥y
and W7 are not disjoint. From the definition of the sets
in Eqn. 1, the only variables that are shared between
¥y and W5 can be &%, the set of variables external to
d, and d itself. As such, we can move the summation
over RVdQ in Eqn. 3 inwards and the summation over

Structured Factored Inference for Probabilistic Programming Supplementary Material

d to the outer summation, so that we get:

Py = S I v

ze{RVEUdI\r VEVT ye{RVE\d}\r veVq

=2 > I v

ze{RVEUdI\r YEYT

where ¢ “isa joint factor over d and the external vari-
ables defined with respect to d. Again looking at Fig.
la from the paper as an example, with outcome’ as
the decomposition point, we perform the summation
over {15, y15., 215, 225 425 225} and are left with a
factor over only outcomeb.. This factor can them be
multiplied with the remaining factors in the program

and outcome’, can be summed out.

In this formulation, a decomposition point d implies a
structured process to compute P(r) from a set of fac-
tors defined on a model: First, compute a joint distri-
bution with respect to the decomposition point, then
compute P(r) using the joint distribution and the re-
maining factors. Computing the joint distribution over
the external variables can be accomplished by any al-
gorithm, as can the computation of P(r) once the joint
distribution is computed.

So far, we have only mentioned a single de-
composition point in a model. However, mul-
tiple decomposition points can be defined on a
model. In Fig. 1b from the paper, for exam-
ple, there are four natural decomposition points
(outcomely., outcomeb, outcomes., outcome$.) that can
be marginalized independently (shown as the boxes in
Fig. 1b from the paper). Eqn. 3 can be reformulated
for multiple points as:

Py =5 S] e [[e" @
k=1

z€{RVEUD}\r V€YD

where there are n decomposition points, and RVg

is the intersection of RVdQ’“,k; = 1,...n. Decompo-
sition points can be nested inside other decomposition
points, allowing inference to proceed in any hierarchi-
cal structure implied by the model.

In principle, any RV could potentially be a decompo-
sition point. However, we would like to choose a de-
composition point d that leads to a small joint factor
g * and eliminates as many variables in RVg as pos-
sible. Chains present a natural decomposition point,
which have the benefit of being automatically derived
from the program ands don’t need to be specified by
the programmer. When we apply the Chain function
f to a parent value v, f(v) is a program that defines
a sequence of RVs, ending in a definition of a vari-
able named “outcome”. By the semantics of Chain,

Algorithm 1 Overview of the SFI algorithm

> IT)

function DECOMPOSE(program (), variables &,
dStrategy DS, iStrategy I5)
U0
for ¢ € Qchain,v € rc do
Q' = fe(v)
5: Eqr 58, outeome o outcome
Ve DS(@’, Eo, DS, 15)
U U U T
end for
Y& «— IS(V U U5, E)
10: return ¢
end function
function SFI(program @, query g, dStrategy DS,
iStrategy I5)
14 < Decompose(Q, q, DS, IS)
return Normalize(y,)
15: end function

only the outcome RV can be used anywhere else in the
program. For each Chain defined in @), we create a
decomposition point at outcome, for every value v in
the support of 7. This also implies that £¢ = Fo for
a decomposition point. Thus, we know that the joint
factor created at each decomposition point will only
be over each “outcome” variable and free variables de-
fined in the program @’ generated from f.

2 USING SFI

2.1 SFI Operation

Algorithm 1 outlines inference in SFI. To query for the
distribution over an RV ¢, a user calls the SF'I function
with the program @ (written in SimPPL), ¢, a decom-
position strategy DS, and an inference strategy IS.
DS and IS are functions that guide the decomposition
and inference of the model, and are explained in more
detail below. The SFI function calls the Decompose
function, and the resulting factor over ¢ is normalized
to compute P(q).

The Decompose function visits each decomposition
point in @, applies DS to the sub-model (i.e., pro-
gram) defined by each point, and marginalizes out the
internal variables using IS. On lines 3, SFI iterates
over all Chains defined in) and each value v of the
parent variable 7.. On each iteration, it generates ',
the program created by applying the function f. to a
value v (line 4). Next, it creates the set of relevant
variables to program Q' as the external variables in Q’
and the “outcome” variable (line 5). It then invokes
DS on the new program, which returns a set of factors
that is added to the current set for @ (lines 6 and 7).

Algorithm 2 A recursive decomposition strategy
function RECURSIVEDECOMPOSITION(program
Q, variables &, iStrategy I1.5)

return Decompose(Q, E,this, IS)
end function

Note that a decomposition may also be recursive, as
we describe below.

Once all decomposition points have been visited, the
set of factors not generated from a decomposition point
(¥p) is added to ¥ and IS is applied which returns
a factor ¢¢ over the variables in £ (lines 9 and 10).
Much of the work of the SFI framework is performed
by the decomposition and inference strategies, so we
explain these in detail below.

2.2 Strategies for Decomposition

A decomposition strategy DS is a method that defines
how a program should be decomposed. It is a function
that receives a program @’ and set of relevant variables
Eq, and returns a set of factors Ve’ over at least Eo.
The simplest DS is what we call “raising”: For a point
d, return the set of factors over all variables defined
in @'. This strategy performs no inference, and as a
result, all of the factors from RVy: are “rolled up”
to the top—level. If each d is raised, we get a “flat”
strategy. This is how typical inference works; factors
are created for all variables and all non—query variables
are marginalized out in a flat operation.

To take advantage of different inference algorithms, it
is clearly beneficial to have a DS that actually reduces
the number of variables in the returned factor set ¥fe’ .
As such, we define a recursive strategy as one that
will recursively apply the Decompose function until no
more decomposition points are found, shown in Alg. 2.

Here, each decomposition point in a model is recur-
sively visited in a depth—first traversal. Once a pro-
gram is reached with no decompositions, 1.S is applied
to the factors in the program, and a joint distribution
over the external variables and outcome is returned,
and the process is repeated. This is referred to as hi-
erarchical inference in SFI.

More complex and sophisticated strategies can also be
applied. For example, a strategy could decompose only
if £ is at most n variables (n would have to be speci-
fied at compile time). If the number of external vari-
ables is greater than n, then the function returns all
of the factors defined for the program without running
any inference strategy. Otherwise, it calls Decompose
again to continue the recursive decomposition.

2.3 Strategies for Inference

A strategy for inference applies an inference algorithm
to a set of factors defined by program () and returns a
joint distribution over &, the set of external variables
in the factors. While SFI uses factors communicate
the joint distribution to other programs, there is no
restriction that an algorithm operate on factors. As
long as the algorithm can ingest factors from other
decompositions and output a joint factor over £, then
any algorithm can be used.

SimPPL’s implementation of SFI uses factor—based al-
gorithms. There are three algorithms available: Vari-
able elimination (VE) (Koller and Friedman, 2009),
belief propagation (BP) (Yedidia et al., 2003) and
Gibbs sampling (GS) (Geman and Geman, 1984). VE
and BP are standard implementations of these algo-
rithms on factors, and as such we do not provide any
details. GS is implemented on a set of factors, but in-
tegrating it into SFT is not trivial. Much of the effort
is due to the determinism frequently found in PPLs.
Our implementation uses automated blocking schemes
to ensure proper convergence of the Markov chain. De-
tails on GS can be in Section 3.

2.3.1 Choosing an Algorithm

SFI provides the opportunity to develop schemes that
dynamically select the best inference algorithm for a
decomposition point, serving as the foundation for an
automated inference framework. At the application
of the inference strategy, there is opportunity to ana-
lyze and estimate the complexity of various algorithms
applied to the factors, and choose the one with the
smallest cost (e.g., speed or accuracy). For example,
methods that estimate the running time of various in-
ference algorithms on a model (Lelis et al., 2013) can
be encoded into an inference strategy, and the algo-
rithm with the lowest estimated running time can be
chosen.

We created a simple heuristic to choose an inference
algorithm, but yet still demonstrates the potential of
the approach. As VE is an exact algorithm, it is al-
ways preferred over other algorithms if it is not too
expensive, but unfortunately is impractical on most
problems. We therefore have a heuristic to use VE on
a set of factors. We first compute an elimination order,
O, to marginalize to the external variables. The cost
of eliminating a single variable is the increase in cost
between the new factor involving the variable and the
existing factors, and the cost of VE is the maximum
over all variables, using O. If the cost is less than some
threshold we use VE, otherwise, BP or GS.

To choose between BP and GS, we also use another

Structured Factored Inference for Probabilistic Programming Supplementary Material

heuristic. As the degree of determinism in a model
strongly correlates with the convergence rate of BP
(Thler et al., 2005), we use the amount of determinism
in the model as a choice between using BP or GS. We
mark a variable as deterministic if, when using GS,
we must create a block of more than one variable. If
the fraction of deterministic variables (as compared
to all variables) in the model is greater than a thresh-
old, then we invoke BP and otherwise GS. While these
strategies are heuristics, they do demonstrate the proof
of concept for automated inference, and the results
presented in the next section show that they are effec-
tive.

3 GIBBS SAMPLING ON FACTORS

We designed a blocked Gibbs sampler that operates on
factor graphs and is compatible with our structured
factored inference interface.

3.1 Automatic Blocking

Blocked Gibbs sampling is necessary because vari-
ables in SimPPL can have deterministic dependen-
cies. Failing to sample deterministically related vari-
ables jointly via Gibbs sampling results in a reducible
Markov Chain over the state space of the variables
that cannot converge to the correct result. Since the
algorithm only receives a set of factors and basic in-
formation about the variables in the factors, it must
automatically determine a set of blocks over which to
perform Gibbs sampling, where each block is a set of
variables. We block variables together by classifying
them as either stochastic or deterministic. For deter-
ministic variables, we maintain a list of its parents (i.e.,
the set of variables that uniquely determine its value).
Stochastic variables can be thought of as variables with
no deterministic parents. We begin by placing each
stochastic variable in its own block. Then, we recur-
sively add each deterministic variable to every block
that contains one of its parents.

3.2 Gibbs Sampling with Factor Operations

After block creation, the algorithm can proceed with
Gibbs sampling on one block at a time. It must first
generate a consistent sample for each variable. If no
variables have hard evidence, the algorithm can gener-
ate an initial sample by performing forward sampling
according to the factors. Otherwise, a WalkSAT-like
procedure is necessary to produce a sample consistent
with the evidence. To compute the joint distribution
of a block conditioned on its Markov blanket, observe
that the Markov blanket of a block consists of the set
of variables that share a factor with at least one vari-

able in the block. Thus, an iteration of Gibbs sampling
on a block proceeds as follows:

1. Take the set of factors defined over at least one
variable in the block.

2. Condition these factors on the current assignment
of the block’s Markov blanket.

3. Marginalize each factor to the variables in the
block.

4. Compute the joint distribution over the block
by taking the product of the conditioned and
marginalized factors.

5. Sample from the normalized joint distribution
over the block.

6. Update the current assignment of variables in the
block.

A single iteration of Gibbs sampling completes when
this procedure has been applied once to every block,
following which we may record a sample. Unfortu-
nately, this naive implementation is generally expo-
nentially slow in the size of the block. In the SimPPL
implementation, factors are stored as a map from an
assignment of the factor’s variables to a real-valued
weight. Consequently, conditioning and marginalizing
generally takes time proportional to the number of en-
tries in a factor. Additionally, computing a product
of two factors with distinct variables takes time pro-
portional to the product of the number of entries in
the two factors. This fails to take advantage of the
fact that variables in the blocks are deterministically
related. Indeed, for any assignment of a single value
to a variable in the block, there is only one consistent
assignment of values for the remaining variables in the
block when given the Markov blanket. This is to say
that if the single non-deterministic variable in a block
has a set of outcomes of size n, a better implementa-
tion should take time linear in n to compute the joint
distribution given the Markov blanket.

3.3 Performance Optimizations

We describe several optimizations that allow our fac-
tored Gibbs sampler to perform comparably to a tra-
ditional Gibbs sampler.

3.3.1 Conditioning and Marginalizing

We begin by changing the choice of data structure for
factors in a block. We take each factor and partition
its variables into two sets: those that belong to the
block, B, and those that belong to the block’s Markov

blanket, M. We then group the rows in the factor
by assignment to variables in M. We create a new
factor F' which maps a variable assignment over M to
a factor over B. Thus, F' is a modified factor which
stores a factor instead of a real-valued weight. This
effectively allows us to perform the conditioning and
marginalizing steps above in constant time by looking
up a row in F.

3.3.2 Computing the Joint Distribution

We improve the computation speed of the joint dis-
tribution over a block by taking advantage of sparse
factors. Sparse factors in our language are factors that
store only nonzero rows. Such sparse factors are use-
ful because computing a product of two sparse factors
usually takes linear time in the number of entries when
the product contains no more nonzero entries than ei-
ther of the two factors used to compute it. Intuitively,
if we can preserve the “sparseness” when taking this
product, then the product can be computed efficiently.
Based on our blocking scheme, we expect the joint
distribution over a conditioned block to be extremely
sparse because of the deterministic relationships be-
tween variables in a block. To compute this distribu-
tion quickly, it is crucial that every intermediate factor
used in computing the product is as sparse as possi-
ble. We accomplish this with a priority queue that
orders factors according to their sparseness. We de-
fine the sparseness S of a factor over v variables with
e nonzero entries by:

|-

S(v,e) =e

We choose this function because if each variable can
take on n > 1 possible values and every row in the
factor is nonzero (e.g., if every variable in the factor is
independent), then the sparseness is exactly n. Other-
wise, the sparseness is strictly less than n. For exam-
ple, if all of the variables are perfectly correlated and
can take on only one possible value (i.e., e = 1), the
sparseness is exactly 1. Thus, we favor factors with a
smaller sparseness. Computing the product of a set of
factors proceeds as follows:

1. Insert all of the factors in a priority queue accord-
ing to S.

2. Dequeue the two factors for which S is smallest
and compute their product.

3. Insert the product of these factors into the priority
queue according to S.

4. Repeat (2) and (3) until the priority queue con-
tains only a single factor.

3.3.3 Caching

Our final optimization is to optionally cache the most
recently computed joint distributions over a block ac-
cording to the corresponding assignment to the block’s
Markov blanket. The Markov chain used in Gibbs
sampling will frequently revisit recently visited states,
so storing these distributions allows saving some com-
putation time at the cost of memory. By default, we
store up to 1000 of the most recently used distribu-
tions.

References

S. Geman and D. Geman. Stochastic relaxation, gibbs
distributions, and the bayesian restoration of im-
ages. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, (6):721-741, 1984.

A. T. Ihler, J. Iii, and A. S. Willsky. Loopy belief
propagation: Convergence and effects of message
errors. In Journal of Machine Learning Research,
pages 905-936, 2005.

D. Koller and N. Friedman. Probabilistic graphical
models: principles and techniques. MIT press, 2009.

L. H. Lelis, L. Otten, and R. Dechter. Predicting the
size of depth-first branch and bound search trees. In
Proceedings of the Twenty-Third international joint

conference on Artificial Intelligence, pages 594-600.
AAAI Press, 2013.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Under-
standing belief propagation and its generalizations.
Ezxploring artificial intelligence in the new millen-
nium, 8:236-239, 2003.

