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Abstract

Given a finite random sample from a Markov
chain environment, we select a predictor that
minimizes a criterion function and refer to it
as being calibrated to its environment. If its
prediction error is not bounded by its crite-
rion value, we say that the criterion fails. We
define the predictor’s complexity to be the
amount of uncertainty in detecting that the
criterion fails given that it fails. We define
a predictor’s stability to be the discrepancy
between the average number of prediction er-
rors that it makes on two random samples.
We show that complexity is inversely propor-
tional to the level of adaptivity of the cali-
brated predictor to its random environment.
The calibrated predictor becomes less stable
as its complexity increases or as its level of
adaptivity decreases.

1 Introduction

Let {Xt : t 2 Z} be a sequence of binary random vari-
ables possessing the following Markov property,

P (Xt = xt | Xt�1 = xt�1, Xt�2 = xt�2, . . .)

= P (Xt = x | Xt�1 = xt�1, . . . , Xt�k⇤ = xt�k⇤)

where xt�k⇤ , . . . , xt�1, xt take a binary value of �1
or 1. This sequence is known as a discrete-time
Markov stochastic process, or Markov chain, of or-
der k⇤. Let the environment be a stationary ho-
mogeneous Markov chain of order k⇤. We assume
that k⇤ is unknown. Define a state space by a
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set Sk⇤ of states s(i), i = 0, 1, . . . , 2k
⇤
� 1, where

s(0) := [s(0)k⇤�1, . . . , s
(0)
0 ] = [�1, . . . ,�1,�1], s(1) :=

[s(1)k⇤�1, . . . , s
(1)
0 ] = [�1, . . . ,�1, 1], . . .,s(2

k⇤
�1) :=

[1, . . . , 1].

We consider systems that predict the environment.
They are based on binary functions that are defined on
a state space Sk where k > 0 is an integer which may
be di↵erent from k⇤. Given a sample of consecutive
values of the environment that form a finite Markov
chain

X(m) := {Xt}
m
t=�max{k,k⇤}+1, (1)

we define a criterion function based on this sample and
choose a predictor which minimizes the criterion. The
criterion function is an upper bound on the predic-
tion error and is commonly referred to as a penalized
empirical error estimate [4].

Statistical theory of empirical processes [7] guarantees
(up to a certain level of confidence) that the error of
a predictor which minimizes the criterion function is
no larger than the minimum value of the criterion over
all predictors. Roughly speaking, this means that the
prediction error of the chosen predictor is as close as
possible to the minimum error over all predictors. If
this holds, we say that the criterion succeeds (other-
wise it fails).

Using upper bounds as criteria for learning classifica-
tion or prediction is a mainstay of statistical learning
theory [11, 10, 5, 1]. In the current paper, we approach
the problem of prediction in a context of systems anal-
ysis and study how a predictor’s complexity a↵ects its
stability. (We use the term ’system’ and ’predictor’
interchangeably.)

We define stability as the di↵erence in system-
performance on two random samples, one on which
the predictor is calibrated, and another which serves
as a sample estimate of the future behavior of the en-
vironment. Since we are interested in understanding
how complexity influences stability (which is based on
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system performance), in the context of [9], as a func-
tional requirement of a predictor, we require that if the
above criterion fails on a random test sample, then this
failure must be detected. We define system complex-
ity to be the uncertainty in meeting this requirement,
namely, the uncertainty in detecting a failure of the
criterion given that such a failure occurs. As the main
result of the paper, we derive an expression that shows
how the complexity of a predictor influences its stabil-
ity. One consequence of the result is that the predic-
tor’s stability depends on its level of adaptivity to the
random environment.

Because of space limitation, the proofs of the state-
ments in the paper are excluded and are available in
[8].

2 Setup

Based on Sk⇤ , the chain X(m) can be represented as a
sequence

S⇤(m) = {S⇤

t }
m
t=1 (2)

of random states where

S⇤

t :=
�
Xt�(k⇤�1), Xt�(k⇤�2), . . . , Xt

�
2 Sk⇤ (3)

defines the random state at time t. With respect to
Sk⇤ , a state transition occurs from S⇤

t to S⇤

t+1 by
shifting left the sequence of bits in (3), to obtain
S⇤

t+1 := (Xt�(k⇤�2), . . . , Xt, Xt+1). There are two pos-
sible transitions that can occur from S⇤

t into S⇤

t+1: a
negative transition, where the lower bitXt+1 is �1 and
positive transition where Xt+1 is 1.

We denote by Q a 2k
⇤
⇥2k

⇤
transition probability ma-

trix of the environment’s Markov chain. Its (ij)th en-
try is denoted by

Q[i, j] := p
⇣
s(j)

���s(i)
⌘
. (4)

We denote by p(1|i) and p(�1|i), the probability of the
two possible transitions from state s(i) and we assume
that for all 0  i  2k

⇤
� 1, p(1|s(i)) > 0, thus the

environment’s Markov chain is irreducible. Let

⇡ :=
⇥
⇡0, . . . ,⇡2k⇤

�1

⇤
(5)

denote the stationary probability distribution where
⇡i is the probability that S⇤

t = s(i). That a sta-
tionary probability distribution exists follows from the
fact that the Markov chain is irreducible and the state
space Sk⇤ is finite (Corollary 8.2, [6]).

Denote by S(m) the sequence of states of Sk that cor-
responds to X(m), that is,

S(m) = {St}
m
t=1 (6)

and

St :=
�
Xt�(k�1), Xt�(k�2), . . . , Xt

�
2 Sk. (7)

We let the space Sk have a metric as follows: start with
an undirected graph Gk = (Vk, Ek) where Vk and Ek

represent the vertex and edge sets. The vertices corre-
spond to the states of Sk. An edge exists between two
distinct vertices if the transition probability (4) from
at least one of the corresponding states to the other,
is positive. This graph is known as an undirected De
Bruijn graph of dimension k and is 2-connected (max-
imum degree 4).

Define the distance d (s, s0) between states s, s0 2 Sk
to be the length of the shortest path between the cor-
responding vertices. (Gk is a connected graph so there
is always a path between any two vertices.) Define the
diameter of Sk as diam(Sk) := maxs,s02Sk d (s, s

0) . The
diameter equals k.

A �-cover of Sk with respect to the metric d is a set
C ✓ Sk such that for every element s 2 Sk there exists
an s0 2 C such d(s, s0)  �. The size of the smallest
�-cover of Sk is defined as the �-covering number of
Sk with respect to d, and is denoted by N� .

3 Prediction rules and margin

Denote by H the class of all binary functions h : Sk !

{�1, 1}. We let H serve as the class of possible pre-
dictors of the environment. For a subset R ✓ Sk let

dist(s,R) := min
s02R

d(s, s0).

From [2], we use a notion of width of h at s which is
defined by

wh(s) := dist
⇣
s,Rh(s)

⌘
(8)

where R+, R� ✓ Sk are regions classified as 1 and �1,
respectively, by h, and h(s) is the complement of h(s).
Because s 62 Rh(s) then wh(s) > 0. Define fh : Sk ! R
by

fh(s) := h(s)wh(s) (9)

to be a margin function associated with h. We can
evaluate the width and margin functions because k is
known and thus the edges of the De Bruijn graph on Sk
are known (the De Bruijn graph of the environment’s
space Sk⇤ and its corresponding transition matrix Q
are not needed).

We can express the decision of h at s as h(s) =
sgn (fh(s)) thus the function fh not only contains the
binary decision information of h but, more impor-
tantly, the absolute value of fh(s) is a form of confi-
dence in the decision h(s). We use this fact to consider
errors made at confident predictions.
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Given any binary function h 2 H, the predictor based
on h decides at time t according to the following rule:
if h(St�1) = 1 it predicts for Xt the value 1, otherwise
it predicts �1.

The probability that h makes a prediction error is con-
stant with respect to time t because the environment
is stationary. We denote it by

L(h) := P (Xtfh (St�1) < 0) . (10)

Denote the l1 -norm of fh by kfhk := maxs2Sk |fh(s)| .
Denote the class of margin functions by F :=
{fh : h 2 H}. An ↵-cover of F with respect to the

l1 norm on Sk is a set F̂↵ :=
n
f (↵)
j

or

j=1
such that for

every element f 2 F there exists an f (↵)
j 2 F̂↵ such���f � f (↵)

j

���
l1

 ↵. We denote by hj := sgn
⇣
f (↵)
j

⌘

the binary function that corresponds to f (↵)
j (note

that j := j(↵) and we omit the dependence on ↵ for
brevity). The size r of the smallest ↵-cover of F is
defined as the ↵-covering number of F with respect to
l1 norm on Sk and is denoted by N↵. From [2] (proof
of Theorem 4.1), it follows that

N↵ 

✓
2

⇠
3diam (Sk)

↵

⇡
+ 1

◆N↵/3

(11)

where N↵ is the ↵-covering number of Sk with respect
to the metric d. It follows that

log2 N↵/2  N↵/6 log2

✓
15k

↵

◆
. (12)

The notion of margin error has been useful in statis-
tical learning (see [3, 1] and references within). The
margin error of h at time t is defined as

L(�)(h) := P (Xtfh(St�1) < �) . (13)

The empirical margin error based on X(m) is defined
as follows,

L(�)
m (h) :=

1

m

mX

t=1

I {Xtfh(St�1) < �} . (14)

4 Calibrated predictor

In [8], section A.1, it is shown that there exists a finite
integer l0, such that for l � l0, the transition matrix
Q in (4) satisfies Ql > 0, that is, every entry of Ql,
denoted by p(l)(s(j)|s(i)), is positive. We choose l0 :=
min{l : Ql > 0} and in theory, if Q was known then l0
can be evaluated by computing Ql for a sequence l � 1
until the first l is found such that Ql > 0. Denote by
µ0 the minimum entry of Ql0 .

We henceforth make the following assumption:

Assumption 1. The environment’s transition matrix Q
satisfies one of the following conditions: (i) the mini-
mum entry of Ql0 is µ0 6= 2�k⇤

or (ii) µ0 = 2�k⇤
and

for all 0  i  2k
⇤
� 1, the transition probabilities

p(1|i) = p(�1|i) = 1
2 .

In both parts (i) and (ii) of the above assumption,
Q may have a uniform stationary distribution ⇡T =⇥
2�k⇤

, . . . , 2�k⇤⇤
, which means Q is doubly stochastic

and liml!1 Ql is a matrix U , of the same size as Q,
with all its entries identical to 2�k⇤

. Part (ii) treats
the special case where this limit U is reached exactly
at time l0, that is, Ql0 = U . According to the cases of
Assumption 1, define

⇢(k⇤, l0) :=8
>>>><

>>>>:

1�2k
⇤
µ0

2µ0

if case (i)

and l0 = 1,

2k
⇤�1

(1�2k⇤µ0)(l0�1)/l0
⇣
1�(1�2k⇤µ0)1/l0

⌘ if case (i)

and l0 � 2,

2k
⇤
�1 if case (ii).

(15)

Let

⇠(m, �, �) := r(k, k⇤)⇢(k⇤, l0)
s

2

m

✓✓
1 +

�
N�/12 + 1

�
log2

✓
30k

�

◆◆
ln 2 + ln

✓
1

�

◆◆

(16)

where

r(k, k⇤) :=

(
1 if k⇤ � k + 1

k � k⇤ + 2 if k⇤  k.
(17)

We define the penalized margin error of h as

L̂(�)
m (h) := L(�)

m (h) + ⇠(m, �, �) (18)

which is a random variable since it depends on X(m)

through L(�)
m (h). The following is a concentration

bound for a Markov chain which holds uniformly over
the class H and over the range of values for �.

Lemma 1. For � > 0 let N� be the �-covering num-
ber of Sk with respect to the metric d. Let X(m) be a
Markov chain sampled from the environment. For any
0 < �  1, with probability at least 1� �, for all h 2 H

and for every 0 < �  diam(Sk), the following holds

L(h)  L̂(�)
m (h). (19)

The proof is provided in [8], section A.2. Next, we use

L̂(�)
m (h) as a criterion function for selecting a good
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predictor. Given a random sequence X(m) let (h0, �0)
be any pair that satisfies the following:

L̂(�0)
m (h0) = min

h2H,�2(0,diam(Sk)]
L̂(�)
m (h). (20)

Let

�m := max {�0 : (h0, �0) satisfies (20)} (21)

and denote by hm its corresponding function. Define
(hm, �m) as a calibrated predictor, that is, a predictor
which is calibrated to its random environment based
on a sample X(m). It is shown in [8], section A.3, that
the calibrated predictor (hm, �m) always exists.

Remark 2. The calibrated predictor (hm, �m) mini-
mizes the penalized margin error over h 2 H and over
the range of values of �. This together with Lemma
1, means that with probability at least 1 � �, the up-

per bound on the error of hm, L(hm)  L̂(�m)
m (hm), is

minimum over all h 2 H. If this occurs, we say that
the criterion succeeds.

Note that while �m is not used in the predictor’s de-
cision, its choice influences which h 2 H is selected to
be hm.

Since (16) decreases with � then the higher the value of
�m, the lower the upper bound on the error of hm and
the better that hm fits the general (or typical) behavior
of the environment rather than fit a particular realiza-
tion of the random sample X(m). This motivates the
following definition of adaptivity to the environment.

Definition 3. (Level of adaptivity) Let (hm, �m) be a
predictor system calibrated to the environment based
on a sample X(m). Its level of adaptivity to the envi-
ronment is defined to be �m.

5 Complexity of calibrated predictor

For a fixed m � 1 and 0 < �  1, and for any h 2 H,
0 < �  diam(Sk) let us define

E(�)
h :=

n
x(m) : L(h) > L(�)

m (h) + ⇠(m, �, �)
o

as the set of bad samples on which the upper bound
(19) fails to hold for predictor system (h, �). Let the
class of such sets be defined as

EH :=
n
E(�)

h : h 2 H, 0 < �  diam (Sk)
o
.

Next we approximate EH by a finite class of sets
that are defined in a similar way. Let l be a non-
negative integer. Consider a minimal (1/2)l+2k-
cover F̂k(1/2)l+2 of F (the factor k is the diameter

of Sk). For f (k(1/2)l+2)
j 2 F̂k(1/2)l+2 denote by hj =

sgn(f (k(1/2)l+2)
j ). Define a set of bad samples associ-

ated with hj as

B(�)
j :=

n
x(m) : L(�)(hj) > L(�)

m (hj) + ⇠(m, 4�, �)
o
.

For 0  l < 1 denote by Bj,l := B((1/2)l+2)
j and define

the class

C(l) := {Bj,l}
Nk(1/2)l+2

j=1

where N� is the �-covering number of F with respect
to the l1-norm on Sk. The next lemma states that
given (hm, �m) we can approximate the set E(�m)

hm
by an

element of the class C(lm) where lm is directly obtained
from �m by checking in which interval �m is contained.

Lemma 4. For m � 1 let (hm, �m) be a predictor
calibrated based on X(m). Define lm as a non-negative
integer that satisfies (1/2)lm+1k  �m  (1/2)lmk.
Then there exists a 1  j  Nk(1/2)lm+2 , which is

denoted jm, such that E(�m)
hm

✓ Bjm,lm where Bjm,lm 2

C(lm).

The proof is in [8], section A.4.

Next we define a notion of complexity of the calibrated
predictor. In the context of [9], we set the functional
requirement of the calibrated predictor (selected by
the criterion) to be as follows: if the bound (19) fails
to hold for (hm, �m) (the criterion fails), then this must
be detected. We define the complexity of the system
(hm, �m) to be the level of uncertainty in detecting
that the criterion fails given that it fails.

The event that represents failure of the criterion is

X(m)
2 E(�m)

hm
. From Lemma 4, if X(m)

2 E(�m)
hm

then

X(m)
2 Bjm,lm therefore it is possible to detect failure

of the criterion by detecting that X(m) falls in at least
one element Bj,lm of C(lm).

Given X(m)
2 E(�m)

hm
, the index jm of the set Bjm,lm

that contains X(m) is random because the set E(�m)
hm

is
random due to (hm, �m). This index jm takes values
in the set

�
1, . . . ,

��C(lm)
�� and its conditional entropy

is bounded by the entropy of the uniform probability
distribution on this set,

H
⇣
jm
���X(m)

2 E(�m)
hm

⌘
 log2

���C(lm)
��� bits.

Therefore, the uncertainty in detecting that the cri-
terion fails, given that it fails, is what we define as
the complexity of the system. It is no more than
log2

��C(lm)
�� bits and, from (11), is bounded from above

as

log2

���C(lm)
���  Nk(1/2)lm+1/6 (lm + log2(30)) . (22)
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By definition of lm we have lm  log2

⇣
k
�m

⌘
and

�m

2 
�
1
2

�lm+1
k therefore (22) is no larger than

N�m/12 log2

⇣
30k
�m

⌘
.

Definition 5. (Complexity of calibrated predictor) Let
(hm, �m) be the calibrated predictor for a Markov
chain X(m). Define the complexity of (hm, �m) as

C(hm, �m) := N�m/12 log2

✓
30k

�m

◆
bits. (23)

Note that the larger the adaptivity level �m of the cal-
ibrated predictor, the lower its complexity C(hm, �m).
Thus, a calibrated predictor which is better adapted
to its random environment has a lower complexity.

6 Stability of calibrated predictor

As mentioned in section 1, the definition of system
stability involves two samples of the environment. The
first sample is defined in (1). We now sample n +
max {k, k⇤} consecutive bits from the environment to
obtain a second sample

X(n) := {Xt}
n
t=�max{k,k⇤}+1 . (24)

We say that a system is stable if its performance on the
two sequences X(m), X(n) is not too di↵erent. That
is, the first sample X(m) is taken to be the past be-
havior of the environment and the second sample X(n)

is viewed as a sample estimate of the future behavior,
thus stability of the predictor implies that its past and
future response to the random environment is not too
di↵erent.

We now describe this in details. Denote by 0 < �  1
a sensitivity parameter and let

��(�) := (�/�2)(1 + 4�).

Define the performance discrepancy of a system (h, �)
by

 (�)(h, �) :=  (�)
m,n(h, �) = L(�)

n (h)� L(��(�))
m (h),

(25)

where the subscript n in L(�)
n , and m in L(�)

m shows the
dependence on the sequences X(n) and X(m), respec-
tively. (The need for �� arises from technical reasons,
see (88), (89), (98), (99), in the proof of Theorem 11,
[8].) Define the following null hypothesis:

Null Hypothesis: For all h and �, E
⇥
 (�)(h, �)

⇤


0.

The null hypothesis is true because

E
h
L(�)
n (h)� L(��(�))

m (h)
i

= L(�)(h)� L(��(�))(h)

 0 (26)

where (26) follows from the fact that

L(�)(h) := P (Xtfh (St�1) < �)

 P (Xtfh (St�1) < ��(�)) (27)

= L(��(�))(h)

and (27) holds by the fact that ��(�) > � for every �
and � 2 (0, 1].

The main result, Theorem 7 in section 7, shows that
with a probability less than � the discrepancy is large,

that is,  (�)
m,n(hm, �m) > ✏.

Next, we define the following significance test of level
� and critical value ✏ (the value of ✏ is stated in the
theorem):

Significance Test: if  (�)(hm, �m) > ✏, then reject
the null hypothesis.

We use this test to decide if the calibrated predictor
is stable as follows: draw X(m) and obtain the cali-
brated predictor (hm, �m). Then draw X(n) and eval-

uate L(�m)
n (hm). Calculate the critical value ✏ (which

depends on �m) using Theorem 7 and apply the above
significance test to (hm, �m). If the di↵erence be-

tween the corresponding empirical errors L(�m)
n (hm)

and L(��(�m))
m (hm) is larger than ✏ then we reject the

null hypothesis. This means that the performance dis-

crepancy value  (�)
m,n(hm, �m) deviates by a significant

amount from its expected value and thus L(�m)
n (hm)

is atypically random for what is expected of the cali-
brated predictor (hm, �m). We take this to mean that
the predictor is unstable. This is formalized in the next
definition.

Definition 6. (Stability of calibrated system) Let
(hm, �m) be a calibrated predictor for a randomly
drawn sequence X(m) from a Markov environment.

Evaluate its empirical margin error L(��(�m))
m (hm) at

margin-level ��(�m). Let X(n) be a random sequence
generated by the same probability distribution and

evaluate the empirical margin error L(�m)
n (hm) of hm

onX(n). For any 0 < �  1, 0 < � < 1, we say that the
calibrated predictor (hm, �m) is ✏(m,n, �m, �,�)-stable
with sensitivity value � if

P
⇣
 (�)

m,n(hm, �m) > ✏(m,n, �m, �,�)
⌘
 � (28)

where  (�)
m,n(hm, �m) is the performance discrepancy

of the predictor which is defined in (25).

The above definition means that with a confidence of
at least 1��, the calibrated predictor (hm, �m) is stable
if the random deviation between its empirical margin
error on the two sequences is no larger than a value
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✏ that depends on �, m, n, �m and on a sensitivity
parameter value �. In the next section, after stating
the main result, we explain how the complexity of the
predictor influences ✏ and hence a↵ects the stability of
the predictor.

For a fixed �, ��(�) is decreasing with respect to in-
creasing � thus for any �1  �2 we have,

L
(��2 (�))
m (h)  L

(��1 (�))
m (h).

If h is ✏-stable with sensitivity value �2 then it is also
✏-stable with sensitivity value �1. In the main result,
Theorem 7, we show that � has a multiplicative e↵ect
on the level of adaptivity �m. This means that a larger
value of � allows for �m to be smaller while still keeping
✏ fixed, that is,  (�) is restricted to the same range
✏. So a larger � means that ✏ is less sensitive to the
value of �m in the sense that even if �m is low (which
means that the calibrated predictor is less adapted to
its environment), still, the discrepancy level is kept
within the same range of ✏.

Hence setting the parameter � to a higher value, means
that we want the stability value of the calibrated pre-
dictor to be less sensitive to the adaptivity level. In
this sense, we can say that the higher � the stronger
the ✏-stability.

7 Main result

As explained in the end of section 4, a significance test
with a critical value ✏ determines when to reject the
null hypothesis and therefore when to decide that the
calibrated predictor is unstable. The next result gives
the critical value ✏.

Theorem 7. Denote by N� the �-covering number
of Sk with respect to the metric d. Let ⇢(k⇤, l0) and
r(k, k⇤) be defined in (15) and (17). Let X(m), X(n)

be two random sequences sampled from the environ-
ment’s Markov probability distribution of order k⇤. Let
(hm, �m) be a calibrated predictor based on X(m) and
defined according to (21). For any 0 < �, �  1,
(hm, �m) is ✏(m,n, �m, �,�)-stable with sensitivity �
where

✏(m,n, �m, �,�) = r(k, k⇤)⇢(k⇤, l0)
 s

2

n

✓
N��m/3 ln

✓
2

⇠
3k

��m

⇡
+ 1

◆
+ ln

✓
2k

�m�(1� �)

◆◆

+

s
2

m

✓
N�m/3 ln

✓
2

⇠
3k

�m

⇡
+ 1

◆
+ ln

✓
2k

�m�(1� �)

◆◆!

(29)

The proof is in [8], section A.5.

An important feature of (29) is its dependence on
the adaptivity level �m. As shown in the proof, we
use sample-dependent concentration bounds to achieve
this. From Definition 5 the complexity of a predictor
(hm, �m) is O(N�m log( k

�m
)). The expression (29) in-

volves two such factors. Hence Theorem 7 implies that
the value of ✏ increases as the complexity of the cali-
brated predictor increases.

The larger the system’s level of adaptivity �m to
its random environment, the lower its complexity
C(hm, �m) and, from (29), the lower the value of ✏.
This means that if a less complex calibrated predictor
(hm, �m) (one which has a high value of �m) is stable,
then its performance discrepancy value is restricted to
a small range ✏. In contrast, if a more complex pre-
dictor (hm, �m) (which has a lower �m value) is stable,
then its performance discrepancy may still be high be-
cause it is restricted to a larger range ✏.

Hence, with the relationship between adaptivity level
and complexity (see paragraph under Definition 5), it
follows that a less complex calibrated-predictor is bet-
ter adapted to its random environment, has a smaller
possible range of discrepancy values and is more sta-
ble.

From (29), the factor r(k, k⇤) makes the value of ✏ in-
crease (the performance discrepancy value can there-
fore be larger) as the mismatch between k and k⇤ in-
creases. Thus the more that k and k⇤ are di↵erent,
the more unstable that the calibrated-predictor can
be. The factor ⇢(k⇤, l0) shows how ✏ depends on the
properties of the environment’s Markov chain.

8 Conclusions

We consider the question of how the complexity of a
prediction system a↵ects its stability. We define a pe-
nalized empirical margin error to be the criterion and
a predictor which minimizes this criterion is said to be
calibrated to its random environment. Its complexity
is defined to be the uncertainty in detecting that the
criterion fails to select a predictor with a minimum
criterion value.

We then introduce a notion of stability which measures
the di↵erence in performance of the calibrated system
on two samples of the random environment. We show
that the possible range of this di↵erence grows as the
complexity of the system increases and conclude that
the larger the system’s level of adaptivity to its random
environment, the lower its complexity and the higher
its stability.
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