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Appendix: A Generic Approach for Escaping Saddle points

A Proof of Theorem [

The case of 7 = () can be handled in a straightforward manner, so let us focus on the case where 7 = . We
split our analysis into cases, each analyzing the change in objective function value depending on second-order
criticality of yt.

We start with the case where the gradient condition of second-order critical point is violated and then proceed
to the case where the Hessian condition is violated.

Case I E[||Vf(y")]]] > € for some t > 0

We first observe the following: E[||V f(y)||?] > (E||Vf(y")]|)? > €. This follows from a straightforward applica-
tion of Jensen’s inequality. From this inequality, we have the following:

1 21y (st
g B~ ) 5)

This follows from the fact that 4! is the output of GRADIENT-FOCUSED-OPTIMIZER subroutine, which satisfies
the condition that for (y,z) = GRADIENT-FOCUSED-OPTIMIZER(z, n, €), we have

e <E[|VF(y")IP] <

E[IV £yl <

From Equation , we have
E[f(2")] < E[f(z"1)] = €g(n,e).
Furthermore, due to the property of non-increasing nature of GRADIENT-FOCUSED-OPTIMIZER, we also have

Ely'] < E[f(2*~1)].

We now focus on the HESSIAN-FOCUSED-OPTIMIZER subroutine. From the property of
HESSIAN-FOCUSED-OPTIMIZER that the objective function value is non-increasing, we have E[f(z!)] < E[f(u?)].
Therefore, combining with the above inequality, we have

E[f(2")] < E[f(u")]
= pE[f(y")] + (1 — p)E[f(z")]
< pE[f(=' )] + (1 = p)(E[f (")) - g(n,¢))
=E[f(@")] = (1 = p)e*g(n,e). (6)

The first equality is due to the definition of u? in Algorithm Therefore, when the gradient condition is violated,
irrespective of whether A\puin(V2f(2)) < —vy or V2f(y') = —~1, the objective function value always decreases by
at least e2g(n, €).

Case IL E[||[Vf(y")]]] < € and Amin (V2 f(z)) < —v for some ¢t > 0

In this case, we first note that for y = HESSIAN-FOCUSED-OPTIMIZER(x,n, €,7) and Amin(V2f(2)) < —7, we
have E[f(y)] < f(z) — h(n,€,7). Observe that x! = HESSIAN-FOCUSED-OPTIMIZER(u', n,€,y). Therefore, if
ut =yt and A\pin(V2f(2)) < —v, then we have

E[f(z")|u’ =yl < f(y") — h(n,e,7) < f(&') — h(n, €, 7).

The second inequality is due to the non-increasing property of GRADIENT-FOCUSED-OPTIMIZER. On the other
hand, if u® = 2%, we have hand, if we have E[f(z?)|u! = 2!] < f(z!). This is due to the non-increasing property
of HESSIAN-FOCUSED-OPTIMIZER. Combining the above two inequalities and using the law of total expectation,
we get

E[f(«")] = pE[f(z")|u" = y'] + (1 = p)E[f (z")|u’ = 2]
<p(E[ f(yt h(n,e,7)) + (1 — p)E[f(z")]
<p(E[f(z' )] = h(n,e,7)) + (1 = p)E[f(z'1)]

Elf(z1)] - ph(n €7)- (7)
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The second inequality is due to he non-increasing property of GRADIENT-FOCUSED-OPTIMIZER. Therefore, when
the hessian condition is violated, the objective function value always decreases by at least ph(n, €, 7).

Case IIL: E[|Vf(y")]]] < € and V2 f(y') = —~I for some t > 0

This is the favorable case for the algorithm. The only condition to note is that the objective function value
will be non-increasing in this case too. This is, again, due to the non-increasing properties of subroutines
GRADIENT-FOCUSED-OPTIMIZER and HESSIAN-FOCUSED-OPTIMIZER. In general, greater the occurrence of
this case during the course of the algorithm, higher will the probability that the output of our algorithm satisfies
the desired property.

The key observation is that Case I & II cannot occur large number of times since each of these cases strictly
decreases the objective function value. In particular, from Equation @ and , it is easy to see that each
occurrence of Case I & II the following holds:

E(f(=")] <E[f(=""1)] -0,

where 6§ = min((1 — p)e?g(n, €), ph(n, €,7)). Furthermore, the function f is lower bounded by B, thus, Case I &
I cannot occur more than (f(z°) — B)/6 times. Therefore, the probability of occurrence of Case III is at least
1 — (f(z°) — B)/(T9), which completes the first part of the proof.

The second part of the proof simply follows from first part. As seen above, the probability of Case I & II
is at most (f(2°) — B)/T@. Therefore, probability that an element of the set S falls in Case III is at least
1 — ((f(2°) — B)/T0)*, which gives us the required result for the second part.

B Proof of Lemma 1]

Proof. The proof follows from the analysis in |Reddi et al.| [2016a] with some additional reasoning. We need to
show two properties: and both of which are based on objective function value. To this end, we start
with an update in the s*® epoch. We have the following:

E[f (zi{D)] S ELf (™) + (V) 2 — 2™ + Fllaffy — 27?)
E

@) = eV F )2 + 22 o)1), (8)

The first inequality is due to L-smoothness of the function f . The second inequality simply follows from the
unbiasedness of SVRG update in Algorithm[2] For the analysis of the algorithm, we need the following Lyapunov
function:

AT = B[ () + plly - 20,

This function is a combination of objective function and the distance of the current iterate from the latest
snapshot Z;. Note that the term p; is introduced only for the analysis and is not part of the algorithm (see
Algorithm [2). Here {y1;}7 is chosen such the following holds:

e = prepr (L+meBe + 207 L) + ni L,

for all t € {0,--- ,m — 1} and p,, = 0. For bounding the Lypunov function A, we need the following bound on
the distance of the current iterate from the latest snapshot:

Elleyy — 2°)%) = Ellleify — o™ + 274 = 2°|?)
= Efllzyy — i P+ o™ = 2002+ 2afy — 2t et - 20)
= E[7 [l 12 + i ™ = 2°)1%) = 20 B[V (277, 277%" = 2°)

<E[2 |l 2 + ||zt — 751 + 2n,E [T;BJWf(xf“)IIQ + 3Bl — i‘sllﬂ : (9)

The second equality is due to the unbiasedness of the update of SVRG. The last inequality follows from a simple
application of Cauchy-Schwarz and Young’s inequality. Substituting Equation and Equation @D into the
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Lypunov function Afill, we obtain the following;:

s s s Lt S
AT <ELf @) =l VA @I + Sl
+ Elpan o P + el — 21
+ 2 | VS @I + S8l — &2

SE[f(ai) = (m — 2522 V£ (@i )12
+ (M + pesan?) nm“n] (o1 + pesrmeB) E [+t — 5°)%) (10)

To further bound this quantity, we use Lemma [3| to bound E[||v;T'||?], so that upon substituting it in Equa-

tion , we see that

AT <E[f(xith)] - (m — b P — 2ut+m§) E[IVf (=]
+ [per (1 +mBe + 207 L%) + 07 LP| E [||l27 Tt — 2°)°]
AT = (e = B — L = 2p 007 ) B[V f (2 Y7

The second inequality follows from the definition of y; and A$™'. Since n; = n = 1/(4Ln?/3) for j > 0 and
tef{o,...,j—1},

s s it H
AT < AT o ) EIVAEEDI, (an

where

#t+17h

= (e — — i L = 2pe41n7).

We will prove that for the given parameter setting v,, > 0 (see the proof below). With v,, > 0, it is easy to see
that AS+1 A5t Furthermore, note that A5t = E[f(x5™!) + pollzg™ — #°)12] = E[f(a:é“)] since 25t = 7°
(see Algorlthm ' Also, we have

E[f (x5 + pyllaf™ = 2°)°] < E[f(25")]

and thus, we obtain ]E[f(xj“)] < E[f(zgth)] for all j € {0, ....,m}. Furthermore, using simple induction and
the fact that ="' = aj, for all epoch s € {0,..,5 — 1}, it easy to see that E[f(z;"")] < f(z°). There-
fore, with the definition of y specified in the output of Algorithm we see that the condition of
GRADIENT-FOCUSED-OPTIMIZER is satisfied for SVRG algorithm.

We now prove that v, > 0 and also of GRADIENT-FOCUSED-OPTIMIZER is satisifed for SVRG algorithm.
By using telescoping the sum with j = m in Equation , we obtain

s+1 +1
ASTE - A3

S BNV <

This inequality in turn implies that

Un

Z:’l . [va( s+1)||2] < E[f('%é) — f(i's-‘rl)}, (12)

where we used that A5 = E[f(z5)] = E[f(2°")] (since i, = 0), and that AJT" = E[f(2°)] (since 25t = &*).
Now sum over all epochs to obtain

S—1m—1 S

1 Z Z ]E[va(x§+1)”2] < E[f(2°) — f(zm)] (13)

T Tyv
9 s=0 t=0 gon

Here we used the the fact that #° = 2°. To obtain a handle on v,, and complete our analysis, we will require an

upper bound on py. We observe that po = 55475 % where 6 = 2n2L? 4+ nB3. This is obtained using the
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relation gy = prer1(1+ 0B + 2n?L?) + n?L3 and the fact that p,, = 0. Using the specified values of 3 and 1 we
have
1

0 =2n>L* +nB = e

IN

1.3
dn ~ 4n’
Using the above bound on 6, we get
L (140m-1 L((1+6)™-1)
T 0 ~ T2(1+ 2n1/3)

L+ )bl -1y
< —SaioE <n (L(e —1)/4), (14)

wherein the second inequality follows upon noting that (1 + 7)" is increasing for > 0 and lim; o (1 + %)l =e
(here e is the Euler’s number). Now we can lower bound v, as

1

vy = min(n — w — L — 2,ut+1772) > (TI - u;ﬁn L — 2N0n2) = 40Ln2/3"

i
The first inequality holds since p; decreases with ¢. The second inequality holds since (a) po/B can be upper
bounded by (e — 1)/4 (follows from Equation ([14)), (b) n>L < n/4 and (c) 2uon® < (e — 1)n/8 (follows from
Equation ) Substituting the above lower bound in Equation , we obtain the following;:

S—1m—1 n2/3 20) — xS
LSS BV < D) = )] (15)
9 s=0 t=0 9

From the definition of (y,z) in output of Algorithm ie., y is Iterate z, chosen uniformly random
from {{zT )15 and 2 = 25, it is clear that Algorithm [2] satisfies the |G.2| requirement of

GRADIENT-FOCUSED-OPTIMIZER with g(n,e) = T./40Ln?/3. Since both |G.1| and |G.2| are satisified for Al-
gorithm [2, we conclude that SVRG is a GRADIENT-FOCUSED-OPTIMIZER. O

C Proof of Lemma [2

Proof. The first important observation is that the function value never increases because y = argmin. ¢y, .} f(2)
ie, f(y) < f(x), thus satisfying of HESSIAN-FOCUSED-OPTIMIZER. We now analyze the scenario where
Amin(V2f(z)) < —v. Consider the event where we obtain v such that

(0, V2 f(2)v) < Anin (V2 f(2)) + %

This event (denoted by &) happens with at least probability p. Note that, since Apin(V2f(2)) < —v, we have
(v, V2 f(xz)v) < —%. In this case, we have the following relationship:

F) < F@)+ (VS @)y =)+ 50— 2 f @) - 2) + oy — ol

2
2 3
= (&) ~ al(V (@), o) + STV f @ + ol
< flz)+ %2UTV2f(x)U + M6a3
< @) = ga W V@ + T (@)l
= (&) = syl I @) < )~ s’ (16)

The first inequality follows from the M-lipschitz continuity of the Hessain V2f(x). The first equality follows
from the update rule of HESSIANDESCENT. The second inequality is obtained by dropping the negative term
and using the fact that ||v|| = 1 . The second equality is obtained by substituting o = W%_ The last
inequality is due to the fact that(v, V2 f(2)v) < —3. In the other scenario where

(0. V21 (@)0) < Amin (V2 S (@) + 5
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we can at least ensure that f(y) < f(x) since y = argmin.¢(y 5} f(2). Therefore, we have

E[f(y)] = pE[f()IE] + (1 = p)E[f (y)[€]
< pE[f(W)IE] + (1 = p)f ()
<p[f(x) = 5hm=y’] + (L= p)f(2)
= (@) — 357’ (17)
The last inequality is due to Equation (16). Hence, HESSIAN-FOCUSED-OPTIMIZER satisfies of
HESSIAN-FOCUSED-OPTIMIZER with h(n,€,7) = 5757°, thus concluding the proof. O

D Proof of Theorem [3|

First note that cubic method is a descent method (refer to Theorem 1 of Nesterov and Polyak| [2006]); thus,
- 1| is trivially satisfied. Furthermore, cubic descent is a HESSIAN-FOCUSED-OPTIMIZER with h(n,e€,v) =

Bl M3'y This, again, follows from Theorem 1 of Nesterov and Polyak [2006]. The result easily follows from the
aforementloned observations.

E Other Lemmas

The following bound on the variance of SVRG is useful for our proof Reddi et al.| [2016a].
Lemma 3. |Reddi et al.| [20164a] Let vs+1 be computed by Algorithm . Then,

Eflloy %) < 2E[|V £ ()] + 2L%Ef |25+ — 2°)1%).

Proof. We use the definition of v{ ™ to get

Efle; 2] = B[l (Vi (2*) = V£, (3%) + V£ )]
= B[] (V1 (55) = V£ (2%) + VHE) = Vi) + V)P
< 2B[|V (@I + 2B ||V i, (257) = V£ 6) ~ BV (257 = V£, (@)

The inequality follows from the simple fact that (a + b)? < a? + b%. From the above inequality, we get the
following:

E[|lv; ™) < 2E[|V £ (@)% + 2BV fi, (27F) = V fi, (@)
<R[V f (25|12 4 2L%E[||lz5 T — 25|

The first inequality follows by noting that for a random variable ¢, E[||¢ — E[(]]|?] < E[||¢||?]. The last inequality
follows from L-smoothness of f;,. O

F Approximate Cubic Regularization

Cubic regularization method of [19] is designed to operate on full batch, i.e., it does not exploit the finite-
sum structure of the problem and requires the computation of the gradient and the Hessian on the entire
dataset to make an update. However, such full-batch methods do not scale gracefully with the size of data and
become prohibitively expensive on large datasets. To overcome this challenge, we devised an approximate cubic
regularization method described below:

1. Pick a mini-batch B and obtain the gradient and the hessian based on B, i.e.,

8] LS Vi = 5] LS R @) (18)

i€B i€B

9=
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Figure 4: Comparison of various methods on a synthetic problem. Our mix framework successfully escapes
saddle point.

2. Solve the sub-problem
1 M
v :argnﬁ)iﬂ <g,U>+§<U,H7)> +?”/U||3 (19)

3. Update: z + = + v*

We found that this mini-batch training strategy, which requires the computation of the gradient and the Hessian
on a small subset of the dataset, to work well on a few datasets (CURVES, MNIST, CIFAR10). A similar method
has been analysed in (Cartis and Scheinberg) [2017].

Furthermore, in many deep-networks, adaptive per-parameter learning rate helps immensely |[Kingma and Ba;
[2014]. Onme possible explanation for this is that the scale of the gradients in each layer of the network often
differ by several orders of magnitude. A well-suited optimization method should take this into account. This is
the reason for popularity of methods like ADAM or RMSPROP in the deep learning community. On similar lines,
to account for different per-parameter behaviour in cubic regularization, we modify the sub-problem by adding
a diagonal matrix My in addition to the scalar regularization coefficient M, i.e.,

1 1
min (g, v) + 3 (v, Hv) + 6M||Mdv||3. (20)
Also we devised an adaptive rule to obtain the diagonal matrix as My = diag((s + 10~2)'/9), where s is
maintained as a moving average of third order polynomial of the mini-batch gradient g, in a fashion similar to
RMSPROP and ADAM:

s+ Bs+ (1= B)(|g’ +2¢%), (21)

where |g|? and g2 are vectors such that [|g|?]; = |g;|®> and [¢%]; = g7 respectively for all i € [n]. The experiments
reported on CURVES and MNIST in this paper utilizes both the above modifications to the cubic regularization,
with 5 set to 0.9. We refer to this modified procedure as ACubic in our results.

G Experiment Details

In this section we provide further experimental details and results to aid reproducibility.

G.1 Synthetic Problem

The parameter selection for all the methods were carried as follows:

SGD: The scalar step-size was determined by a grid search.

ApaM: We performed a grid search over « and € parameters of ADAM tied together, i.e., a = €.

SvRG: The scalar step-size was determined by a grid search.

CUBICDESCENT: The regularization parameter M was chosen by grid search. The sub-problem was solved
with gradient descent (Carmon et al| [2016] with the step-size of solver to be 1072 and run till the gradient
norm of the sub-problem is reduced below 1073.

=N
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Further Observations The results are presented in Figure [4] The other first order methods like ADAM with
higher noise could escape relatively faster whereas SVRG with reduced noise stayed stuck at the saddle point.

G.2 Deep Networks

103 ; ; ; ; 103 . 103 . . : :
o »— Adam o »— Adam w +—+ ACubic
= 2 10%} +—+ ACubic|{ = 107 o—o Mix |
> > saddle point | e—e Mix i
g Y 10tLs ] £ 10 :
© © 9
i} ] BN 0
= o 10° { & 107} E
o o o
10'1 I | I h 101 \ | | 10'1 5 L 3 I Z I = | < ;
200 400 600 800 1000 05 10 15 20 10° 10° 10" 10° 10" 10
Time [s] IFO Calls leq ISO Calls
103 . : 103 . . . 10?2 . . :
v »— Adam o »— Adam ) +—+ ACubic
= «—+ ACubic 2 +—+ ACubic ,—:’U oo Mix
T 10 . 4 T 10%} . S
o—o Mix e—o Mix o 1
g g > 107 ¢ ]
T . S ‘d
2 10 @ 10 {2
e 5 o
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Figure 5: Comparison of various methods on a Deep Autoencoder on CURVES (top) and MNIST (bottom).
Our mix approach converges faster than the baseline methods and uses relatively few ISO calls in comparison to
APPROXCUBICDESCENT

Methods The parameter selection for all the methods were carried as follows::

1. ApaM: We performed a grid search over o and € parameters of ADAM so as to produce the best generalization
on a held out test set. We found it to be & = 1073, = 1073 for CURVES and o = 1072, ¢ = 10~! for MNIST.
ApPPROXCUBICDESCENT: The regularization parameter M was chosen as the largest value such function value
does not jump in first 10 epochs. We found it to be M = 103 for both CURVES and MNIST. The sub-problem
was solved with gradient descent Carmon et al.|[2016] with the step-size of solver to be 1072 and run till the
gradient norm of the sub-problem is reduced below 0.1.

2.

1
10 == Adam
S 5 *—+  ACubic
g g 101_ e—e Mix
()]
2 100 2
= ]
v RO
a 0
o) @]
1071

500 1000 1500 2000
Time [s]

200 400 600 800 1000
Time [s]

Figure 6: Zoomed in version of plots with respect to time. Here we show progress from time=10s onwards. This
better exhibits the relative differences between the methods, and is illustrative of the advantage of our method.
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