
A Generic Approach for Escaping Saddle points

Sashank J Reddi*, Manzil Zaheer* Suvrit Sra Barnabás Póczos
Carnegie Mellon University MIT LIDS Carnegie Mellon University

Ruslan Salakhutdinov Francis Bach Alexander J Smola
Carnegie Mellon University INRIA-ENS-Université PSL Amazon Web Services

Abstract

A central challenge to using first-order meth-
ods for optimizing nonconvex problems is the
presence of saddle points. First-order meth-
ods often get stuck at saddle points, greatly
deteriorating their performance. Typically,
to escape from saddles one has to use second-
order methods. However, most works on
second-order methods rely extensively on ex-
pensive Hessian-based computations, mak-
ing them impractical in large-scale settings.
To tackle this challenge, we introduce a
generic framework that minimizes Hessian-
based computations while at the same time
provably converging to second- order critical
points. Our framework carefully alternates
between a first-order and a second-order sub-
routine, using the latter only close to saddle
points, and yields convergence results com-
petitive to the state-of-the-art. Empirical re-
sults suggest that our strategy also enjoys a
good practical performance.

1 Introduction

We study nonconvex finite-sum problems of the form

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where neither f : Rd → R nor the individual func-
tions fi : Rd → R (i ∈ [n]) are necessarily convex.
We operate in a general nonconvex setting except for
few smoothness assumptions like Lipschitz continuity
of the gradient and Hessian. Optimization problems
of this form arise naturally in machine learning and
statistics as empirical risk minimization (ERM) and
M-estimation respectively.

Proceedings of the 21st International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2018, Lan-
zarote, Spain. PMLR: Volume 84. Copyright 2018 by the
author(s).

In the large-scale settings, algorithms based on first-
order information of functions fi are typically favored
as they are relatively inexpensive and scale seamlessly.
An algorithm widely used in practice is stochastic gra-
dient descent (Sgd), which has the iterative update:

xt+1 = xt − ηt∇fit(xt), (2)

where it ∈ [n] is a randomly chosen index and ηt is
a learning rate. Under suitable selection of the learn-
ing rate, we can show that Sgd converges to a point
x that, in expectation, satisfies the stationarity condi-
tion ‖∇f(x)‖ ≤ ε in O(1/ε4) iterations [Ghadimi and
Lan, 2013]. This result has two critical weaknesses:
(i) It does not ensure convergence to local optima or
second-order critical points; (ii) The rate of conver-
gence of the Sgd algorithm is slow.

For general nonconvex problems, one has to settle for
a more modest goal than sub-optimality, as finding the
global minimizer of finite-sum nonconvex problem will
be in general intractably hard. Unfortunately, Sgd
does not even ensure second-order critical conditions
such as local optimality since it can get stuck at sad-
dle points. This issue has recently received consider-
able attention in the ML community, especially in the
context of deep learning [Dauphin et al., 2014, 2015,
Choromanska et al., 2014]. These works argue that
saddle points are highly prevalent in most optimiza-
tion paths, and are the primary obstacle for training
large deep networks. To tackle this issue and achieve
a second-order critical point for which ‖∇f‖ ≤ ε and
∇2f � −

√
εI, we need algorithms that either use the

Hessian explicitly or exploit its structure.

A key work that explicitly uses Hessians to obtain
faster convergence rates is the cubic regularization
(CR) method [Nesterov and Polyak, 2006]. In par-
ticular, Nesterov and Polyak [2006] showed that CR
requires O(1/ε3/2) iterations to achieve the second-
order critical conditions. However, each iteration of
CR is expensive as it requires computing the Hessian
and solving multiple linear systems, each of which has
complexity O(dω) (ω is the matrix multiplication con-
stant), thus, undermining the benefit of its faster con-
vergence. Recently, Agarwal et al. [2016a] designed an

A Generic Approach for Escaping Saddle points

Figure 1: First order methods like GD can po-
tentially get stuck at saddle points. Second-order
methods can escape it in very few iterations (as
observed in the left plot) but at the cost of expen-
sive Hessian based iterations (see time plot to the
right). The proposed framework, which is a novel
mix of the two strategies, can escape saddle points
faster in time by carefully trading off computation
and iteration complexity.

algorithm to solve the CR more efficiently, however, it
still exhibits slower convergence in practice compared
to first-order methods. Both of these approaches use
Hessian based optimization in each iteration, which
make them slow in practice.

A second line of work focuses on using Hessian infor-
mation (or its structure) whenever the method gets
stuck at stationary points that are not second-order
critical. To our knowledge, the first work in this line
is [Ge et al., 2015], which shows that for a class of
functions that satisfy a special property called “strict-
saddle” property, a noisy variant of Sgd can converge
to a point close to a local minimum. For this class
of functions, points close to saddle points have a Hes-
sian with a large negative eigenvalue, which proves in-
strumental in escaping saddle points using an isotropic
noise. While such a noise-based method is appealing
as it only uses first-order information, it has a very
bad dependence on the dimension d, and furthermore,
the result only holds when the strict-saddle property
is satisfied [Ge et al., 2015]. More recently, Carmon
et al. [2016] presented a new faster algorithm that al-
ternates between first-order and second-order subrou-
tines. However, their algorithm is designed for the
simple case of n = 1 in (1) and hence, can be expen-
sive in practice.

Inspired by this line of work, we develop a gen-
eral framework for finding second-order critical points.
The key idea of our framework is to use first-order in-
formation for the most part of the optimization pro-
cess and invoke Hessian information only when stuck
at stationary points that are not second-order critical.
We summarize the key idea and main contributions of
this paper below.

Main Contributions: We develop an algorith-
mic framework for converging to second-order critical
points and provide convergence analysis for it. Our
framework carefully alternates between two subrou-
tines that use gradient and Hessian information, re-
spectively, and ensures second-order criticality. Fur-
thermore, we present two instantiations of our frame-
work and provide convergence rates for them. In
particular, we show that a simple instance of our

framework, based on Svrg, achieves convergence rates
competitive with the current state-of-the-art methods;
thus highlighting the simplicity and applicability of
our framework. Finally, we demonstrate the empiri-
cal performance of a few algorithms encapsulated by
our framework and show their superior performance.

Related Work. There is a vast literature on al-
gorithms for solving optimization problems of the
form (1). A classical approach for solving such opti-
mization problems is Sgd, which dates back at least to
the seminal work of Robbins and Monro [1951]. Since
then, Sgd has been a subject of extensive research,
especially in the convex setting [Poljak and Tsypkin,
1973, Ljung, 1977, Bottou, 1991, Kushner and Clark,
2012]. Recently, new faster methods, called variance
reduced (VR) methods, have been proposed for con-
vex finite-sum problems. VR methods attain faster
convergence by reducing the variance in the stochastic
updates of Sgd, see e.g., [Defazio et al., 2014a, John-
son and Zhang, 2013, Schmidt et al., 2013, Konečný
et al., 2015, Shalev-Shwartz and Zhang, 2013, Defazio
et al., 2014b]. Accelerated variants of these methods
achieve the lower bounds proved in [Agarwal and Bot-
tou, 2014, Lan and Zhou, 2015], thereby settling the
question of their optimality. Furthermore, Reddi et al.
[2015] developed an asynchronous framework for VR
methods and demonstrated their benefits in parallel
environments.

Most of the aforementioned prior works study stochas-
tic methods in convex or very specialized noncon-
vex settings that admit theoretical guarantees on
sub-optimality. For the general nonconvex setting,
it is only recently that non-asymptotic convergence
rate analysis for Sgd and its variants was obtained
by Ghadimi and Lan [2013], who showed that Sgd en-
sures ‖∇f‖ ≤ ε (in expectation) in O(1/ε4) iterations.
A similar rate for parallel and distributed Sgd was
shown in [Lian et al., 2015]. For these problems, Reddi
et al. [2016a,b,c] proved faster convergence rates that
ensure the same optimality criteria in O(n+ n2/3/ε2),
which is an order n1/3 faster than GD. While these
methods ensure convergence to stationary points at a
faster rate, the question of convergence to local min-

Reddi*, Zaheer*, Sra, Póczos, Salakhutdinov, Bach, Smola

ima (or in general to second-order critical points) has
not been addressed. To our knowledge, convergence
rates to second-order critical points (defined in Defini-
tion 1) for general nonconvex functions was first stud-
ied by Nesterov and Polyak [2006]. However, each iter-
ation of the algorithm in [Nesterov and Polyak, 2006] is
prohibitively expensive since it requires eigenvalue de-
compositions, and hence, is unsuitable for large-scale
high-dimensional problems. More recently, Carmon
et al. [2016], Agarwal et al. [2016a] presented algo-
rithms for finding second-order critical points by tack-
ling some practical issues that arise in [Nesterov and
Polyak, 2006]. However, these algorithms are either
only applicable to a restricted setting or heavily use
Hessian based computations, making them unappeal-
ing from a practical standpoint. Also, recently Car-
mon et al. [2017] proposed a fast accelerated first-order
method for nonconvex optimization; however, similar
to Carmon et al. [2016], it requires computation of
the full gradient at each iteration and only provides
convergence to stationary points. Noisy variants of
first-order methods have also been shown to escape
saddle points (see [Ge et al., 2015, Jin et al., 2017,
Levy, 2016]), however, they have strong dependence
on either n or d, both of which are undesirable.

2 Background & Problem Setup

We assume that each of the functions fi in (1) is L-
smooth, i.e., ‖∇fi(x) − ∇fi(y)‖ ≤ L‖x − y‖ for all
i ∈ [n]. Furthermore, we assume that the Hessian of f
in (1) is Lipschitz, i.e., we have

‖∇2f(x)−∇2f(y)‖ ≤M‖x− y‖, (3)

for all x, y ∈ Rd. Such a condition is typically neces-
sary to ensure convergence of algorithms to the second-
order critical points [Nesterov and Polyak, 2006]. In
addition to the above smoothness conditions, we also
assume that the function f is bounded below, i.e.,
f(x) ≥ B for all x ∈ Rd.

In order to measure stationarity of an iterate x, similar
to Nesterov [2003], Ghadimi and Lan [2013], Nesterov
and Polyak [2006], we use the condition ‖∇f(x)‖ ≤ ε.
In this paper, we are interested in convergence to
second-order critical points. Thus, in addition to
stationarity, we also require the solution to satisfy
the Hessian condition ∇2f(x) � −γI [Nesterov and
Polyak, 2006]. For iterative algorithms, we require
both ε, γ → 0 as the number of iterations T → ∞.
When all saddle points are non-degenerate, such a con-
dition implies convergence to a local optimum.

Definition 1. An algorithm A is said to obtain a
point x that is a (ε, γ)-second order critical point if
E[‖∇f(x)‖] ≤ ε and ∇2f(x) � −γI, where the expec-
tation is over any randomness in A.

We must exercise caution while interpreting results
pertaining to (ε, γ)-second order critical points. Such
points need not be close to any local minima either in
objective function value, or in the domain of (1). For
our algorithms, we use only an Incremental First-order
Oracle (IFO) [Agarwal and Bottou, 2014] and an In-
cremental Second-order Oracle (ISO), defined below.

Definition 2. An IFO takes an index i ∈ [n] and a
point x ∈ Rd, and returns the pair (fi(x),∇fi(x)). An
ISO takes an index i ∈ [n], point x ∈ Rd and vector
v ∈ Rd and returns the vector ∇2fi(x)v.

IFO and ISO calls are typically cheap, with ISO call
being relatively more expensive. In many practical
settings that arise in machine learning, the time com-
plexity of these oracle calls is linear in d [Agarwal et al.,
2016b, Pearlmutter, 1994]. For clarity and clean com-
parison, the dependence of time complexity on Lip-
schitz constant L, M , initial point and any polylog
factors in the results is hidden.

3 Generic Framework

In this section, we propose a generic framework for
escaping saddle points while solving nonconvex prob-
lems of form (1). One of the primary difficulties
in reaching a second-order critical point is the pres-
ence of saddle points. To evade such points, one
needs to use properties of both gradients and Hes-
sians. To this end, our framework is based on two
core subroutines: Gradient-Focused-Optimizer
and Hessian-Focused-Optimizer.

The idea is to use these two subroutines, each fo-
cused on different aspects of the optimization proce-
dure. Gradient-Focused-Optimizer focuses on us-
ing gradient information for decreasing the function.
On its own, the Gradient-Focused-Optimizer
might not converge to a local minimizer since it can
get stuck at a saddle point. Hence, we require the sub-
routine Hessian-Focused-Optimizer to help avoid
saddle points. A natural idea is to interleave these sub-
routines to obtain a second-order critical point. But
it is not even clear if such a procedure even converges.
We propose a carefully designed procedure that effec-
tively balances these two subroutines, which not only
provides meaningful theoretical guarantees, but also
translates into strong empirical gains.

Algorithm 1 provides pseudocode of our frame-
work. Observe that the algorithm is still
abstract, since it does not specify the sub-
routines Gradient-Focused-Optimizer and
Hessian-Focused-Optimizer. These subroutines
determine the crucial update mechanism of the
algorithm. We will present specific instance of these

A Generic Approach for Escaping Saddle points

Algorithm 1 Generic Framework

1: Input - Initial point: x0, total iterations T , error
threshold parameters ε, γ and probability p

2: for t = 1 to T do
3: (yt, zt) = Gradient-Focused-Optimizer(xt−1, ε)

(refer to G.1 and G.2)
4: Choose ut as yt with probability p and zt with prob-

ability 1− p
5: (xt+1, τ t+1) = Hessian-Focused-Optimizer(ut, ε, γ)

(refer to H.1 and H.2)
6: if τ t+1 = ∅ then
7: Output set {xt+1}
8: end if
9: end for

10: Output set {y1, ..., yT }

subroutines in the next section, but we assume the
following properties to hold for these subroutines.

• Gradient-Focused-Optimizer: Suppose (y, z)
= Gradient-Focused-Optimizer(x, n, ε), then
there exists positive function g : N × R+ → R+,
such that

G.1 E[f(y)] ≤ f(x),

G.2 E[‖∇f(y)‖2] ≤ 1
g(n,ε)E[f(x)− f(z)].

Here the outputs y, z ∈ Rd. The expectation in
the conditions above is over any randomness that
is a part of the subroutine. The function g will be
critical for the overall rate of Algorithm 1. Typ-
ically, Gradient-Focused-Optimizer is a first-
order method, since the primary aim of this sub-
routine is to focus on gradient based optimization.

• Hessian-Focused-Optimizer: Suppose (y, τ) =
Hessian-Focused-Optimizer(x, n, ε, γ) where y ∈
Rd and τ ∈ {∅, �}. If τ = ∅, then y is a (ε, γ)-second
order critical point with probability at least 1 − q.
Otherwise if τ = �, then y satisfies the following
condition:

H.1 E[f(y)] ≤ f(x),

H.2 E[f(y)] ≤ f(x) − h(n, ε, γ) when
λmin(∇2f(x)) ≤ −γ for some function
h : N× R+ × R+ → R+.

Here the expectation is over any randomness in sub-
routine Hessian-Focused-Optimizer. The two
conditions ensure that the objective function value,
in expectation, never increases and furthermore, de-
creases with a certain rate when λmin(∇2f(x)) ≤
−γ. In general, this subroutine utilizes the Hessian
or its properties for minimizing the objective func-
tion. Typically, this is the most expensive part of
the Algorithm 1 and hence, needs to be invoked ju-
diciously.

The key aspect of these subroutines is that they, in ex-
pectation, never increase the objective function value.

The functions g and h will determine the convergence
rate of Algorithm 1. In order to provide a concrete im-
plementation, we need to specify the aforementioned
subroutines. Before we delve into those details, we will
provide a generic convergence analysis for Algorithm 1.

Convergence Analysis

Theorem 1. Let ∆ = f(x0) − B, and θ =
min{(1 − p)ε2g(n, ε), ph(n, ε, γ)}. Also, let
Γ be the set output by Algorithm 1 with
Gradient-Focused-Optimizer satisfying G.1
and G.2 and Hessian-Focused-Optimizer sat-
isfying H.1 and H.2. Further, let T be such that
T > ∆/θ.

Suppose the multiset S = {i1, ...ik} contains k indices
selected independently and uniformly from {1, ..., |Γ|}.
Then the following holds for the indices in S:

1. yt (where t ∈ S) is an (ε, γ)-critical point with prob-
ability at least 1−max(∆/(Tθ), q).

2. If k = O(log(1/ζ)/min(log(∆/(Tθ)), log(1/q))),
with at least probability 1−ζ, at least one iterate yt

where t ∈ S is an (ε, γ)-critical point.

The proof of the result is presented in Ap-
pendix A. The key point regarding the above
result is that the overall convergence rate de-
pends on the magnitude of both functions g and
h. Theorem 1 shows that the slowest amongst
the subroutines Gradient-Focused-Optimizer and
Hessian-Focused-Optimizer governs the overall
rate of Algorithm 1. Thus, it is important to ensure
that both these procedures have good convergence.
Also, note that the optimal setting for p based on the
result above satisfies 1/p = 1/ε2g(n, ε) + 1/h(n, ε, γ) .
We defer further discussion of convergence to next sec-
tion, where we present more specific convergence and
rate analysis.

4 Concrete Instantiations

We now present specific instantiations of our frame-
work in this section. Before we state our key results,
we discuss an important subroutine that is used as
Gradient-Focused-Optimizer for rest of this pa-
per: Svrg. We give a brief description of the algo-
rithm in this section and show that it meets the condi-
tions required for a Gradient-Focused-Optimizer.
Svrg Johnson and Zhang [2013], Reddi et al. [2016a]
is a stochastic algorithm recently shown to be very ef-
fective for reducing variance in finite-sum problems.
We seek to understand its benefits for nonconvex op-
timization, with a particular focus on the issue of es-
caping saddle points. Algorithm 2 presents Svrg’s
pseudocode.

Reddi*, Zaheer*, Sra, Póczos, Salakhutdinov, Bach, Smola

Algorithm 2 SVRG
(
x0, ε

)
1: Input: x0m = x0 ∈ Rd, epoch length m, step sizes
{ηi > 0}m−1

i=0 , iterations Tg, S = dTg/me
2: for s = 0 to S − 1 do
3: x̃s = xs+1

0 = xsm
4: gs+1 = 1

n

∑n
i=1∇fi(x̃

s)
5: for t = 0 to m− 1 do
6: Uniformly randomly pick it from {1, . . . , n}
7: vs+1

t = ∇fit(xs+1
t)−∇fit(x̃s) + gs+1

8: xs+1
t+1 = xs+1

t − ηtvs+1
t

9: end for
10: end for
11: Output: (y, z) where y is Iterate xa chosen uniformly

random from {{xs+1
t }m−1

t=0 }
S−1
s=0 and z = xSm.

Observe that Algorithm 2 is an epoch-based algo-
rithm. At the start of each epoch s, a full gradi-
ent is calculated at the point x̃s, requiring n calls
to the IFO. Within its inner loop Svrg performs
m stochastic updates. Suppose m is chosen to be
O(n) (typically used in practice), then the total
IFO calls per epoch is Θ(n). Strong convergence
rates have been proved Algorithm 2 in the context
of convex and nonconvex optimization [Johnson and
Zhang, 2013, Reddi et al., 2016a]. The following re-
sult shows that Svrg meets the requirements of a
Gradient-Focused-Optimizer.

Lemma 1. Suppose ηt = η = 1/4Ln2/3, m = n
and Tg = Tε, which depends on ε, then Algorithm 2
is a Gradient-Focused-Optimizer with g(n, ε) =
Tε/40Ln2/3.

In rest of this section, we discuss approaches us-
ing Svrg as a Gradient-Focused-Optimizer.
In particular, we propose and provide convergence
analysis for two different methods with different
Hessian-Focused-Optimizer but which use Svrg
as a Gradient-Focused-Optimizer.

4.1 Hessian descent

The first approach is based on directly using the eigen-
vector corresponding to the smallest eigenvalue as
a Hessian-Focused-Optimizer. More specifically,
when the smallest eigenvalue of the Hessian is negative
and reasonably large in magnitude, the Hessian infor-
mation can be used to ensure descent in the objective
function value. The pseudo-code for the algorithm is
given in Algorithm 3.

The key idea is to utilize the minimum eigenvalue
information in order to make a descent step. If
λmin(∇2f(x)) ≤ −γ then the idea is to use this infor-
mation to take a descent step. Note the subroutine is
designed in a fashion such that the objective function
value never increases. Thus, it naturally satisfies the

Algorithm 3 HessianDescent (x, ε, γ)

1: Find v such that ‖v‖ = 1, and with probability at
least ρ the following inequality holds: 〈v,∇2f(x)v〉 ≤
λmin(∇2f(x)) + γ

2
.

2: Set α = |〈v,∇2f(x)v〉|/M .
3: u = x− α sign(〈v,∇f(x)〉)v.
4: y = arg minz∈{u,x} f(z)
5: Output: (y, �).

requirement H.1 of Hessian-Focused-Optimizer.
The following result shows that HessianDescent is
a Hessian-Focused-Optimizer.

Lemma 2. HessianDescent is a
Hessian-Focused-Optimizer with h(n, ε, γ) =
ρ

24M2 γ
3.

The proof of the result is presented in Appendix C.
With Svrg as Gradient-Focused-Optimizer and
HessianDescent as Hessian-Focused-Optimizer,
we show the following key result:

Theorem 2. Suppose Svrg with m = n, ηt = η =
1/4Ln2/3 for all t ∈ {1, ...,m} and Tg = 40Ln2/3/ε1/2

is used as Gradient-Focused-Optimizer
and HessianDescent is used as
Hessian-Focused-Optimizer with q = 0, then
Algorithm 1 finds a (ε,

√
ε)-second order critical point

in T = O(∆/min(p, 1 − p)ε3/2) with probability at
least 0.9.

The result directly follows from using Lemma 1
and 2 in Theorem 1. The result shows that
the iteration complexity of Algorithm 1 in this
case is O(∆/ε3/2 min(p, 1 − p)). Thus, the overall
IFO complexity of Svrg algorithm is (n + Tg) ×
T = O(n/ε3/2 + n2/3/ε2). Since each IFO call
takes O(d) time, the overall time complexity of all
Gradient-Focused-Optimizer steps is O(nd/ε3/2+
n2/3d/ε2). To understand the time complexity of
HessianDescent, we need the following result due
to Agarwal et al. [2016a].

Preposition 1. The time complexity of finding v ∈ Rd
that ‖v‖ = 1, and with probability at least ρ the follow-
ing inequality holds: 〈v,∇2f(x)v〉 ≤ λmin(∇2f(x))+ γ

2

is O(nd+ n3/4d/γ1/2).

Note that each iteration of Algorithm 1 in this case
has just linear dependence on d. Since the total num-
ber of HessianDescent iterations is O(∆/min(p, 1−
p)ε3/2) and each iteration has the complexity of
O(nd + n3/4d/ε1/4), using the above remark, we ob-
tain an overall time complexity of HessianDescent
is O(nd/ε3/2 + n3/4d/ε7/4). Combining this with the
time complexity of Svrg, we get the following result.

Corollary 1. The overall running time of Algorithm 1
to find a (ε,

√
ε)-second order critical point, with pa-

A Generic Approach for Escaping Saddle points

rameter settings used in Theorem 2, is O(nd/ε3/2 +
n3/4d/ε7/4 + n2/3d/ε2).

Note that the dependence on ε is much better in com-
parison to that of Noisy SGD used in [Ge et al., 2015].
Furthermore, our results are competitive with [Agar-
wal et al., 2016a, Carmon et al., 2016] in their respec-
tive settings, but with a much more practical algorithm
and simpler analysis. More specifically, Agarwal et al.
[2016a] has running time of O(nd/ε3/2 + n3/4d/ε7/4).
When ε > c/n2/3 where c is some constant (which is
very reasonable for most machine learning settings),
our results would be better. However, our rates can
be slightly worse when this is not the case. Next, Car-
mon et al. [2016] does not consider the finite-sum set-
ting specifically, and if applied as it is for our finite-
sum setup, it will have a running time of O(nd/ε7/4).
In comparison, our rates are better in a larger regime
where ε > c/n4/3. Note that in machine learning ap-
plications the goal is to obtain better generalization
which roughly translates to such regimes in practice.
Thus, in settings of interest to machine learning, our
results are competitive (or better) in comparison to
[Agarwal et al., 2016a, Carmon et al., 2016]. Finally,
we also note that our algorithm is faster than the one
proposed in [Jin et al., 2017], which has a time com-
plexity of O(nd/ε2).

4.2 Cubic Descent

In this section, we show that the cubic regulariza-
tion method in Nesterov and Polyak [2006] can be
used as Hessian-Focused-Optimizer. More specif-
ically, here Hessian-Focused-Optimizer approxi-
mately solves the following optimization problem:

y = arg min
z
〈∇f(x), z − x〉

+
1

2

〈
z − x,∇2f(x)(z − x)

〉
+
M

6
‖z − x‖3,

(CubicDescent)
and returns (y, �) as output. The following result can
be proved for this approach.

Theorem 3. Suppose Svrg (same as Theo-
rem 2) is used as Gradient-Focused-Optimizer
and CubicDescent is used as
Hessian-Focused-Optimizer with q = 0, then
Algorithm 1 finds a (ε,

√
ε)-second order critical point

in T = O(∆/min(p, 1 − p)ε3/2) with probability at
least 0.9.

In principle, Algorithm 1 with CubicDescent as
Hessian-Focused-Optimizer can converge without
the use of Gradient-Focused-Optimizer subrou-
tine at each iteration since it essentially reduces

to the cubic regularization method of Nesterov and
Polyak [2006]. However, in practice, we would expect
Gradient-Focused-Optimizer to perform most of
the optimization and Hessian-Focused-Optimizer
to be used for far fewer iterations. Using the method
developed in Nesterov and Polyak [2006] for solving
CubicDescent, we obtain the following corollary.

Corollary 2. The overall running time of Algorithm 1
to find a (ε,

√
ε)-second order critical point, with pa-

rameter settings used in Theorem 3, is O(ndω/ε3/2 +
n2/3d/ε2).

Here ω is the matrix multiplication constant. The de-
pendence on ε is weaker in comparison to Corollary 1.
However, each iteration of CubicDescent is expen-
sive (as seen from the factor dω in the corollary above)
and thus, in high dimensional settings typically en-
countered in machine learning, this approach can be
expensive in comparison to HessianDescent.

4.3 Practical Considerations

The focus of this section was to demonstrate the
wide applicability of our framework; wherein us-
ing a simple instantiation of this framework, we
could achieve algorithms with fast convergence rates.
To further achieve good empirical performance, we
had to slightly modify these procedures. For
Hessian-Focused-Optimizer, we found stochas-
tic, adaptive and inexact approaches for solving
HessianDescent and CubicDescent work well in
practice. Due to lack of space, the exact description
of these modifications is deferred to Appendix F. Fur-
thermore, in the context of deep learning, empirical
evidence suggests that first-order methods like Adam
[Kingma and Ba, 2014] exhibit behavior that is in con-
gruence with properties G.1 and G.2. While theo-
retical analysis for a setting where Adam is used as
Gradient-Focused-Optimizer is still unresolved,
we nevertheless demonstrate its performance through
empirical results in the following section.

5 Experiments

We now present empirical results for our saddle point
avoidance technique with an aim to highlight three
aspects of our framework: (i) it successfully escapes
non-degenerate saddle points, (ii) it is fast, and (iii) it
is practical on large-scale problems. All the algorithms
are implemented on TensorFlow [Abadi et al., 2015].
In case of deep networks, the Hessian-vector product
is evaluated using the trick presented in [Pearlmut-
ter, 1994]. We run our experiments on a commodity
machine with Intel R© Xeon R© CPU E5-2630 v4 CPU,
256GB RAM, and NVidia R© Titan X (Pascal) GPU.

Reddi*, Zaheer*, Sra, Póczos, Salakhutdinov, Bach, Smola

Figure 2: Comparison of various methods on a synthetic problem. Our mix framework successfully escapes
saddle point and uses relatively few ISO calls in comparison to CubicDescent.

Synthetic Problem. To demonstrate the fast escape
from a saddle point of our method, we consider the
following simple nonconvex finite-sum problem:

min
x∈Rd

1

n

n∑
i=1

xTAix+ bTi x+ ‖x‖1010 (4)

Here the parameters are designed such that
∑
i bi = 0

and
∑
iAi matrix has exactly one negative eigenvalue

of −0.001 and other eigenvalues randomly chosen in
the interval [1, 2]. The total number of examples n is
set to be 100,000 and d is 1000. It is not hard to see
that this problem has a non-degenerate saddle point
at the origin. This allows us to explore the behaviour
of different optimization algorithms in the vicinity of
the saddle point. In this experiment, we compare a
mix of Svrg and HessianDescent (as in Theorem 2)
with Sgd (with constant step size), Adam, Svrg and
CubicDescent. The parameter of these algorithms
is chosen by grid search so that it gives the best per-
formance. The subproblem of CubicDescent was
solved with gradient descent Carmon et al. [2016] until
the gradient norm of the subproblem is reduced below
10−3. We study the progress of optimization, i.e., de-
crease in function value with wall clock time, IFO calls,
and ISO calls. All algorithms were initialized with the
same starting point very close to origin.

The results are presented in Figure 2, which shows that
our proposed mix framework was the fastest to escape
the saddle point in terms of wall clock time. We ob-
serve that performance of the first order methods suf-
fered severely due to the saddle point. Note that Sgd
eventually escaped the saddle point due to inherent
noise in the mini-batch gradient. CubicDescent, a
second-order method, escaped the saddle point faster
in terms of iterations using the Hessian information.
But operating on Hessian information is expensive as
a result this method was slow in terms of wall clock
time. The proposed framework, which is a mix of the
two strategies, inherits the best of both worlds by us-
ing cheap gradient information most of the time and
reducing the use of relatively expensive Hessian infor-

mation (ISO calls) by 100x. This resulted in faster
escape from saddle point in terms of wall clock time.

Deep Networks. To investigate the practical per-
formance of the framework for deep learning prob-
lems, we applied it to two deep autoencoder optimiza-
tion problems from Hinton and Salakhutdinov [2006]
called CURVES and MNIST. Due to their high dif-
ficulty, performance on these problems has become a
standard benchmark for neural network optimization
methods, e.g. Martens and Grosse [2015], Sutskever
et al. [2013], Vinyals and Povey [2012], Martens [2010].
The CURVES autoencoder consists of an encoder with
layers of size (28×28)-400-200-100- 50-25-6 and a sym-
metric decoder totaling in 0.85M parameters. The six
units in the code layer were linear and all the other
units were logistic. The network was trained on 20,000
images and tested on 10,000 new images. The data set
contains images of curves that were generated from
three randomly chosen points in two dimensions. 1

The MNIST autoencoder consists of an encoder with
layers of size (28×28)-1000-500-250-30 and a symmet-
ric decoder, totaling in 2.8M parameters. The thirty
units in the code layer were linear and all the other
units were logistic. The network was trained on 60,000
images and tested on 10,000 new images. The data set
contains images of handwritten digits 0–9. The pixel
intensities were normalized to lie between 0 and 1.2

As an instantiation of our framework, we use a mix
of Adam, which is popular in deep learning commu-
nity, and approximate cubic regularization method de-
scribed in Section 4.3. For comparison the algorithm
in [Carmon et al., 2016] is impractical for our setting
because it requires computing the full gradient at each
iteration and is, thus, intractable for problems of our
interest. Furthermore, we tried to compare our algo-
rithm with the method in [Agarwal et al., 2016a], how-
ever, the algorithm as stated in the paper is not prac-

1Data available at: www.cs.toronto.edu/~jmartens/
digs3pts_1.mat

2Data available at: www.cs.toronto.edu/~jmartens/
mnist_all.mat

www.cs.toronto.edu/~jmartens/digs3pts_1.mat
www.cs.toronto.edu/~jmartens/digs3pts_1.mat
www.cs.toronto.edu/~jmartens/mnist_all.mat
www.cs.toronto.edu/~jmartens/mnist_all.mat

A Generic Approach for Escaping Saddle points

Figure 3: Comparison of various methods on CURVES and MNIST Deep Autoencoder. Our mix ap-
proach converges faster than the baseline methods and uses relatively few ISO calls in comparison to
ApproxCubicDescent. Please refer to Appendix G for more results.

tical3. To this end, we compare our algorithm with a
practical version of cubic method, ApproxCubicDe-
scent, described in Section 4.3. We also compared our
algorithm with Adam, which is typically the de-facto
method for training large deep networks. The param-
eters of these algorithms were chosen to produce the
best generalization on a held out test set. The reg-
ularization parameter M was chosen as the smallest
value such that the function value does not fluctuate
in the first 10 epochs. We use the initialization sug-
gested in Martens [2010] and a mini-batch size of 1000
for all the algorithms. We report objective function
value against wall clock time and ISO calls.

The results presented in Figure 3 show that our pro-
posed mix framework was the fastest to escape the sad-
dle point in terms of wall clock time. Adam took con-
siderably more time to escape the saddle point, espe-
cially in the case of MNIST. While ApproxCubicDe-
scent escaped the saddle point in relatively fewer iter-
ations, each iteration required considerably large num-
ber of ISO calls; as a result, the method was extremely
slow in terms of wall clock time, despite our efforts to
improve it via approximations and code optimizations.
On the other hand, our proposed framework seamlessly
balances these two methods, resulting in fast decrease
of training loss.

6 Discussion

In this paper, we examined a generic strategy to
escape saddle points in nonconvex finite-sum prob-
lems and presented its convergence analysis. The
key intuition is to alternate between a first-order and
second-order based optimizers; the latter is mainly
intended to escape points that are only station-
ary but are not second-order critical points. We

3We would like to emphasize that [Agarwal et al., 2016b]
does not contain any empirical results. In order to be fair,
we also reached out to the authors of the paper, who via
personal communication admitted that the algorithm as
implemented verbatim in the paper is not practical and
comparison to it is not useful.

presented two different instantiations of our frame-
work and provided their detailed convergence anal-
ysis. In this paper, we primarily used Svrg as
Gradient-Focused-Optimizer, however, investi-
gating the use of other first-order methods, like Car-
mon et al. [2017], is an interesting research direction.
Also, while both our methods explicity use the Hessian
information, one can also use noisy first-order methods
as Hessian-Focused-Optimizer (see for e.g. noisy
Sgd in [Ge et al., 2015]). In such a scenario, we exploit
the negative eigenvalues of the Hessian to escape sad-
dle points by using isotropic noise, and do not explic-
itly use ISO. For these methods, under strict-saddle
point property [Ge et al., 2015], we can show conver-
gence to local optima within our framework.

Our primary goal in this paper was to develop a well-
founded, yet practical, framework for finding local
minima in nonconvex optimization. While conver-
gence rates in [Agarwal et al., 2016a] may seem slightly
better at first glance, we would like to point out that
these running times are worst-case time complexity
and might involve large constants. For example, Agar-
wal et al. [2016a] solve a subroutine based on both gra-
dient and Hessian information at each iteration. Such
methods do not scale well in practice because they
rely on expensive computations based on the Hessian
at every iteration.

We primarily focused on obtaining second-order crit-
ical points for nonconvex finite-sums (1). This does
not necessarily imply low test error or good general-
ization capabilities. Thus, we should be careful when
interpreting the results presented in this paper. A de-
tailed discussion or analysis of these issues is out of
scope of this paper. While a few prior works argue
for convergence to local optima, the exact connection
between generalization and local optima is not well
understood, and is an interesting open problem. Nev-
ertheless, we believe the techniques presented in this
paper can be used alongside other optimization tools
for faster and better nonconvex optimization.

Reddi*, Zaheer*, Sra, Póczos, Salakhutdinov, Bach, Smola

References

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete War-
den, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems, 2015. URL
http://tensorflow.org/. Software available from
tensorflow.org.

Alekh Agarwal and Leon Bottou. A lower bound for
the optimization of finite sums. arXiv:1410.0723,
2014.

Naman Agarwal, Zeyuan Allen Zhu, Brian Bullins,
Elad Hazan, and Tengyu Ma. Finding approximate
local minima for nonconvex optimization in linear
time. CoRR, abs/1611.01146, 2016a.

Naman Agarwal, Brian Bullins, and Elad Hazan. Sec-
ond order stochastic optimization in linear time.
CoRR, abs/1602.03943, 2016b.

Léon Bottou. Stochastic gradient learning in neural
networks. Proceedings of Neuro-Nımes, 91(8), 1991.

Yair Carmon, John C. Duchi, Oliver Hinder, and
Aaron Sidford. Accelerated methods for non-convex
optimization. CoRR, abs/1611.00756, 2016.

Yair Carmon, John C. Duchi, Oliver Hinder, and
Aaron Sidford. ”convex until proven guilty”:
Dimension-free acceleration of gradient descent on
non-convex functions. In Proceedings of the 34th In-
ternational Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017,
pages 654–663, 2017.

C. Cartis and K. Scheinberg. Global convergence
rate analysis of unconstrained optimization meth-
ods based on probabilistic models. Mathematical
Programming, pages 1–39, 2017. ISSN 1436-4646.
doi: 10.1007/s10107-017-1137-4.

Anna Choromanska, Mikael Henaff, Michaël Mathieu,
Gérard Ben Arous, and Yann LeCun. The loss sur-
face of multilayer networks. CoRR, abs/1412.0233,
2014.

Yann Dauphin, Harm de Vries, and Yoshua Bengio.
Equilibrated adaptive learning rates for non-convex
optimization. In C. Cortes, N. D. Lawrence, D. D.

Lee, M. Sugiyama, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems
28, pages 1504–1512. Curran Associates, Inc., 2015.

Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre,
Kyunghyun Cho, Surya Ganguli, and Yoshua Ben-
gio. Identifying and attacking the saddle point
problem in high-dimensional non-convex optimiza-
tion. In Proceedings of the 27th International Con-
ference on Neural Information Processing Systems,
NIPS’14, pages 2933–2941, 2014.

Aaron Defazio, Francis Bach, and Simon Lacoste-
Julien. SAGA: A fast incremental gradient method
with support for non-strongly convex composite ob-
jectives. In NIPS 27, pages 1646–1654, 2014a.

Aaron J Defazio, Tibério S Caetano, and Justin
Domke. Finito: A faster, permutable incre-
mental gradient method for big data problems.
arXiv:1407.2710, 2014b.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Es-
caping from saddle points - online stochastic gradi-
ent for tensor decomposition. In Proceedings of The
28th Conference on Learning Theory, COLT 2015,
pages 797–842, 2015.

Saeed Ghadimi and Guanghui Lan. Stochastic first-
and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23
(4):2341–2368, 2013. doi: 10.1137/120880811.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Re-
ducing the dimensionality of data with neural net-
works. science, 313(5786):504–507, 2006.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M.
Kakade, and Michael I. Jordan. How to escape sad-
dle points efficiently. CoRR, abs/1703.00887, 2017.

Rie Johnson and Tong Zhang. Accelerating stochastic
gradient descent using predictive variance reduction.
In NIPS 26, pages 315–323, 2013.

Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. CoRR, abs/1412.6980,
2014.

Jakub Konečný, Jie Liu, Peter Richtárik, and Martin
Takáč. Mini-Batch Semi-Stochastic Gradient De-
scent in the Proximal Setting. arXiv:1504.04407,
2015.

Harold Joseph Kushner and Dean S Clark. Stochastic
approximation methods for constrained and uncon-
strained systems, volume 26. Springer Science &
Business Media, 2012.

Guanghui Lan and Yi Zhou. An optimal randomized
incremental gradient method. arXiv:1507.02000,
2015.

Kfir Y. Levy. The power of normalization: Faster eva-
sion of saddle points. CoRR, abs/1611.04831, 2016.

http://tensorflow.org/

A Generic Approach for Escaping Saddle points

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu.
Asynchronous Parallel Stochastic Gradient for Non-
convex Optimization. In NIPS, 2015.

Lennart Ljung. Analysis of recursive stochastic algo-
rithms. Automatic Control, IEEE Transactions on,
22(4):551–575, 1977.

James Martens. Deep learning via hessian-free opti-
mization. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages
735–742, 2010.

James Martens and Roger Grosse. Optimizing neu-
ral networks with kronecker-factored approximate
curvature. In International Conference on Machine
Learning, pages 2408–2417, 2015.

Yurii Nesterov. Introductory Lectures On Convex Op-
timization: A Basic Course. Springer, 2003.

Yurii Nesterov and Boris T Polyak. Cubic regulariza-
tion of newton method and its global performance.
Mathematical Programming, 108(1):177–205, 2006.

Barak A. Pearlmutter. Fast exact multiplication by the
hessian. Neural Computation, 6(1):147–160, Jan-
uary 1994. ISSN 0899-7667.

BT Poljak and Ya Z Tsypkin. Pseudogradient adapta-
tion and training algorithms. Automation and Re-
mote Control, 34:45–67, 1973.

Sashank Reddi, Ahmed Hefny, Suvrit Sra, Barnabas
Poczos, and Alex J Smola. On variance reduction
in stochastic gradient descent and its asynchronous
variants. In NIPS 28, pages 2629–2637, 2015.

Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabás
Póczos, and Alexander J. Smola. Stochastic variance
reduction for nonconvex optimization. In Proceed-
ings of the 33nd International Conference on Ma-
chine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016, pages 314–323, 2016a.

Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, and
Alexander J. Smola. Fast incremental method for
nonconvex optimization. CoRR, abs/1603.06159,
2016b.

Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, and
Alexander J. Smola. Fast stochastic methods for
nonsmooth nonconvex optimization. CoRR, 2016c.

H. Robbins and S. Monro. A stochastic approximation
method. Annals of Mathematical Statistics, 22:400–
407, 1951.

Mark W. Schmidt, Nicolas Le Roux, and Francis R.
Bach. Minimizing Finite Sums with the Stochastic
Average Gradient. arXiv:1309.2388, 2013.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual
coordinate ascent methods for regularized loss. The
Journal of Machine Learning Research, 14(1):567–
599, 2013.

Ilya Sutskever, James Martens, George Dahl, and Ge-
offrey Hinton. On the importance of initialization
and momentum in deep learning. In International
conference on machine learning, pages 1139–1147,
2013.

Oriol Vinyals and Daniel Povey. Krylov subspace de-
scent for deep learning. In AISTATS, pages 1261–
1268, 2012.

	Introduction
	Background & Problem Setup
	Generic Framework
	Concrete Instantiations
	Hessian descent
	Cubic Descent
	Practical Considerations

	Experiments
	Discussion

