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1 Proofs
Proof of proposition 3.1 [Monotonicity] Given a discriminant distribution disc(φ, µ0, σ0, µ1, σ1), the map-
ping g from signal space to probability space is monotonic if and only if σ0 = σ1.

Proof. The mapping from signal space to probability space can be found with Bayes’ rule:

g(x) = Pr(Y = 1 | X = x) =
Pr(Y = 1)N(x;µ1, σ1)

Pr(Y = 1)N(x;µ1, σ1) + Pr(Y = 0)N(x;µ0, σ0)

= logit−1(Ax2 +Bx+ C)
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This is the composition of a quadratic in x and the inverse logit function, which will be monotonic if and
only if the quadratic is monotonic, requiring σ2

0 − σ2
1 = 0.

Proof of proposition 3.2 [2-parameter representation]: Suppose disc(φ, µ0, σ, µ1, σ) and disc(φ′, µ′0, σ
′, µ′1, σ

′)
are two homoskedastic discriminant distributions. Let

δ =
µ1 − µ0

σ

and define δ′ analogously. Then the two distributions are identical if φ = φ′ and δ = δ′. As a result,
homoskedastic discriminant distributions can be parameterized by φ and δ alone.

Proof. We establish this result by explicitly deriving the density of g(X), where g is the usual mapping from
signal to probability space. Doing so first requires computing the inverse transformation from probability
space to signal space:

g−1(p) =
µ2
1 − µ2

0 − 2σ2 log
(

φ
1−φ

1−p
p

)
2(µ1 − µ0)

.

Now,
d

dp
(g−1(p)) =

σ2

p(1− p)(µ1 − µ0)
.

The density of X is

fX(x) = φN(x;µ1, σ1) + (1− φ)N(x;µ0, σ0).
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We can accordingly compute the density of g(X) by the change of variables formula:

fP (p) = fX(g−1(p))

∣∣∣∣ ddp (g−1(p))
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where
α = 2 log

(
φ

1− φ
1− p
p

)
.

Without loss of generality we can set δ = (µ1 − µ0)/σ, resulting in a 2-parameter family of densities:

(1)fP (p) =
1√

2πp(1− p)δ

[
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.

Proof that discriminant distributions are a subset of logit-normal mixtures: Discriminant dis-
tributions approximate logit-normal distributions particularly well because they in fact form a subset of
logit-normal mixture distributions. To see this, consider the following rearrangement of the first component
in the mixture in Eq. (1) (ie, the component with weight φ):
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This is the density of a logit-normal with parameters µ = logit(φ)+ δ2

2 and σ = δ. Thus, we can express the
discriminant distribution as a specific 2-parameter mixture of logit-normals (where fl(x;µ, σ) is the density
function of the logit-normal):

fP (p) = φfl

(
p; logit(φ) +

δ2

2
, δ

)
+ (1− φ)fl

(
p; logit(φ)− δ2

2
, δ

)
.

In this form, we can see that for small δ or φ close to 0 or 1, the distribution is almost equivalent to a (single)
logit-normal.
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2 Supplementary figures
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Figure 1: Posterior predictive checks for frisk rate and hit rate in stop-and-frisk data. Each point represents
one precinct-race pair. Points are sized by the number of stops for that precinct and race.
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Figure 2: Inferred frisk thresholds when the model is fit to simulated data, where the threshold applied to
each stop is perturbed by logit-normal noise. The dashed lines indicate the unperturbed thresholds. Racial
disparities in thresholds persist even as large amounts of noise are introduced.

Figure 3: Frisk thresholds inferred on disaggregated subsets of the primary dataset. While thresholds vary
across subsets, thresholds for whites are consistently higher than thresholds for blacks and Hispanics.
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Figure 4: Placebo test: frisk thresholds inferred using month or weekday rather than race show only slight
variation, as expected. Vertical lines denote 95% credible intervals.
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Figure 5: Posterior predictive checks for stop model. Each point represents one precinct-race pair. Points
are sized by the population of each race in each precinct.
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Figure 6: Inferred stop thresholds when the model is fit to simulated data, where the threshold applied
to each stop is perturbed by logit-normal noise. The racial disparities in thresholds persist even as large
amounts of noise are introduced.
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Figure 7: Stop thresholds inferred on disaggregated subsets of the primary dataset. While thresholds vary
across subsets, thresholds for whites are consistently higher than thresholds for blacks and Hispanics.
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Figure 8: Graphical representation of the generative model for stop decisions. Observed outcomes are shaded,
and unshaded nodes are latent variables inferred from data.
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