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Abstract

Probabilistic reasoning on complex real-world
models is computationally challenging. In-
ference algorithms have been developed that
work well on specific models or on parts of gen-
eral models, but they require significant hand-
engineering to apply to full-scale problems.
Probabilistic programming (PP) enables the
expression of rich probabilistic models, but in-
ference remains a bottleneck in many applica-
tions. Factored inference is one of the main ap-
proaches to inference in graphical models, but
has trouble scaling up to some hard problems
expressible as probabilistic programs. We
present structured factored inference (SFI),
a framework that enables factored inference
algorithms to scale to significantly more com-
plex programs. Using models encoded in a
PP language, SFI provides a sound means to
decompose a model into submodels, apply an
algorithm to each submodel, and combine re-
sults to answer a query. Our results show that
SFT successfully reasons on models where stan-
dard factored inference algorithms fail due to
computational complexity. SFI is nearly as
accurate as exact inference and is as fast as
approximate inference methods.

1 INTRODUCTION

Probabilistic modeling is at the core of many artificial
intelligence (AI) applications. The complexity, rich-
ness, and diversity of models are rapidly growing as
AT takes on a larger role in everyday life. As a result,
the efficiency of probabilistic inference is critical for
practical use of these models. Despite research into
efficient algorithms, probabilistic inference remains a
bottleneck in many applications.
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While there is a large body of efficient algorithms, no
algorithm performs sufficiently on every model, and
often there are trade-offs between algorithms. Once
an algorithm proves to work well on a problem, any
modification is no guarantee of continued success. Thus,
AT engineers must select and configure an algorithm for
each problem, a task that is often more time consuming
than constructing the model itself.

One solution to reduce this burden is to automatically
select an algorithm that performs well on a problem.
An impediment to this approach is that the size and
complexity of real-world models makes it difficult to
determine the best algorithm. Further, different al-
gorithms may be appropriate for different parts of a
model, known as submodels. For example, one algo-
rithm may work for a continuous submodel and another
for a discrete submodel. As a result, one should select
an algorithm for each part of a model, and combine
the results to answer a query. Central to this approach
is a sound method to decompose models.

The emerging field of probabilistic programming (PP)
provides the opportunity to support this automated
model decomposition. PP (Koller et al., 1997; Good-
man, 2013) provides expressive and general purpose
languages to encode probabilistic models as executable
programs. PP developers can leverage the power of
programming languages to create rich and complex
models, and use built-in inference algorithms that op-
erate on any model written in the language. More
importantly, since the models are encoded as programs,
developers can use the program structure and analysis
to understand its properties before inference.

We introduce structured factored inference (SFI), a
PP inference framework that uses program semantics
to identify decomposition points within a probabilis-
tic model that define a hierarchy of submodels. SFI's
decomposition has three major benefits. First, it fa-
cilitates solving many manageable subproblems rather
than one potentially intractable large problem. Since
some factored algorithms scale poorly with the problem
size, it can sometimes be easier to find efficient solu-
tions to small problems and then compose them than
to find a solution to the full problem. For example,
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Pfeffer (2000) showed that a decomposition strategy
finds much better variable elimination (VE) orderings
than standard heuristics on the full problem.

Second, hierarchical decomposition enables us to use
dynamic programming techniques to compose submodel
solutions, and re-use prior computation. For example,
if the same subproblem appears again, the cost of its
solution is only incurred once. This is similar to lifted
inference techniques (de Salvo Braz et al., 2007).

Third, SFI's decomposition method enables any fac-
tored algorithm to solve a subproblem. The decom-
position and choice of solution algorithms happen au-
tomatically. SFI can adaptively select an appropriate
algorithm for a specific submodel, as opposed to ap-
plying the same algorithm to all parts or the whole
problem. For example, if a problem contains small
discrete subproblems, VE might be used for each of
these to obtain answers that are then wrapped in an
MCMC algorithm at the top level of the hierarchy.
Alternatively, the subproblems may contain variables
with large continuous state spaces for which MCMC
is appropriate, while this is wrapped in a tractable
discrete problem at the top level that can be solved
by VE. In both cases, combining algorithms can yield
more accurate results than if MCMC was used alone,
while VE alone would have been infeasible.

We show the benefits of SFI on three models using a
combination of exact and approximate inference algo-
rithms. Our results show that probabilistic reasoning
using SFT is nearly as accurate as exact inference and
achieves performance equal to or better than approx-
imate inference. Further, SFI effectively reasons on
models where standard factored inference algorithms
fail due to computational complexity by interleaving
the construction of factors and solutions of subproblems
to create more compact factors. The SFI framework
is general and expandable, with potential to be the
foundation for a general automated inference system.

2 RELATED WORK

Automated algorithm selection has been a long desired
goal in computer science, with possibly the first formu-
lation by Rice (1976). As such, it has been applied
to a variety of disciplines in the field, such as scientific
computing (Houstis et al., 2000), game theory (Guerri
and Milano, 2004), and AI (e.g., satisfiability prob-
lems (Xu et al., 2008)). Most efforts learn how to apply
the best algorithm for a problem. For example, Guo
(2003) uses Bayesian networks (BNs) to learn and select
the best algorithm for a problem; however, neither the
problems or algorithms are specific, and can be gener-
alized to a variety of problems. SFI is complementary
to this existing work, as the framework can leverage

prior methods for improved algorithm selection.

Probabilistic inference is unique in some respects as the
independence properties of models provides the oppor-
tunity to apply algorithms to different parts. However,
there has not been significant progress that takes ad-
vantage of this. Our approach is similar in spirit to
work on black box variational inference (Ranganath
et al., 2013). These methods attempt to reduce the
burden of configuring and applying inference to general
probabilistic models, and in a sense attempt to auto-
matically find the best configuration of the algorithm.
While these approaches are promising, they only con-
sider a single algorithm. SFI decomposition strategies
also bear similarity to structured variable elimination
(SVE) (Pfeffer, 2000). Like SVE, SFT enjoys the ben-
efits of decomposition and reusing work. However,
SVE applies the same algorithm to each subproblem,
whereas SFI is a general framework for decomposing
problems and optimizing each submodel separately.

Recently, Murray et al. (2017) provided a tractable
substructure in probabilistic programs to reduce
variance in Monte Carlo estimators based on Rao-
Blackwellization. The solution requires that each sub-
model being marginalized has an analytical solution, as
they do not propose a general framework for perform-
ing this marginalization otherwise. SFI does serve as
a general framework in this case, and certainly can be
used in conjunction with these Monte Carlo methods.

3 PROBABILISTIC
PROGRAMMING

SFT has manifested in the Figaro probabilistic program-
ming language (PPL), although it is a general approach
to inference applicable to all PPLs. To present SFI, we
use a minimal PPL, SimPPL. While SimPPL lacks the
complexity of many PPLs, it is equally expressive.

3.1 SimPPL Language

The central concept in SImPPL is a program, which
contains a sequence of random variables (RVs). Each
RV r has a type T, which defines the set of values it
can take. A program @) has a set of free variables Fq,
and consists of definitions of the form r = e, where
e is an expression. The set of RVs defined in @ (not
including Fg) is denoted RVy. An RV is available if
it is either in F¢ or defined previously in Q. The set of
available RVs with respect to an RV r is the set of RVs
that can possibly be used when defining r, denoted A,..

An expression defining an RV r is one of the following;:

e A primitive, which directly defines a probability
distribution d,. (e.g., Uniform) over values.
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e Apply(ri,...,mn, f), where r1,..., 7, are available
RVs and f is a function T}, x - - x T, — T;. The
RVs rqy,...,r, are arguments of r.

e Chain(ry, f), where ry is an available RV and f
is a function T, — Q, where Q is the space of
programs such that for each Q' € 9, Fo C A,
and the final RV in @’ has type T,.. The final RV
represents the return variable of the program. The
RV r; is an argument of r.

Because an argument of an RV is always available to
the RV, a program defines a directed acyclic graph over
its variables.

3.2 SimPPL Semantics

The semantics of program ) can be understood by
defining a generative process, that given values for the
RVs in Fg, produces values for each of the variables
defined in Q. For each variable r in @, values for all
the variables in A, are generated before a value for
r is generated. If r is defined by a primitive, it is
generated by the associated probability distribution d,..
If r is defined by Apply(ri,...,rn, f), it is generated
by applying the function f to the previously generated
values of r1,...,r,. If r is defined by Chain(ry, f), it
is generated by first applying the function f to obtain a
program Q' and then generating values for each of the
variables in )'. The value of r becomes the value of the
final variable in ). Assume that programs terminate.

For what follows, the essential point to remember about
the semantics of SimPPL is that when r is defined by
Chain(ry, f), applying the function f to the value
generated for r; produces a new program Q'. We call
f the chain function, 71 the parent value, and @’ the
subprogram created for f and r;. In any application of
SimPPL, there is a single program called the top level
program that is not a subprogram. All other programs
are subprograms of this top level program.

SimPPL allows conditioning and querying any top level
program variable. This can encode both hard observa-
tions (only allowing a fixed value or set of values for a
variable) and soft constraints (preferring some values
over others). Queries take the form of computing the
marginal distribution over a variable or the expectation
of a function on the values of a variable.

4 STRUCTURED FACTORED
INFERENCE

The intuition behind SFT is simple: If a model can be
broken into smaller submodels (i.e., programs) that
can solved independently (i.e., marginalizing out non-
relevant variables), then different algorithms can be

applied to different parts. SFI uses SimPPL semantics
to identify decomposition points within a probabilistic
model, creating an abstract hierarchy of submodels.
Each submodel is independently reduced to a joint
distribution over variables relevant to a query, using
any inference method. Using factors to represent the
joint distribution, the results are incorporated into the
inference algorithms applied on other submodels. SFI
also uses factors to combine information from solved
(i-e., already marginalized to a relevant joint distri-
bution) submodels to answer queries. Fundamentally,
SFTI is a framework for applying two types of strategies:
a decomposition strategy that divides a model into
submodels, and an inference strategy that applies an
inference algorithm to each submodel®.

Decompositions are based on chain variables. That is,
there is a separate subproblem for each value of the
chain’s parent. Every subprogram that is a chain func-
tion for some parent value becomes a submodel in SFI
and has an inference method applied to it. This ensures
that if the inference methods applied to submodels are
all exact, then SFI itself is exact. However, one of the
main benefits of SFI is that it lets us mix exact and ap-
proximate algorithms for different submodels, leading
to much better accuracy than using an approximate
algorithm for a problem as a whole.

Consider the model (Fig. 1a), with RVs, a, b, and ¢,
defined in ). RVs b and ¢ generate a value using the
Q' that is generated by f(a), where outcome. refers
to the outcome for RV b when a is true. Each chain
generates a program @’ for both true and false. With
the exception of outcome, the RVs defined by Q' are
not directly needed to reason about a, b, and ¢. That
is, all of the RVs defined in @’ except outcome and Fe
can be marginalized out of Q’. A joint distribution over
outcome U Fg is all that is needed to reason at the
top level program . Since this marginalization is self-
contained, any inference algorithm that can compute
a joint distribution can be applied to each submodel
(Fig. 1b). This joint distribution is represented as a
factor. Factors are then “rolled up” and used by an-
other algorithm to answer queries on (). This is the
core operation of SFI: Given a submodel, use an algo-
rithm to marginalize out internal variables and return
a joint distribution over outcome and the free variables,
repeating the process until the query is answered.

4.1 Factored Representation

Using factors in SFI has several advantages: It pro-
vides an interface to communicate the joint distribution
of a submodel to other submodels and it makes SFI

!Details on decomposition and inference strategies ap-
pear in Section 2 of the supplementary material.
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a = Flip (0.6)
b = Chain(a,f)
¢ = Chain(a,f)
f(true) = {
x1 = Flip (0.9)
yl = Flip (0.8)
z1 = Apply(x1, yl1, (bl, b2) => bl&&b2) x1br
x2 = Flip (0.7) N
y2 = Flip (0.8) z
z2 = Apply(x2, y2, (bl, b2) => bl&&b2)
outcome = Apply(zl, z2, (bl, b2) => bl||b2)
}
f(false) = {
x1 = Flip(0.1)
yl = Flip (0.8)
z1 = Apply(x1l, yl, (bl, b2) => bl&&b2)
x2 = Flip (0.2)
y2 = Flip (0.8)
z2 = Apply(x2, y2, (bl, b2) => bl&&b2)
outcome = Apply(zl, z2, (bl, b2) => bl||b2)
}

(a)

Cham

Chain a

b
Top Level Model ¢

(b)

Figure 1: SimPPL code shown in (a), where Flip(x) represents a Boolean distribution, with the probability of
being true equal to x, and => denotes an anonymous function. The corresponding model is shown in (b).

algorithm-agnostic. Any algorithm that can compute
a joint distribution and return a factor can be used,
including factored algorithms and sampling algorithms,
which can post-process a joint distribution into a fac-
tor. SimPPL’s implementation of SFI uses three factor-
based algorithms: VE (Koller and Friedman, 2009);
belief propagation (BP) (Yedidia et al., 2003); and
Gibbs sampling (GS) (Geman and Geman, 1984). In
theory, primitive distributions can be defined as either
discrete or continuous. However, SimPPL discretizes
continuous distributions?. While SFI can work with
both nested exact and approximate algorithms, we
make no claims on the theoretical accuracy of the final
solution using nested approximate algorithms. Proving
bounds on SFI’s accuracy with nested approximate
algorithms is a target for future research.

4.2 Evolution of Chain Construction

Since we are using a factored framework, the represen-
tation of factors at the junction between a model and
its submodels is critical. Without SFI, the representa-
tion of these factors is unnecessarily expensive. One of
the major side benefits of SFI is that, by eliminating
subproblems first, these factors can be made much sim-
pler in many cases. We explain three constructions of
chain factors consecutively to demonstrate in a logical
manner how SFI improves the overall inference process.

The original chain construction did not take advantage
of SFI. We describe this construction, using the vari-
able X generated by Chain(Y, f). For each value y;

2Details on factored representation appear in Section
1.1.1 of the supplementary material

of the variable Y, we expanded the factor graph to
include all the variables in the program f(y;). From
the definition of f(y;), we knew that if the value of Y’
was ¥;, then the value of the variable X was equal to
the value of the final variable in f(y;), which we call
Z;. In other words, X was a deterministic function of
Y, Zy,...,Z,, where X was equal to the value of Z;
if Y = y;. We add a new variable W defined by the
expression Apply(Y, Z1,, Z,, g) to capture this logic.

This original construction was inefficient. The factor
created for W contained an entry for every combination
of values of X,Y, Zy,...,Z,. This is exponential in n
(the number of values of the parent Y of the chain).
Since a variable can have many values, this is an un-
acceptable size. Therefore, we introduced a second
construction based on the decomposition of the chain
factor. According to this second construction, when Y’
took on value y;, only the value of Z; was relevant to
determining the factor entry. Specifically, the factor
entry was 1 if z; = x and 0 otherwise. All the other Z;
were irrelevant. For a specific 4, we captured the cases
where Z; was relevant or irrelevant with a factor over
XY, Z; representing the function f; defined by:

lifj#iorz ==z
fi(xayjazi) = {

0 otherwise

By defining f(z,y,21,-..,2n) [T, fi(z,y,2),
where f is the function that constructs the factor that
defines W, we see that each factor in the decomposition
only mentions three variables and the number of factors
is linear in n. This second construction is exponentially
more compact than the original construction.
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However, this second chain construction can still cause
problems when there are a lot of parent values. Con-
sider the case where all the produced subprograms have
the same set of values for the last variable in the pro-
gram, and let the number of these values be N. Let the
number of parent values be P. Then the total size of
the chain factors produced is O(N2P?). On the other
hand, if all the subprograms have a disjoint set of N
values, the total size of the chain factors is O(N2P3).

To avoid this issue, we introduced a third (and final)
construction, that takes advantage of SFI, resulting in a
single factor whose size is O(NN P) when all subprograms
produce the same set of values, and O(NP?) when
they produce disjoint sets of values. This is a quadratic
savings in the size of the factors, which in turn leads
to quadratic or better savings in the cost of inference.

The reason for the expensive original construction was
because the variables representing the outcome of a
subprogram might be linked to other variables in the
model, and the produced factors had to preserve all
these linkages. However, in SFI, all the variables in
a subprogram, except for the final variable, are com-
pletely eliminated before solving a higher level program.
As long as the subprogram uses no free variables, there
will be no connections between the final variable in the
subprogram and other variables in the model.

The final construction is for cases where all the subpro-
grams created for different parent values of a Chain
expression use no free variables. This can easily be de-
tected by examining the factors produced after solving
the subprograms. If none of those factors mention free
variables, the final construction can be applied. Our
experience shows that this is the most common case.

For a definition X = Chain(Y, f) that satisfies this
property, the final construction creates a factor over
the two variables Y and X. The values of Y are all the
parent values, while the values of X are the union of
all the values of the final variables of the subprograms
created for this C'hain expression. Therefore, if all the
subprograms produce the same set of IV values for each
of the P parent values, the total number of entries in
the factor is NP, while if the subprograms produce
disjoint sets of NV values, for a total of NP values, the
number of entries in the factor is NP2

To define this factor F, we must specify the entry
associated with each parent value y; and each outcome
value x;. If x; is not a possible value of the final variable
in the subprogram created for parent value y;, the entry
is 0 because x; cannot be associated with y;. Otherwise,
let Fi,..., F} be the factors produced after eliminating
variables in the subprogram created for parent value ;.
By assumption, this subprogram does not use any free
variables, so these factors mention only the variable x;.

The entry associated with y; and x; in F' is then the
product of entries associated with x; in Fy,..., F}.

5 EXPERIMENTS

Our implementation of SFI optimized between VE,
BP, and GS. We chose VE, BP, and GS as example
solvers because they are well understood and widely
used. First, the optimizer decided whether to use
an exact inference algorithm for a submodel by first
choosing an elimination order using standard heuristics
and then comparing the cost of VE with this order to
the original size of the factors. If the cost was less than
some threshold, we used VE, otherwise, BP or GS. To
decide between BP and GS, we used the amount of
determinism in the submodel, invoking BP with more
determinism. Determinism is defined as the fraction of
deterministic variables compared to all other variables3.

We tested SFI using three models. First, we encoded a
modified QMR medical diagnosis model (Jaakkola and
Jordan, 1999). Like the standard model, our model is
a BN of diseases associated with observable symptoms.
However, we insert a layer of intermediate illnesses
between the disease and symptom layer. The illnesses
are conditioned on the diseases, and the symptoms
conditioned on the illnesses. The number of diseases
and parents per symptom vary so the BN is constructed
by randomly connecting nodes between each layer. In
each test, we observed a random number of diseases
and symptoms and queried a random subset of diseases.

Second, we used a mixed directed-undirected model.
The undirected portion is an Ising model (Glauber,
1963), where each Boolean variable v in an n x n grid
has a potential to its four neighbors. The prior over
each variable is modeled as a BN conditioned on a
causal variable ¢,,. This model can be viewed as n?
BNs joined in a top level Ising model. SFI was used for
the directed portion and the undirected portion was
treated jointly. We varied n in testing, but for each
test, a random 20% of the ¢, variables are observed as
either true or false. All queries were over the posterior
distributions of a random subset of Boolean variables.

Finally, we built a model to solve a desktop activity
recognition problem from the DARPA Perceptive As-
sistant that Learns (PAL) Program. Given a sequence
of user event types, we determined the associated work-
flow, instance, and position of each event. Our model
is a dynamic BN where each point in time captures
the current event (i.e., type, workflow, instance, and
position). See Fig. 2 for an illustration of the model.

3Details on how to choose between algorithms and the
integration of GS with SFI appear in Sections 2.3.1 and 3
respectively in the supplementary material.
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Figure 2: Desktop activity recognition model

These three models are well suited for SFI because they
contain a significant amount of structure that can be
decomposed: the QMR model’s diseases and symptoms
are a series of chain RVs; each Boolean variable in the
Ising model is a chain that uses each ¢,, as a parent; and
the desktop model represents each transition between
states as a chain that depends on the previous state.
Further, the desktop model is a realistic model used for
a practical application. All non-SFI factored inference
algorithms failed to solve the desktop model due to
computational complexity.

5.1 Results

First, we tested how different decomposition strategies
affect inference using flat and hierarchical strategies
with VE and BP on the QMR model (see Fig. 3). In
general, a flat strategy represents typical inference,
where factors are created for all variables and all non-
query variables are marginalized out in a flat operation.
A hierarchical strategy represents a recursive infer-
ence process in which a large model is decomposed
until no more decomposition points are found and each
decomposition point in a model is visited in a depth-
first traversal. Once a program is reached with no
decomposition, inference is performed to return a joint
distribution over the external variables and outcome.

For VE, the hierarchical strategy is generally faster.
Mathematically, both strategies perform the same op-
erations. However, the hierarchical strategy imposes a
partial elimination order; an elimination order is found
for each VE instance, but the order that the decom-
position points are visited is fixed. The flat strategy
uses a heuristic to find the best elimination order given
all the factors in the model. From this, it appears
that the structure imposed by programmer (i.e., by
using chains) finds a better elimination order than the
heuristics used to solve this NP-hard problem (Pearl,
2014). These results are consistent with previous work
on SVE (Koller and Pfeffer, 1997).

For hierarchical BP, each BP instance ran for 10 itera-

tions, whereas flat BP ran once for 100 iterations. The
hierarchical strategy is consistently faster. This com-
parison is not exact though as it is hard to determine
how many iterations in a flat strategy “equals” hier-
archical iterations. However, looking at the accuracy
of the methods in Fig. 3, the hierarchical method is
consistently more accurate. Thus, even if the flat BP
is run for more iterations to improve its accuracy (as-
suming it has not converged), it is already dominated
in runtime and accuracy by the hierarchical method.

Next, we applied our three-algorithm (i.e., VE, BP, and
GS) hybrid strategy with hierarchical decomposition to
determine if we can improve the speed and/or accuracy
using multiple algorithms as compared to one. The
results for the QMR model for runtime and accuracy
are shown in Fig. 4. The inference strategy only chose
to run VE and BP, so we only compare to those.

For runtime, VE is competitive until the number of
diseases reaches nine; at 10 diseases, we start to see
the effect of exponential growth. Comparing BP to the
combined VE/BP method directly is difficult. However,
combined with the accuracy results in Fig. 4, we can
analyze the relationship between runtime and accuracy
for all methods. BP(10) and BP(50) have comparable
accuracy. The hybrid methods, however, are much
more accurate. VE/BP(10) is nearly four times more
accurate than BP alone. Further, VE/BP(50) has
nearly zero error. The runtime for the hybrid methods
are both faster than their “respective” BP version
(i.e., comparing BP(10) to hybrid VE/BP(10)). While
VE/BP(50) has a longer runtime than the single BP(10)
iteration strategy, it is nearly as accurate as VE with
significantly less runtime.

The results on the mixed model are shown in Fig. 5.
The hybrid strategy only ran VE and GS. Similar to
the QMR model, VE has the best performance until the
model becomes large, at which point the hybrid strategy
has the best runtime. The accuracy of the hybrid
methods is better than the GS approaches. Overall, the
hybrid approach dominates the GS approach in terms
of accuracy and time. However, as more GS iterations
are performed, the performance gap decreases, as the
runtimes of both approaches are dominated by applying
GS to the undirected portion of the model.

In testing the desktop model, we evaluated how well
SFT using the final chain construction scaled to com-
plex problems compared to non-SFI factored algorithms
and SFT using the original chain construction. To do
this, we incrementally increased the number of possible
events in the model. The smallest version of the prob-
lem had only 11 possible events, while the full problem
required we perform inference in an event space that
had 162 possible events.
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Figure 3: Comparing flat and hierarchical strategies in terms of (a) runtime and (b) accuracy to VE.
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Even with 11 possible events, all non-SFI factored
algorithms failed due to computational complexity. SFI
with the original chain construction lasted through the
first three levels: 11, 16, and 23 possible events, but
failed to complete inference by the next level, 34. With
the creation of more compact factors using the final
chain construction, SFI worked for the entire problem
and resulted in quadratic time savings. We show this
savings up to 88 events in Fig. 6a. In the final version
of the problem with 162 events, we see the first large
jump in runtime, of around 45 minutes.

For the 88-event model, we compared SFI to two sam-
pling algorithms, Metropolis-Hastings (MH) (Chib and
Greenberg, 1995) and importance sampling (see Fig.
6b). When run for the same length of time as VE, MH
yielded a 79% overall accuracy rate compared to VE’s
94% overall accuracy rate, where overall accuracy refers
to the number of events with the correctly identified
workflow, instance, and position divided by the total
number events. When run for a 50% longer time than
VE, importance sampling only yielded a 32% overall
accuracy rate. Despite its longer runtime, BP had the
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Figure 6: Comparing (a) old vs new chain runtime, and (b) accuracy between VE and BP.

second highest overall accuracy rate, 87%. VE’s aver-
age runtime was more than eight times faster than BP
(233 seconds versus 2,007 seconds per user). VE was
consistently faster than BP for every model version.

Our algorithms significantly outperformed the DARPA
PAL Program’s reference model (a logical Hidden
Markov model). For the 162-event model, the PAL
reference model had a workflow accuracy of 45%, where
workflow accuracy refers to the number of correct work-
flows identified divided by the total number events.
Conversely, our model using SFI VE had a workflow
accuracy of 81%.

These results demonstrate that SFI is able to solve
realistic practical problems that cannot be solved by
other factored algorithms.

6 CONCLUSION

We introduced a new framework for inference in proba-
bilistic modeling, structured factored inference. Lever-
aging the capabilities of PP, we have shown a seman-
tically sound method to decompose a model into sub-
models. We demonstrated that SFI can be used to
implement a basic automated inference scheme that
is nearly as accurate as exact inference methods and
solves problems where non-SF1 algorithms fail due to
computational complexity.

SFI is a general framework that can incorporate any
solver that operates on factors. Our goal in designing
SFI was to extract the best performance when using any
set of such solvers. We chose VE, BP, and GS as exam-
ple solvers because they are well understood and widely
used. We do not claim that SFI coupled with these
algorithms outperforms specialized advanced inference

techniques. Rather, we demonstrate that automatic
structured decomposition improves the performance
of factor-based inference solvers. We anticipate that
if specialized techniques were incorporated into the
SFI framework, it would perform even better. We also
emphasize that we used simple heuristics that provided
benefits. We anticipate that with better heuristics, the
results would be even better.

This work serves as a starting point for a more robust
automated inference framework, but several capabil-
ities still must be developed. First, more intelligent
algorithm selection methods must be developed. Re-
cent work provides a starting point for this (Flerova
et al., 2012; Lelis et al., 2013), but new methods that
leverage the analyzability of PP can make the estima-
tion of complexity more accurate (Hur et al., 2014).
New decomposition points also must be developed to
enable more sophisticated decomposition. While our
chain decomposition is effective, user-defined or object-
oriented decomposition points may be more effective at
decomposing a model to facilitate faster inference. We
are currently working on an extension to SFI, called
lazy structured factored inference (LSFI), that enables
SFT to be used for models that do not terminate in all
cases. Our hope is that the LSFI framework will be
the catalyst for future research in these areas.
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